1
|
Alasiri A, Soltane R, Hegazy A, Khalil AM, Mahmoud SH, Khalil AA, Martinez-Sobrido L, Mostafa A. Vaccination and Antiviral Treatment against Avian Influenza H5Nx Viruses: A Harbinger of Virus Control or Evolution. Vaccines (Basel) 2023; 11:1628. [PMID: 38005960 PMCID: PMC10675773 DOI: 10.3390/vaccines11111628] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/11/2023] [Accepted: 10/20/2023] [Indexed: 11/26/2023] Open
Abstract
Despite the panzootic nature of emergent highly pathogenic avian influenza H5Nx viruses in wild migratory birds and domestic poultry, only a limited number of human infections with H5Nx viruses have been identified since its emergence in 1996. Few countries with endemic avian influenza viruses (AIVs) have implemented vaccination as a control strategy, while most of the countries have adopted a culling strategy for the infected flocks. To date, China and Egypt are the two major sites where vaccination has been adopted to control avian influenza H5Nx infections, especially with the widespread circulation of clade 2.3.4.4b H5N1 viruses. This virus is currently circulating among birds and poultry, with occasional spillovers to mammals, including humans. Herein, we will discuss the history of AIVs in Egypt as one of the hotspots for infections and the improper implementation of prophylactic and therapeutic control strategies, leading to continuous flock outbreaks with remarkable virus evolution scenarios. Along with current pre-pandemic preparedness efforts, comprehensive surveillance of H5Nx viruses in wild birds, domestic poultry, and mammals, including humans, in endemic areas is critical to explore the public health risk of the newly emerging immune-evasive or drug-resistant H5Nx variants.
Collapse
Affiliation(s)
- Ahlam Alasiri
- Department of Basic Sciences, Adham University College, Umm Al-Qura University, Makkah 21955, Saudi Arabia; (A.A.); (R.S.)
| | - Raya Soltane
- Department of Basic Sciences, Adham University College, Umm Al-Qura University, Makkah 21955, Saudi Arabia; (A.A.); (R.S.)
| | - Akram Hegazy
- Department of Agricultural Microbiology, Faculty of Agriculture, Cairo University, Giza District, Giza 12613, Egypt;
| | - Ahmed Magdy Khalil
- Texas Biomedical Research Institute, San Antonio, TX 78227, USA;
- Department of Zoonotic Diseases, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Sara H. Mahmoud
- Center of Scientific Excellence for Influenza Viruses, National Research Center, Giza 12622, Egypt;
| | - Ahmed A. Khalil
- Veterinary Sera and Vaccines Research Institute (VSVRI), Agriculture Research Center (ARC), Cairo 11435, Egypt;
| | | | - Ahmed Mostafa
- Texas Biomedical Research Institute, San Antonio, TX 78227, USA;
- Center of Scientific Excellence for Influenza Viruses, National Research Center, Giza 12622, Egypt;
| |
Collapse
|
2
|
Rohaim MA, Al-Natour MQ, Abdelsabour MA, El Naggar RF, Madbouly YM, Ahmed KA, Munir M. Transgenic Chicks Expressing Interferon-Inducible Transmembrane Protein 1 (IFITM1) Restrict Highly Pathogenic H5N1 Influenza Viruses. Int J Mol Sci 2021; 22:ijms22168456. [PMID: 34445163 PMCID: PMC8395118 DOI: 10.3390/ijms22168456] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 08/02/2021] [Accepted: 08/03/2021] [Indexed: 12/24/2022] Open
Abstract
Mammalian cells utilize a wide spectrum of pathways to antagonize the viral replication. These pathways are typically regulated by antiviral proteins and can be constitutively expressed but also exacerbated by interferon induction. A myriad of interferon-stimulated genes (ISGs) have been identified in mounting broad-spectrum antiviral responses. Members of the interferon-induced transmembrane (IFITM) family of proteins are unique among these ISGs due to their ability to prevent virus entry through the lipid bilayer into the cell. In the current study, we generated transgenic chickens that constitutively and stably expressed chicken IFITM1 (chIFITM1) using the avian sarcoma-leukosis virus (RCAS)-based gene transfer system. The challenged transgenic chicks with clinical dose 104 egg infective dose 50 (EID50) of highly pathogenic avian influenza virus (HPAIV) subtype H5N1 (clade 2.2.1.2) showed 100% protection and significant infection tolerance. Although challenged transgenic chicks displayed 60% protection against challenge with the sub-lethal dose (EID50 105), the transgenic chicks showed delayed clinical symptoms, reduced virus shedding, and reduced histopathologic alterations compared to non-transgenic challenged control chickens. These finding indicate that the sterile defense against H5N1 HPAIV offered by the stable expression of chIFITM1 is inadequate; however, the clinical outcome can be substantially ameliorated. In conclusion, chIFITM proteins can inhibit influenza virus replication that can infect various host species and could be a crucial barrier against zoonotic infections.
