1
|
Luo J, Song C, Zhang T, Li J, Yang M, Wang H. Isolation and characterization of porcine epidemic diarrhea virus with mutations in the spike gene in China. Virology 2024; 600:110224. [PMID: 39293237 DOI: 10.1016/j.virol.2024.110224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 08/17/2024] [Accepted: 09/03/2024] [Indexed: 09/20/2024]
Abstract
Porcine epidemic diarrhea (PED) caused by porcine epidemic diarrhea virus (PEDV) has caused enormous economic losses to the global swine industry. Due to frequent mutations in the spike (S) gene of PEDV, commercial vaccines used today are gradually losing their protective efficacy against variants. It's significant to monitor the S gene of PEDV variants and understand its evolutionary trend. In this study, we report four novel PEDV strains isolated from Sichuan, Guangdong and Shanxi Provinces and determined their S gene sequences. Phylogenetic analysis showed that they all belong to GII genotype. Amino acid alignment revealed a unique mutation pattern. We also predicted their three-dimensional structures and continuous B-cell epitopes and compared them to those of the vaccine strain. Our study provides references for understanding the evolution of S gene and antigenic change of S protein, which are of great significance for formulating the prevention and control of PEDV.
Collapse
Affiliation(s)
- Jinchao Luo
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China; Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, China
| | - Cailiang Song
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China; Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, China
| | - Tiejun Zhang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China; Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, China
| | - Jinpeng Li
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China; Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, China
| | - Ming Yang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China; Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, China
| | - Hongning Wang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China; Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, China.
| |
Collapse
|
2
|
Liu H, Yin X, Tian H, Qiu Y, Wang Z, Chen J, Ma D, Zhao B, Du Q, Tong D, Huang Y. The S protein of a novel recombinant PEDV strain promotes the infectivity and pathogenicity of PEDV in mid-west China. Transbound Emerg Dis 2022; 69:3704-3723. [PMID: 36251324 DOI: 10.1111/tbed.14740] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 10/07/2022] [Accepted: 10/10/2022] [Indexed: 02/07/2023]
Abstract
Porcine epidemic diarrhoea virus (PEDV) is an emerging and re-emerging swine enterovirus that causes highly contagious diarrhoea and mortality in piglets. To better understand the current prevalence of PEDV in mid-west China, and to find out the reason for the re-emergence of PEDV from the viral genomic characteristics. Herein, we firstly investigated epidemiology of PEDV in mid-west China from 2019 to 2020. A total of 62.23% (257/413) of diarrhoea samples were positive for PEDV, and the PEDV-positive cases were mainly detected in winter. Then, we selected the SXSL strain as a representative strain to study the genetic and pathogenic characterization of PEDV pandemic strains in mid-west China. The recombination analysis showed that SXSL strain was a recombinant strain, and the major and minor parent strains of the recombination are CH/SCZJ/2018 strain and GDS48 strain, respectively. Complete genome sequencing and homology analysis showed that the S protein of SXSL strain contained multiple amino acid indels and mutations compared to the PEDV representative strains. Furthermore, we evaluated the effect of S protein on the infectivity and pathogenicity of PEDV by the PEDV reverse genetics system, and results showed that SXSL S protein increased the infectivity and pathogenicity of chimeric virus. Overall, our findings provided important information for understanding the roles of S protein in the prevalence of PEDV in mid-west China and developing vaccines based on PEDV pandemic strains.
