1
|
Patterson L, Belkhiria J, Martínez-López B, Pires AFA. Identification of high-risk contact areas between feral pigs and outdoor-raised pig operations in California: Implications for disease transmission in the wildlife-livestock interface. PLoS One 2022; 17:e0270500. [PMID: 35763526 PMCID: PMC9239460 DOI: 10.1371/journal.pone.0270500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 06/10/2022] [Indexed: 11/24/2022] Open
Abstract
The US is currently experiencing a return to raising domestic pigs outdoors, due to consumer demand for sustainably-raised animal products. A challenge in raising pigs outdoors is the possibility of these animals interacting with feral pigs and an associated risk of pathogen transmission. California has one of the largest and widest geographic distributions of feral pigs. Locations at greatest risk for increased contact between both swine populations are those regions that contain feral pig suitable habitat located near outdoor-raised domestic pigs. The main aim of this study entailed identifying potential high-risk areas of disease transmission between these two swine populations. Aims were achieved by predicting suitable feral pig habitat using Maximum Entropy (MaxEnt); mapping the spatial distribution of outdoor-raised pig operations (OPO); and identifying high-risk regions where there is overlap between feral pig suitable habitat and OPO. A MaxEnt prediction map with estimates of the relative probability of suitable feral pig habitat was built, using hunting tags as presence-only points. Predictor layers were included in variable selection steps for model building. Five variables were identified as important in predicting suitable feral pig habitat in the final model, including the annual maximum green vegetation fraction, elevation, the minimum temperature of the coldest month, precipitation of the wettest month and the coefficient of variation for seasonal precipitation. For the risk map, the final MaxEnt model was overlapped with the location of OPOs to categorize areas at greatest risk for contact between feral swine and domestic pigs raised outdoors and subsequent potential disease transmission. Since raising pigs outdoors is a remerging trend, feral pig numbers are increasing nationwide, and both groups are reservoirs for various pathogens, the contact between these two swine populations has important implications for disease transmission in the wildlife-livestock interface.
Collapse
Affiliation(s)
- Laura Patterson
- Department of Population Health and Reproduction, University of California-Davis, Davis, California, United States of America
- Center for Animal Disease Modeling and Surveillance (CADMS), University of California-Davis, Davis, California, United States of America
| | - Jaber Belkhiria
- Center for Animal Disease Modeling and Surveillance (CADMS), University of California-Davis, Davis, California, United States of America
| | - Beatriz Martínez-López
- Center for Animal Disease Modeling and Surveillance (CADMS), University of California-Davis, Davis, California, United States of America
| | - Alda F. A. Pires
- Department of Population Health and Reproduction, University of California-Davis, Davis, California, United States of America
- * E-mail:
| |
Collapse
|
2
|
Prevalence, Virulence and Antimicrobial Susceptibility of Salmonella spp., Yersinia enterocolitica and Listeria monocytogenes in European Wild Boar ( Sus scrofa) Hunted in Tuscany (Central Italy). Pathogens 2021; 10:pathogens10020093. [PMID: 33498307 PMCID: PMC7909251 DOI: 10.3390/pathogens10020093] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/15/2021] [Accepted: 01/19/2021] [Indexed: 12/22/2022] Open
Abstract
Wild boar is an animal the population of which constantly increases in Europe. This animal plays an important role as a reservoir for several pathogens, including three of the most important zoonoses: salmonellosis, yersiniosis and listeriosis. The aim of this investigation was to evaluate the occurrence of antimicrobial-resistant and virulence factor genes of Salmonella spp., Yersinia enterocolitica and Listeria monocytogenes isolated from wild boar in Tuscany (Central Italy). During two consequent hunting seasons (2018/2019 and 2019/2020), rectal swabs, spleens and livers were collected from 287 hunted wild boar to isolate strains. Each isolate was tested to investigate its antimicrobial resistance and to detect virulence factor genes by PCR. Eighteen Salmonella strains (6.27%) were isolated. Of these, 66.7% were resistant to streptomycin, 13.4% to cephalothin, 6.67% to imipenem and one isolate (6.67%) was resistant simultaneously to five antimicrobials. Moreover, the most detected genes were sopE (73.4%), pipB (66.7%), sodCI (53.3%), spvR and spvC (46.7%). In total, 54 (17.8%) Yersinia enterocolitica were isolated; of them, 26 (48.1%), 9 (16.7%), 17 (31.5%), 1 (1.85%) and 1 (1.85%) belonged to biotypes 1, 2, 3, 4 and 5, respectively. All strains (100%) demonstrated resistance to cephalothin and 70.4% to amoxicillin-clavulanic acid, 55.6% to ampicillin, and 37.0% to cefoxitin. Additionally, the most detected genes were ystA (25.9%), inv (24.1%), ail (22.2%), ystB (18.5%) and virF (14.8%). Finally, only one Listeriamonocytogenes isolate (0.35%) was obtained, belonging to serogroup IVb, serovar 4b, and it was found to be resistant to cefoxitin, cefotaxime and nalidixic acid. The results highlighted the role of wild boar as a carrier for pathogenic and antimicrobial-resistant Salmonella spp., Yersinia enterocolitica and Listeria monocytogens, representing a possible reservoir for domestic animals and human pathogens.