Collapse
Affiliation(s)
- Mohammed A. Rohaim
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster LA1 4YG, UK; (M.A.R.); (M.Q.A.-M.)
- Department of Virology, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| | - Mohammad Q. Al-Natour
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster LA1 4YG, UK; (M.A.R.); (M.Q.A.-M.)
- Department of Veterinary Pathology & Public Health, Faculty of Veterinary Medicine, Jordan University of Science and Technology (JUST), P.O. Box 3030, Irbid 22110, Jordan
| | - Mohammed A. Abdelsabour
- Department of Poultry Viral Vaccines, Veterinary Serum and Vaccine Research Institute (VSVRI), Agriculture Research Centre (ARC), Cairo 11435, Egypt; (M.A.A.); (Y.M.M.)
| | - Rania F. El Naggar
- Department of Virology, Faculty of Veterinary Medicine, University of Sadat City, Sadat 32897, Egypt;
| | - Yahia M. Madbouly
- Department of Poultry Viral Vaccines, Veterinary Serum and Vaccine Research Institute (VSVRI), Agriculture Research Centre (ARC), Cairo 11435, Egypt; (M.A.A.); (Y.M.M.)
| | - Kawkab A. Ahmed
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt;
| | - Muhammad Munir
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster LA1 4YG, UK; (M.A.R.); (M.Q.A.-M.)
- Correspondence:
| |
Collapse
|
3
|
Ninyio NN, Ho KL, Omar AR, Tan WS, Iqbal M, Mariatulqabtiah AR. Virus-like Particle Vaccines: A Prospective Panacea Against an Avian Influenza Panzootic. Vaccines (Basel) 2020; 8:E694. [PMID: 33227887 PMCID: PMC7712863 DOI: 10.3390/vaccines8040694] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/12/2020] [Accepted: 10/15/2020] [Indexed: 01/04/2023] Open
Abstract
Epizootics of highly pathogenic avian influenza (HPAI) have resulted in the deaths of millions of birds leading to huge financial losses to the poultry industry worldwide. The roles of migratory wild birds in the harbouring, mutation, and transmission of avian influenza viruses (AIVs), and the lack of broad-spectrum prophylactic vaccines present imminent threats of a global panzootic. To prevent this, control measures that include effective AIV surveillance programmes, treatment regimens, and universal vaccines are being developed and analysed for their effectiveness. We reviewed the epidemiology of AIVs with regards to past avian influenza (AI) outbreaks in birds. The AIV surveillance programmes in wild and domestic birds, as well as their roles in AI control were also evaluated. We discussed the limitations of the currently used AI vaccines, which necessitated the development of a universal vaccine. We evaluated the current development of AI vaccines based upon virus-like particles (VLPs), particularly those displaying the matrix-2 ectodomain (M2e) peptide. Finally, we highlighted the prospects of these VLP vaccines as universal vaccines with the potential of preventing an AI panzootic.
Collapse
Affiliation(s)
- Nathaniel Nyakaat Ninyio
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia; (N.N.N.); (W.S.T.)
- Department of Microbiology, Faculty of Science, Kaduna State University, Kaduna 800241, Nigeria
| | - Kok Lian Ho
- Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia;
| | - Abdul Rahman Omar
- Laboratory of Vaccine and Biomolecules, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Malaysia;
- Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - Wen Siang Tan
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia; (N.N.N.); (W.S.T.)