Collapse
Affiliation(s)
- Haixin Liu
- College of Veterinary Medicine, Northwest A&F University, Yangling, China.,Engineering Research Center of Efficient New Vaccines for Animals, Ministry of Education of the People's Republic of China, Yangling, China
| | - Xiangrui Yin
- College of Veterinary Medicine, Northwest A&F University, Yangling, China.,Engineering Research Center of Efficient New Vaccines for Animals, Ministry of Education of the People's Republic of China, Yangling, China
| | - Haolun Tian
- College of Veterinary Medicine, Northwest A&F University, Yangling, China.,Engineering Research Center of Efficient New Vaccines for Animals, Ministry of Education of the People's Republic of China, Yangling, China
| | - Yudong Qiu
- College of Veterinary Medicine, Northwest A&F University, Yangling, China.,Engineering Research Center of Efficient New Vaccines for Animals, Ministry of Education of the People's Republic of China, Yangling, China
| | - Zhenyu Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China.,Engineering Research Center of Efficient New Vaccines for Animals, Ministry of Education of the People's Republic of China, Yangling, China
| | - Jing Chen
- College of Veterinary Medicine, Northwest A&F University, Yangling, China.,Engineering Research Center of Efficient New Vaccines for Animals, Ministry of Education of the People's Republic of China, Yangling, China
| | - Dan Ma
- College of Veterinary Medicine, Northwest A&F University, Yangling, China.,Engineering Research Center of Efficient New Vaccines for Animals, Ministry of Education of the People's Republic of China, Yangling, China
| | - Bing Zhao
- College of Veterinary Medicine, Northwest A&F University, Yangling, China.,Engineering Research Center of Efficient New Vaccines for Animals, Ministry of Education of the People's Republic of China, Yangling, China
| | - Qian Du
- College of Veterinary Medicine, Northwest A&F University, Yangling, China.,Engineering Research Center of Efficient New Vaccines for Animals, Ministry of Education of the People's Republic of China, Yangling, China
| | - Dewen Tong
- College of Veterinary Medicine, Northwest A&F University, Yangling, China.,Engineering Research Center of Efficient New Vaccines for Animals, Ministry of Education of the People's Republic of China, Yangling, China
| | - Yong Huang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China.,Engineering Research Center of Efficient New Vaccines for Animals, Ministry of Education of the People's Republic of China, Yangling, China
| |
Collapse
|
3
|
Tian Y, Yang X, Li H, Ma B, Guan R, Yang J, Chen D, Han X, Zhou L, Song Z, Xie X, Wang H. Molecular characterization of porcine epidemic diarrhea virus associated with outbreaks in southwest China during 2014-2018. Transbound Emerg Dis 2020; 68:3482-3497. [PMID: 33306274 DOI: 10.1111/tbed.13953] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 09/21/2020] [Accepted: 12/07/2020] [Indexed: 12/17/2022]
Abstract
Porcine epidemic diarrhea virus (PEDV), which re-emerged in China since 2010, has swept across the whole country leading to tremendous economic losses. In this study, a total of 645 diarrhea samples collected from 156 pig farms in Sichuan and Guizhou province during 2014-2018 were tested for PEDV. We found that samples from 47.66% (84/156) of the farms were positive for PEDV with an overall detection rate of 35.81% (231/645). Fifty-two strains were selected for full-length S gene analyses, and these strains were classified into three subgroups, an S-INDEL subgroup (G1c), and two non-S-INDEL subgroups (G2b, AJ1102-like and G2c), accounting for 15.38% (8/52), 23.08% (12/52) and 59.62% (31/52) of the total analysed strains, respectively. We found these three subgroups of PEDV coexisted in Sichuan province, and the S-INDEL strain was detected in Guizhou. Further antigenic variation analysis of the neutralizing epitopes (S10, COE, SS2, SS6 and 2C10) on the spike protein revealed that the S-INDEL and non-S-INDEL strains shared similar variation features in COE and SS6, but exhibited distinct variation patterns in the S10 domain. Unique variation patterns on N-glycosylation sites in the S protein were also observed for the S-INDEL and non-S-INDEL strains. Moreover, nine strains (three from each subgroup) were subjected to full-genome characterization. Complete genome phylogeny showed an inconsistent tree topology for genotyping, with two G2c strains grouped into the GII-b (AH2012-like) genogroup and the remaining seven strains including three S-INDEL strains grouped into the GII-c genogroup. Further recombination analyses indicated that six of the GII-c strains probably originated from intra-genogroup recombinations. Notably, three newly emerged S-INDEL strains with novel recombination patterns were first identified. Together, our data revealed a new status of PEDV in southwest China, which can increase understanding of the prevalence, genetic characteristics and evolutionary profiles of circulating PEDV strains in China.