Collapse
|
3
|
Changes of Gut-Microbiota-Liver Axis in Hepatitis C Virus Infection. BIOLOGY 2021; 10:biology10010055. [PMID: 33451143 PMCID: PMC7828638 DOI: 10.3390/biology10010055] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 01/02/2021] [Accepted: 01/08/2021] [Indexed: 12/12/2022]
Abstract
Simple Summary Gut microbiota alteration is linked to many health disorders including hepatitis C virus (HCV) infection. This dysbiosis in turn impacts the coordination between the gut and the liver that is known as the gut–liver-axis. Here, we discuss the latest findings regarding the changes in gut microbiota structure and functionality post HCV infection and its treatment regimens. In addition, we underline the contribution of the microbiota alterations to HCV associated liver complications. Abstract The gut–liver-axis is a bidirectional coordination between the gut, including microbial residents, the gut microbiota, from one side and the liver on the other side. Any disturbance in this crosstalk may lead to a disease status that impacts the functionality of both the gut and the liver. A major cause of liver disorders is hepatitis C virus (HCV) infection that has been illustrated to be associated with gut microbiota dysbiosis at different stages of the disease progression. This dysbiosis may start a cycle of inflammation and metabolic disturbance that impacts the gut and liver health and contributes to the disease progression. This review discusses the latest literature addressing this interplay between the gut microbiota and the liver in HCV infection from both directions. Additionally, we highlight the contribution of gut microbiota to the metabolism of antivirals used in HCV treatment regimens and the impact of these medications on the microbiota composition. This review sheds light on the potential of the gut microbiota manipulation as an alternative therapeutic approach to control the liver complications post HCV infection.
Collapse
|
4
|
Barth SA, Bauerfeind R, Berens C, Menge C. Shiga Toxin-Producing E. coli in Animals: Detection, Characterization, and Virulence Assessment. Methods Mol Biol 2021; 2291:19-86. [PMID: 33704748 DOI: 10.1007/978-1-0716-1339-9_2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Cattle and other ruminants are primary reservoirs for Shiga toxin-producing Escherichia coli (STEC) strains which have a highly variable, but unpredictable, pathogenic potential for humans. Domestic swine can carry and shed STEC, but only STEC strains producing the Shiga toxin (Stx) 2e variant and causing edema disease in piglets are considered pathogens of veterinary medical interest. In this chapter, we present general diagnostic workflows for sampling livestock animals to assess STEC prevalence, magnitude, and duration of host colonization. This is followed by detailed method protocols for STEC detection and typing at genetic and phenotypic levels to assess the relative virulence exerted by the strains.
Collapse
Affiliation(s)
- Stefanie A Barth
- Friedrich-Loeffler-Institut/Federal Research Institute for Animal Health, Institute of Molecular Pathogenesis, Jena, Germany
| | - Rolf Bauerfeind
- Institute for Hygiene and Infectious Diseases of Animals, Justus Liebig University Gießen, Gießen, Germany
| | - Christian Berens
- Friedrich-Loeffler-Institut/Federal Research Institute for Animal Health, Institute of Molecular Pathogenesis, Jena, Germany
| | - Christian Menge
- Friedrich-Loeffler-Institut/Federal Research Institute for Animal Health, Institute of Molecular Pathogenesis, Jena, Germany.