- Laboratory of Vaccine and Biomolecules, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Malaysia;
| | - Munir Iqbal
- The Pirbright Institute, Woking GU24 0NF, UK;
| | - Abdul Razak Mariatulqabtiah
- Laboratory of Vaccine and Biomolecules, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Malaysia;
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia
| |
Collapse
|
4
|
Rohaim MA, El Naggar RF, Madbouly Y, AbdelSabour MA, Ahmed KA, Munir M. Comparative infectivity and transmissibility studies of wild-bird and chicken-origin highly pathogenic avian influenza viruses H5N8 in chickens. Comp Immunol Microbiol Infect Dis 2020; 74:101594. [PMID: 33271478 DOI: 10.1016/j.cimid.2020.101594] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 11/04/2020] [Accepted: 11/17/2020] [Indexed: 02/06/2023]
Abstract
Despite the recent advances in avian influenza viruses surveillance and genomic data, fundamental questions concerning the ecology and evolution of these viruses remain elusive. In Egypt, H5N8 highly pathogenic avian influenza viruses (HPAIVs) are co-circulating simultaneously with HPAIVs of subtypes H5N1 and low-pathogenic avian influenza viruses (LPAIVs) of subtype H9N2 in both commercial and backyard poultry. In order to isolate AIVs from wild birds and to assess their potential in causing infection in commercial poultry, a total of thirty-four cloacal swab samples were collected from apparently healthy migratory wild birds (Anas acuta, Anas crecca, Rallus aquaticus, and Bubulcus ibis) from four Egyptian Governorates (Giza, Menoufia, Gharbia, and Dakahlia). Based on matrix (M) gene-targeting real-time reverse transcriptase PCR and subsequent genetic characterization, our results revealed two positive isolates (2/34) for H5N8 whereas no H5N1 and H9N2 subtypes were detected. Genetic characterization of the full-length haemagglutinin (HA) genes revealed the clustering of two reported isolates within genotype 5 of clade 2.3.4.4b. The potential of a wild bird-origin H5N8 virus isolated from a cattle egret for its transmission capability within and between chickens was investigated in compare to chicken origin H5N8 AIV. Chickens inoculated with cattle egret isolate showed varying clinical signs and detection of virus shedding. In contrast, the contact chickens showed less levels of virus secretion indicating efficient virus inter/intra-species transmission. These results demonstrated the possibility for spreading of wild bird origin H5N8 viruses between chicken. In conclusion, our study highlights the need for continuous and frequent monitoring of the genetic diversity of H5N8 AIVs in wild birds as well as commercial poultry sectors for better understanding and determining the genetic nature of these viruses, which is fundamental to predict any future threat through virus reassortment with the potential to threaten human and animal health. Likewise, an assessment of coverage and efficacy of different vaccines and or vaccination regimes in the field conditions should be reconsidered along with strict biosecurity measures.
Collapse
Affiliation(s)
- Mohammed A Rohaim
- Department of Virology, Faculty of Veterinary Medicine, Cairo University, 12211 Giza, Egypt
| | - Rania F El Naggar
- Department of Virology, Faculty of Veterinary Medicine, University of Sadat City, 32897 Sadat, Egypt
| | - Yehia Madbouly
- Veterinary Serum and Vaccine Research Institute, Abbassia, Cairo 11381, Agricultural Research Center (ARC), Egypt
| | - Mohammed A AbdelSabour
- Veterinary Serum and Vaccine Research Institute, Abbassia, Cairo 11381, Agricultural Research Center (ARC), Egypt
| | - Kawkab A Ahmed
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, 12211 Giza, Egypt
| | - Muhammad Munir
- Division of Biomedical and Life Science, Lancaster University, LA1 4YG Lancaster, Lancashire, UK.
| |
Collapse
|
5
|
Salaheldin AH, Kasbohm E, El-Naggar H, Ulrich R, Scheibner D, Gischke M, Hassan MK, Arafa ASA, Hassan WM, Abd El-Hamid HS, Hafez HM, Veits J, Mettenleiter TC, Abdelwhab EM. Potential Biological and Climatic Factors That Influence the Incidence and Persistence of Highly Pathogenic H5N1 Avian Influenza Virus in Egypt. Front Microbiol 2018; 9:528. [PMID: 29636730 PMCID: PMC5880882 DOI: 10.3389/fmicb.2018.00528] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 03/08/2018] [Indexed: 01/09/2023] Open
Abstract
Highly pathogenic H5N1 avian influenza virus (A/H5N1) of clade 2.2.1 is endemic in poultry in Egypt where the highest number of human infections worldwide was reported. During the last 12 years the Egyptian A/H5N1 evolved into several genotypes. In 2007-2014 vaccinated poultry suffered from antigenic drift variants of clade 2.2.1.1 and in 2014/2015 an unprecedented upsurge of A/H5N1 clade 2.2.1.2 occurred in poultry and humans. Factors contributing to the endemicity or re-emergence of A/H5N1 in poultry in Egypt remain unclear. Here, three potential factors were studied: climatic factors (temperature, relative humidity, and wind speed), biological fitness in vitro, and pathogenicity in domestic Pekin and Muscovy ducks. Statistical analyses using negative binomial regression models indicated that ambient temperature in winter months influenced the spread of A/H5N1 in different geographic areas analyzed in this study. In vitro, at 4 and 56°C 2.2.1.1 and recent 2.2.1.2 viruses were more stable than other viruses used in this study. Further, Pekin ducks were more resistant than Muscovy ducks and the viruses were excreted for up to 2 weeks post-infection assuming a strong role as a reservoir. Taken together, ambient temperature in winter months potentially contributes to increasing outbreaks in some regions in Egypt. Heat stability of clade 2.2.1.1 and recent 2.2.1.2 viruses probably favors their persistence at elevated temperatures. Importantly, asymptomatically infected Pekin ducks may play an important role in the spread of avian and human-like A/H5N1 in Egypt. Therefore, control measures including targeted surveillance and culling of silently infected Pekin ducks should be considered.