Collapse
Affiliation(s)
- Yiming Tian
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China.,Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu, China
| | - Xin Yang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China.,Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu, China
| | - Hao Li
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China.,Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu, China
| | - Boheng Ma
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China.,Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu, China
| | - Ru Guan
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China.,Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu, China
| | - Jiang Yang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China.,Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu, China
| | - Danyu Chen
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China.,Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu, China
| | - Xiaoxiao Han
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China.,Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu, China.,School of Bioscience and Technology, Chengdu Medical College, Chengdu, China
| | - Long Zhou
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China.,Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu, China.,College of Life Science and Technology, Southwest Minzu University, Chengdu, China
| | - Zhou Song
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China.,Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu, China
| | - Xin Xie
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China.,Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu, China
| | - Hongning Wang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China.,Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu, China
| |
Collapse
|
4
|
Zang Y, Tian Y, Li Y, Xue R, Hu L, Zhang D, Sun S, Wang G, Chen J, Lan Z, Lin S, Jiang S. Recombinant Lactobacillus acidophilus expressing S 1 and S 2 domains of porcine epidemic diarrhea virus could improve the humoral and mucosal immune levels in mice and sows inoculated orally. Vet Microbiol 2020; 248:108827. [PMID: 32891955 PMCID: PMC7428733 DOI: 10.1016/j.vetmic.2020.108827] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 08/11/2020] [Indexed: 01/02/2023]
Abstract
The recombinant L. acidophilus expressing S1 and S2 domains of PEDV were generated. The oral vaccines for PED were based on a swine-origin L. acidophilus. The oral L. acidophilus vaccines induced humoral and mucosal immunity in mice. The L. acidophilus-S1 vaccine induced humoral and mucosal immunity in sows.
Porcine epidemic diarrhea (PED) is a highly contagious intestinal infectious disease caused by porcine epidemic diarrhea virus (PEDV), which is characterized by a high mortality rate in piglets. Since 2012, a remarkable growth in PED outbreaks occurred in many pig farms in China, landing a heavy blow on the pig industry. In order to develop a new effective vaccine for the current PEDV, oral vaccines were generated by transferring eukaryotic expression recombinant plasmids carrying the S1 and S2 (antigenic sites of the S protein) epitopes of PEDV into a swine-origin Lactobacillus acidophilus (L. acidophilus). After oral immunization of the BALB/c mice, higher levels of anti-PEDV specific IgG and SIgA antibodies and cellular immune responses were detected in mice orally administered with the recombinant L. acidophilus-S1 compared to the L. acidophilus-S2. Furthermore, L. acidophilus-S1 was used to inoculate the pregnant sows orally and the results showed that the recombinant L. acidophilus-S1 could elicit a specific systemic and mucosal immune response. In summary, our study demonstrated that oral immunization with L. acidophilus-S1 could improve the humoral and mucosal immune levels in sows and would be a promising candidate vaccine against PEDV infection in piglets.