| |
Collapse
|
5
|
Bertelloni F, Cilia G, Bogi S, Ebani VV, Turini L, Nuvoloni R, Cerri D, Fratini F, Turchi B. Pathotypes and Antimicrobial Susceptibility of Escherichia Coli Isolated from Wild Boar ( Sus scrofa) in Tuscany. Animals (Basel) 2020; 10:E744. [PMID: 32344604 PMCID: PMC7222796 DOI: 10.3390/ani10040744] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 04/14/2020] [Accepted: 04/21/2020] [Indexed: 12/25/2022] Open
Abstract
Wild boar are among the most widespread wild mammals in Europe. Although this species can act as a reservoir for different pathogens, data about its role as a carrier of pathogenic and antimicrobial-resistant Escherichia coli are still scarce. The aim of this study was to evaluate the occurrence of antimicrobial-resistant and pathogenic Escherichia coli in wild boar in the Tuscany region of Italy. During the hunting season of 2018-2019, E. coli was isolated from 175 of 200 animals and subjected to antimicrobial resistance tests and PCR for detection of resistance and virulence factor genes. The highest resistance rates were against cephalothin (94.3%), amoxicillin-clavulanic acid (87.4%), ampicillin (68.6%), and tetracycline (44.6%). The most detected resistance genes were blaCMY-2 (54.3%), sul1 (38.9%), sul2 (30.9%), and tetG (24.6%). Concerning genes encoding virulence factors, 55 of 175 isolates (31.4%) were negative for all tested genes. The most detected genes were hlyA (47.4%), astA (29.1%), stx2 (24.6%), eaeA (17.1%), and stx1 (11.4%). E. coli was classified as Shiga toxin-producing E. coli (STEC) (21.7%), enterohemorrhagic E. coli (EHEC) (6.3%), enteroaggregative E. coli (EAEC) (5.1%), and atypical enteropathogenic E. coli (aEPEC) (3.4%). Enterotoxigenic E. coli (ETEC), enteroinvasive E. coli (EIEC), and typical enteropathogenic E. coli (tEPEC) were not detected. Our results show that wild boars could carry pathogenic and antimicrobial-resistant E. coli, representing a possible reservoir of domestic animal and human pathogens.
Collapse
Affiliation(s)
- Fabrizio Bertelloni
- Department of Veterinary Science, University of Pisa, 56126 Pisa, Italy; (G.C.); (S.B.); (V.V.E.); (L.T.); (R.N.); (D.C.); (F.F.); (B.T.)
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Abstract
Wild boar populations around the world have increased dramatically over past decades. Climate change, generating milder winters with less snow, may affect their spread into northern regions. Wild boars can serve as reservoirs for a number of bacteria, viruses, and parasites, which are transmissible to humans and domestic animals through direct interaction with wild boars, through contaminated food or indirectly through contaminated environment. Disease transmission between wild boars, domestic animals, and humans is an increasing threat to human and animal health, especially in areas with high wild boar densities. This article reviews important foodborne zoonoses, including bacterial diseases (brucellosis, salmonellosis, tuberculosis, and yersiniosis), parasitic diseases (toxoplasmosis and trichinellosis), and the viral hepatitis E. The focus is on the prevalence of these diseases and the causative microbes in wild boars. The role of wild boars in transmitting these pathogens to humans and livestock is also briefly discussed.
Collapse
Affiliation(s)
- Maria Fredriksson-Ahomaa
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki , Helsinki, Finland
| |
Collapse
|
7
|
Barth SA, Blome S, Cornelis D, Pietschmann J, Laval M, Maestrini O, Geue L, Charrier F, Etter E, Menge C, Beer M, Jori F. FaecalEscherichia colias biological indicator of spatial interaction between domestic pigs and wild boar (Sus scrofa) in Corsica. Transbound Emerg Dis 2018; 65:746-757. [DOI: 10.1111/tbed.12799] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Indexed: 01/17/2023]
Affiliation(s)
- S. A. Barth
- Institute of Molecular Pathogenesis; Friedrich-Loeffler-Institut/Federal Research Institute for Animal Health; Jena Germany
| | - S. Blome
- Institute of Diagnostic Virology; Friedrich-Loeffler-Institut/Federal Research Institute for Animal Health; Greifswald - Insel Riems Germany