Collapse
Affiliation(s)
- Ahmed H Salaheldin
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany.,Institute of Poultry Diseases, Free University of Berlin, Berlin, Germany.,Department of Poultry Diseases, Faculty of Veterinary Medicine, Alexandria University, Edfina, Egypt
| | - Elisa Kasbohm
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany.,Institute of Mathematics and Computer Science, University of Greifswald, Greifswald, Germany
| | - Heba El-Naggar
- Veterinary Serum and Vaccine Research Institute, Cairo, Egypt
| | - Reiner Ulrich
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - David Scheibner
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Marcel Gischke
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Mohamed K Hassan
- National Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Giza, Egypt
| | - Abdel-Satar A Arafa
- National Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Giza, Egypt
| | - Wafaa M Hassan
- National Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Giza, Egypt
| | | | - Hafez M Hafez
- Institute of Poultry Diseases, Free University of Berlin, Berlin, Germany
| | - Jutta Veits
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Thomas C Mettenleiter
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Elsayed M Abdelwhab
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| |
Collapse
|
6
|
Azab AA, Arafa A, Selim A, Hassan MK, Bazid AI, Sultan AH, Hussein HA, Abdelwhab EM. Pathogenicity of the Egyptian A/H5N1 avian influenza viruses in chickens. Microb Pathog 2017; 110:471-476. [PMID: 28739438 DOI: 10.1016/j.micpath.2017.07.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 06/15/2017] [Accepted: 07/17/2017] [Indexed: 12/13/2022]
Abstract
Long-term circulation of highly pathogenic avian influenza H5N1 viruses of clade 2.2.1 in Egyptian poultry since February 2006 resulted in the evolution of two distinct clades: 2.2.1.1 represents antigenic-drift variants isolated from vaccinated poultry and 2.2.1.2 that caused the newest upsurge in birds and humans in 2014/2015. In the present study, nine isolates were collected from chickens, ducks and turkeys representing the commercial and backyard sectors during the period 2009-2015. The subtyping was confirmed by hemagglutination inhibition (HI) test, RT-qPCR and sequence analysis. The Mean Death Time (MDT) and Intravenous Pathogenicity Index (IVPI) for all isolates were determined. Sequence analysis of the HA gene sequences of these viruses revealed that two viruses belonged to clade 2.2.1.1 and the rest were clade 2.2.1.2. Antigenic characterisation of the viruses supported the results of the phylogenetic analysis. The MDT of the isolates ranged from 18 to 72 h and the IVPI values ranged from 2.3 to 2.9; viruses of the 2.2.1.1 clade were less virulent than those of the 2.2.1.2 clade. In addition, clade-specific polymorphism in the HA cleavage site was observed. These findings indicate the high and variable pathogenicity of H5N1 viruses of different clades and host-origin in Egypt. The upsurge of outbreaks in poultry in 2014/2015 was probably not due to a shift in virulence from earlier viruses.
Collapse
Affiliation(s)
- A A Azab
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, P.O. Box 264-Dokki, Giza 12618, Egypt.