Collapse
Affiliation(s)
- Yue Zang
- Shandong Provincial Center for Animal Disease Control and Prevention, Shandong, Jinan, 251000, China; College of Veterinary Medicine, Shandong Agricultural University, Shandong, Taian, 271018, China
| | - Ye Tian
- College of Veterinary Medicine, China Agricultural University, Beijing, 100094, China
| | - Yungang Li
- Shandong Provincial Center for Animal Disease Control and Prevention, Shandong, Jinan, 251000, China
| | - Ruixue Xue
- Shandong Provincial Center for Animal Disease Control and Prevention, Shandong, Jinan, 251000, China
| | - Liping Hu
- Shandong Provincial Center for Animal Disease Control and Prevention, Shandong, Jinan, 251000, China
| | - Dong Zhang
- Shandong Provincial Center for Animal Disease Control and Prevention, Shandong, Jinan, 251000, China
| | - Shengfu Sun
- Shandong Provincial Center for Animal Disease Control and Prevention, Shandong, Jinan, 251000, China
| | - Guisheng Wang
- Shandong Provincial Center for Animal Disease Control and Prevention, Shandong, Jinan, 251000, China
| | - Jing Chen
- Shandong Provincial Center for Animal Disease Control and Prevention, Shandong, Jinan, 251000, China
| | - Zouran Lan
- Shandong Provincial Center for Animal Disease Control and Prevention, Shandong, Jinan, 251000, China
| | - Shaoli Lin
- College of Veterinary Medicine, Shandong Agricultural University, Shandong, Taian, 271018, China
| | - Shijin Jiang
- College of Veterinary Medicine, Shandong Agricultural University, Shandong, Taian, 271018, China.
| |
Collapse
|
5
|
Zuo Q, Zhao R, Liu J, Zhao Q, Zhu L, Zhang B, Bi J, Yang G, Liu J, Yin G. Epidemiology and phylogeny of spike gene of porcine epidemic diarrhea virus from Yunnan, China. Virus Res 2018; 249:45-51. [DOI: 10.1016/j.virusres.2018.03.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 03/10/2018] [Accepted: 03/12/2018] [Indexed: 10/17/2022]
|
6
|
Jing Z, Zhang X, Shi H, Chen J, Shi D, Dong H, Feng L. A G3P[13] porcine group A rotavirus emerging in China is a reassortant and a natural recombinant in the VP4 gene. Transbound Emerg Dis 2017; 65:e317-e328. [PMID: 29148270 PMCID: PMC7169750 DOI: 10.1111/tbed.12756] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Indexed: 12/22/2022]
Abstract
Group A rotaviruses (RVAs) are a major cause of serious intestinal disease in piglets. In this study, a novel pig strain was identified in a stool sample from China. The strain was designated RVA/Pig/China/LNCY/2016/G3P[13] and had a G3-P[13]-I5-R1-C1-M1-A8-N1-T1-E1-H1 genome. The viral protein 7 (VP7) and non-structural protein 4 (NSP4) genes of RVA/Pig/China/LNCY/2016/G3P[13] were closely related to cogent genes of human RVAs, suggesting that a reassortment between pig and human strains had occurred. Recombination analysis showed that RVA/Pig/China/LNCY/2016/G3P[13] is a natural recombinant strain between the P[23] and P[7] RVA strains, and crossover points for recombination were found at nucleotides (nt) 456 and 804 of the VP4 gene. Elucidating the biological characteristics of porcine rotavirus (PoRV) will be helpful for further analyses of the epidemic characteristics of this virus. The results of this study provide valuable information for RVA recombination and evolution and will facilitate future investigations into the molecular pathogenesis of RVAs.
Collapse
Affiliation(s)
- Z Jing
- Division of Swine Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of the Chinese Academy of Agricultural Sciences, Harbin, China
| | - X Zhang
- Division of Swine Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of the Chinese Academy of Agricultural Sciences, Harbin, China
| | - H Shi
- Division of Swine Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of the Chinese Academy of Agricultural Sciences, Harbin, China
| | - J Chen
- Division of Swine Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of the Chinese Academy of Agricultural Sciences, Harbin, China
| | - D Shi
- Division of Swine Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of the Chinese Academy of Agricultural Sciences, Harbin, China
| | - H Dong
- Division of Swine Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of the Chinese Academy of Agricultural Sciences, Harbin, China.,Molecular Biology (Gembloux Agro-Bio Tech), University of Liège (ULg), Liège, Belgium
| | - L Feng
- Division of Swine Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of the Chinese Academy of Agricultural Sciences, Harbin, China
| |
Collapse
|