| | - D. Cornelis
- CIRAD, UMR ASTRE, INRA; University Montpellier; Montpellier France
| | - J. Pietschmann
- Institute of Molecular Pathogenesis; Friedrich-Loeffler-Institut/Federal Research Institute for Animal Health; Jena Germany
- Institute of Diagnostic Virology; Friedrich-Loeffler-Institut/Federal Research Institute for Animal Health; Greifswald - Insel Riems Germany
| | - M. Laval
- Research Unit for Animal Husbandry Development (LRDE); INRA SAD; Corte Corsica France
| | - O. Maestrini
- Research Unit for Animal Husbandry Development (LRDE); INRA SAD; Corte Corsica France
| | - L. Geue
- Institute of Molecular Pathogenesis; Friedrich-Loeffler-Institut/Federal Research Institute for Animal Health; Jena Germany
| | - F. Charrier
- Research Unit for Animal Husbandry Development (LRDE); INRA SAD; Corte Corsica France
| | - E. Etter
- CIRAD, UMR ASTRE, INRA; University Montpellier; Montpellier France
- Epidemiology Section; Department of Production Animals Studies; Faculty of Veterinary Science; University of Pretoria; Onderstepoort South Africa
| | - C. Menge
- Institute of Molecular Pathogenesis; Friedrich-Loeffler-Institut/Federal Research Institute for Animal Health; Jena Germany
| | - M. Beer
- Institute of Diagnostic Virology; Friedrich-Loeffler-Institut/Federal Research Institute for Animal Health; Greifswald - Insel Riems Germany
| | - F. Jori
- CIRAD, UMR ASTRE, INRA; University Montpellier; Montpellier France
- Department of Animal Science and Production; Botswana College of Agriculture; Gaborone Botswana
| |
Collapse
|
8
|
Jori F, Relun A, Trabucco B, Charrier F, Maestrini O, Chavernac D, Cornelis D, Casabianca F, Etter EMC. Questionnaire-Based Assessment of Wild Boar/Domestic Pig Interactions and Implications for Disease Risk Management in Corsica. Front Vet Sci 2017; 4:198. [PMID: 29250528 PMCID: PMC5716975 DOI: 10.3389/fvets.2017.00198] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 11/03/2017] [Indexed: 11/13/2022] Open
Abstract
Wild boars and domestic pigs belong to the same species (Sus scrofa). When sympatric populations of wild boars, feral pigs, and domestic pigs share the same environment, interactions between domestic and wild suids (IDWS) are suspected to facilitate the spread and maintenance of several pig pathogens which can impact on public health and pig production. However, information on the nature and factors facilitating those IDWS are rarely described in the literature. In order to understand the occurrence, nature, and the factors facilitating IDWS, a total of 85 semi-structured interviews were implemented face to face among 25 strict farmers, 20 strict hunters, and 40 hunting farmers in the main traditional pig-farming regions of Corsica, where IDWS are suspected to be common and widespread. Different forms of IDWS were described: those linked with sexual attraction of wild boars by domestic sows (including sexual interactions and fights between wild and domestic boars) were most frequently reported (by 61 and 44% of the respondents, respectively) in the autumn months and early winter. Foraging around common food or water was equally frequent (reported by 60% of the respondents) but spread all along the year except in winter. Spatially, IDWS were more frequent in higher altitude pastures were pig herds remain unattended during summer and autumn months with limited human presence. Abandonment of carcasses and carcass offal in the forest were equally frequent and efficient form of IDWS reported by 70% of the respondents. Certain traditional practices already implemented by hunters and farmers had the potential to mitigate IDWS in the local context. This study provided quantitative evidence of the nature of different IDWS in the context of extensive commercial outdoor pig farming in Corsica and identified their spatial and temporal trends. The identification of those trends is useful to target suitable times and locations to develop further ecological investigations of IDWS at a finer scale in order to better understand diseases transmission patterns between populations and promote adapted management strategies.