| | - A Arafa
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, P.O. Box 264-Dokki, Giza 12618, Egypt
| | - A Selim
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, P.O. Box 264-Dokki, Giza 12618, Egypt
| | - M K Hassan
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, P.O. Box 264-Dokki, Giza 12618, Egypt
| | - A I Bazid
- Faculty of Veterinary Medicine, Sadat City University, Al-Menofia, Egypt
| | - A H Sultan
- Faculty of Veterinary Medicine, Sadat City University, Al-Menofia, Egypt
| | - H A Hussein
- Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| | - E M Abdelwhab
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, P.O. Box 264-Dokki, Giza 12618, Egypt; Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, D-17493 Greifswald-Insel Riems, Germany
| |
Collapse
|
7
|
Visualization of Alternative Functional Configurations of Influenza Virus Hemagglutinin Facilitates Rapid Selection of Complementing Vaccines in Emergency Situations. Int J Mol Sci 2017; 18:ijms18040766. [PMID: 28375167 PMCID: PMC5412350 DOI: 10.3390/ijms18040766] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 03/29/2017] [Accepted: 03/31/2017] [Indexed: 11/17/2022] Open
Abstract
Successful immunization against avian influenza virus (AIV) requires eliciting an adequate polyclonal response to AIV hemagglutinin (HA) subunit 1 (HA1) epitopes. Outbreaks of highly-pathogenic (HP) AIV subtype H5N1 can occur in vaccinated flocks in many endemic areas. Protection against emerging AIV is partly hindered by the limitations of vaccine production and transport, the use of leaky vaccines, and the use of multiple, and often antigenically-diverse, vaccines. It was hypothesized that the majority of alternative functional configurations (AFC) within the AIV HA1 can be represented by the pool of vaccine seed viruses currently in production because only a finite number of AFC are possible within each substructure of the molecule. Therefore, combinations of commercial vaccines containing complementing structural units (CSU) to each HA1 substructure can elicit responses to the totality of a given emerging AIV HA1 substructure isoforms. Analysis of homology-based 3D models of vaccine seed and emerging viruses facilitated the definition of HA1 AFC isoforms. CSU-based plots were used to predict which commercial vaccine combinations could have been used to cover nine selected AFC isoforms on recent Egyptian HP AIV H5N1 outbreak viruses. It is projected that expansion of the vaccine HA1 3D model database will improve international emergency responses to AIV.
Collapse
|
8
|
Naguib MM, Hagag N, El-Sanousi AA, Hussein HA, Arafa AS. The matrix gene of influenza A H5N1 in Egypt, 2006-2016: molecular insights and distribution of amantadine-resistant variants. Virus Genes 2016; 52:872-876. [PMID: 27448682 DOI: 10.1007/s11262-016-1373-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 07/15/2016] [Indexed: 11/25/2022]
Abstract
Large-scale sequence analysis of Matrix (M) gene and its coding proteins M1 and M2 was performed for 274 highly pathogenic avian influenza viruses H5N1 circulated in Egypt from 2006 to 2016. The aim is to study the amantadine-resistant markers distribution and to estimate the evolutionary rate. 246 viruses were obtained from the Global Initiative on Sharing All Influenza Data base, and 28 additional viruses were sequenced. Maximum clade credibility (MCC) phylogenetic tree revealed that the M gene has evolved into two different lineages. Estimated Evolutionary analysis showed that the M2 protein possessed higher evolutionary rates (3.45 × 10-3) than the M1 protein (2.73 × 10-3). M gene encoding proteins revealed significant markers described to be associated with host tropism and increase in virulence: V15I, N30D, and T121A in M1 and L55F in M2 protein. Site analysis focusing attention on the temporal and host distribution of the amantadine-resistant markers was carried out and showed that vast majority of the M2 amantadine-resistant variants of clade 2.2.1.1 (n = 90) is N31 marker, in addition to G27 (n = 7), A27 (n = 5), I27 (n = 1), and S30 (n = 1). In 2010-2011, amantadine resistant frequency increased considerably resembling more than half of the resistant variants. Notably, all viruses of clade 2.2.1.1 possessed amantadine-resistant marker. However, almost all current circulating viruses in Egypt of clade 2.2.1.2 from 2014 to 2016 did not carry any amantadine-resistant markers.
Collapse
Affiliation(s)
- Mahmoud M Naguib
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, 17493, Greifswald Insel-Riems, Germany.
- National Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Giza, 12618, Egypt.
| | - Naglaa Hagag
- National Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Giza, 12618, Egypt
| | - Ahmed A El-Sanousi
- Department of Virology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Hussein Ali Hussein
- Department of Virology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Abdel-Satar Arafa
- National Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Giza, 12618, Egypt
| |
Collapse
|
9
|
Naguib MM, Abdelwhab EM, Harder TC. Evolutionary features of influenza A/H5N1 virus populations in Egypt: poultry and human health implications. Arch Virol 2016; 161:1963-7. [DOI: 10.1007/s00705-016-2849-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 03/28/2016] [Indexed: 01/29/2023]
|