Collapse
Affiliation(s)
- Ferran Jori
- CIRAD, UMR Animal, Santé, Territoires, Risque et Ecosystèmes (ASTRE), Montpellier, France.,ASTRE, Univ Montpellier, CIRAD, INRA, Montpellier, France
| | - Anne Relun
- CIRAD, UMR Animal, Santé, Territoires, Risque et Ecosystèmes (ASTRE), Montpellier, France.,ASTRE, Univ Montpellier, CIRAD, INRA, Montpellier, France.,BIOEPAR, ONIRIS, INRA, Nantes, France
| | - Bastien Trabucco
- CIRAD, UMR Animal, Santé, Territoires, Risque et Ecosystèmes (ASTRE), Montpellier, France.,INRA, Laboratoire de Recherches sur le Développement de l'Elevage (LRDE), Corte, France
| | - François Charrier
- INRA, Laboratoire de Recherches sur le Développement de l'Elevage (LRDE), Corte, France
| | - Oscar Maestrini
- INRA, Laboratoire de Recherches sur le Développement de l'Elevage (LRDE), Corte, France
| | - David Chavernac
- CIRAD, UMR Animal, Santé, Territoires, Risque et Ecosystèmes (ASTRE), Montpellier, France.,ASTRE, Univ Montpellier, CIRAD, INRA, Montpellier, France
| | - Daniel Cornelis
- CIRAD, UMR Animal, Santé, Territoires, Risque et Ecosystèmes (ASTRE), Montpellier, France.,ASTRE, Univ Montpellier, CIRAD, INRA, Montpellier, France
| | - François Casabianca
- INRA, Laboratoire de Recherches sur le Développement de l'Elevage (LRDE), Corte, France
| | - Eric Marcel Charles Etter
- CIRAD, UMR Animal, Santé, Territoires, Risque et Ecosystèmes (ASTRE), Montpellier, France.,ASTRE, Univ Montpellier, CIRAD, INRA, Montpellier, France.,Epidemiology Section, Department of Production Animal Studies, Faculty of Veterinary Science, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
9
|
Hamm K, Barth SA, Stalb S, Geue L, Liebler-Tenorio E, Teifke JP, Lange E, Tauscher K, Kotterba G, Bielaszewska M, Karch H, Menge C. Experimental Infection of Calves with Escherichia coli O104:H4 outbreak strain. Sci Rep 2016; 6:32812. [PMID: 27600997 PMCID: PMC5013450 DOI: 10.1038/srep32812] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 08/15/2016] [Indexed: 11/22/2022] Open
Abstract
In 2011, a severe outbreak of hemolytic-uremic syndrome was caused by an unusual, highly virulent enterohemorrhagic E. coli (EHEC) O104:H4 strain, which possessed EHEC virulence traits in the genetic background of human-adapted enteroaggregative E. coli. To determine magnitude of fecal shedding and site of colonization of EHEC O104:H4 in a livestock host, 30 (ten/strain) weaned calves were inoculated with 1010 CFU of EHEC O104:H4, EHEC O157:H7 (positive control) or E. coli strain 123 (negative control) and necropsied (4 or 28 d.p.i.). E. coli O157:H7 was recovered until 28 d.p.i. and O104:H4 until 24 d.p.i. At 4 d.p.i., EHEC O104:H4 was isolated from intestinal content and detected associated with the intestinal mucosa. These results are the first evidence that cattle, the most important EHEC reservoir, can also carry unusual EHEC strains at least transiently, questioning our current understanding of the molecular basis of host adaptation of this important E. coli pathovar.
Collapse
Affiliation(s)
- K Hamm
- Friedrich-Loeffler-Institut, Institute of Molecular Pathogenesis, Naumburger Str. 96a, 07743 Jena, Germany
| | - S A Barth
- Friedrich-Loeffler-Institut, Institute of Molecular Pathogenesis, Naumburger Str. 96a, 07743 Jena, Germany
| | - S Stalb
- Friedrich-Loeffler-Institut, Institute of Molecular Pathogenesis, Naumburger Str. 96a, 07743 Jena, Germany
| | - L Geue
- Friedrich-Loeffler-Institut, Institute of Molecular Pathogenesis, Naumburger Str. 96a, 07743 Jena, Germany
| | - E Liebler-Tenorio
- Friedrich-Loeffler-Institut, Institute of Molecular Pathogenesis, Naumburger Str. 96a, 07743 Jena, Germany
| | - J P Teifke
- Friedrich-Loeffler-Institut, Department of Experimental Animal Facilities and Biorisk Management, Südufer 10, 17493 Greifswald - Insel Riems, Germany
| | - E Lange
- Friedrich-Loeffler-Institut, Department of Experimental Animal Facilities and Biorisk Management, Südufer 10, 17493 Greifswald - Insel Riems, Germany
| | - K Tauscher
- Friedrich-Loeffler-Institut, Department of Experimental Animal Facilities and Biorisk Management, Südufer 10, 17493 Greifswald - Insel Riems, Germany
| | - G Kotterba
- Friedrich-Loeffler-Institut, Institute of Infectology, Südufer 10, 17493 Greifswald - Insel Riems, Germany
| | - M Bielaszewska
- Institute of Hygiene, University of Münster, Robert-Koch-Straße 41, 48149 Münster, Germany
| | - H Karch
- Institute of Hygiene, University of Münster, Robert-Koch-Straße 41, 48149 Münster, Germany
| | - C Menge
- Friedrich-Loeffler-Institut, Institute of Molecular Pathogenesis, Naumburger Str. 96a, 07743 Jena, Germany
| |
Collapse
|