1
|
Millot C, Hadj-Henni L, Augot D. Culicoides biting midges among cattle in France: be wary of data in the literature. Front Vet Sci 2024; 11:1451442. [PMID: 39512915 PMCID: PMC11540827 DOI: 10.3389/fvets.2024.1451442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 08/26/2024] [Indexed: 11/15/2024] Open
Abstract
Culicoides are vectors that can transmit many different pathogens to mammals - including humans, and domestic and wild animals - and birds. In order to take preventive measures against any vector-borne disease, it is important to gather information on both the host and vector species. Culicoides species are mainly mammalophilic, ornithophilic or ornithophilic/mammalophilic, but females have also been found to occasionally feed on engorged insects. A recent systematic review based on three groups of key words investigated Culicoides on farms, and asserted that 92 species (including four not present species) have been reported among cattle in mainland France and Corsica. We have re-evaluated the presence of Culicoides species in cattle in France using the same data of the review. Our data show that only 18 species are reported among cattle. Furthermore, our research used molecular and indirect investigations to analyse Culicoides species that had been feeding on cattle. Our results demonstrate that 45 species feed on cattle out of 92 species present in France. The paper discusses the relevance of data in the literature when investigating hosts of Culicoides species.
Collapse
Affiliation(s)
- Christine Millot
- Usc Petard, Anses, EA 7510, SFR Cap Santé, Université de Reims Champagne-Ardenne, Reims Cedex, France
| | - Leila Hadj-Henni
- Usc Petard, Anses, EA 7510, SFR Cap Santé, Université de Reims Champagne-Ardenne, Reims Cedex, France
| | - Denis Augot
- ANSES, INRAe, ENVA, UMR-BIPAR, Laboratoire de Santé Animale, Maisons-Alfort Cedex, France
| |
Collapse
|
2
|
Dähn O, Werner D, Mathieu B, Kampen H. Large-Scale Cytochrome C Oxidase Subunit I Gene Data Analysis for the Development of a Multiplex Polymerase Chain Reaction Test Capable of Identifying Biting Midge Vector Species and Haplotypes (Diptera: Ceratopogonidae) of the Culicoides Subgenus Avaritia Fox, 1955. Genes (Basel) 2024; 15:323. [PMID: 38540382 PMCID: PMC10969821 DOI: 10.3390/genes15030323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/22/2024] [Accepted: 02/28/2024] [Indexed: 06/14/2024] Open
Abstract
The emergence of culicoid-transmitted bluetongue and Schmallenberg viruses in several European countries demonstrated the ability of indigenous biting midge species to transmit pathogens. Entomologic research programs identified members of the Obsoletus Group (Culicoides subgenus Avaritia) as keyplayers in disease epidemiology in Europe. However, morphological identification of potential vectors is challenging due to the recent discovery of new genetic variants (haplotypes) of C. obsoletus sensu stricto (s.s.), forming distinct clades. In this study, 4422 GenBank entries of the mitochondrial cytochrome c oxidase subunit I (COI) gene of subgenus Avaritia members of the genus Culicoides were analyzed to develop a conventional multiplex PCR, capable of detecting all vector species and clades of the Western Palearctic in this subgenus. Numerous GenBank entries incorrectly assigned to a species were identified, analyzed and reassigned. The results suggest that the three C. obsoletus clades represent independent species, whereas C. montanus should rather be regarded as a genetic variant of C. obsoletus s.s. Based on these findings, specific primers were designed and validated with DNA material from field-caught biting midges which achieved very high diagnostic sensitivity (100%) when compared to an established reference PCR (82.6%).
Collapse
Affiliation(s)
- Oliver Dähn
- Friedrich-Loeffler-Institut (FLI), Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald, Germany
| | - Doreen Werner
- Leibniz Centre for Agricultural Landscape Research (ZALF), Eberswalder Str. 84, 15374 Müncheberg, Germany
| | - Bruno Mathieu
- Institutes of Bacteriology and Parasitology, Medical Faculty, University of Strasbourg, UR 3073 PHAVI, 67000 Strasbourg, France
| | - Helge Kampen
- Friedrich-Loeffler-Institut (FLI), Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald, Germany
| |
Collapse
|
3
|
Ogola EO, Bastos ADS, Slothouwer I, Getugi C, Osalla J, Omoga DCA, Ondifu DO, Sang R, Torto B, Junglen S, Tchouassi DP. Viral diversity and blood-feeding patterns of Afrotropical Culicoides biting midges (Diptera: Ceratopogonidae). Front Microbiol 2024; 14:1325473. [PMID: 38249470 PMCID: PMC10797016 DOI: 10.3389/fmicb.2023.1325473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 12/13/2023] [Indexed: 01/23/2024] Open
Abstract
Introduction Culicoides biting midges (Diptera: Ceratopogonidae) are vectors of arboviral pathogens that primarily affect livestock represented by Schmallenberg virus (SBV), epizootic hemorrhagic disease virus (EHDV) and bluetongue virus (BTV). In Kenya, studies examining the bionomic features of Culicoides including species diversity, blood-feeding habits, and association with viruses are limited. Methods Adult Culicoides were surveyed using CDC light traps in two semi-arid ecologies, Baringo and Kajiado counties, in Kenya. Blood-fed specimens were analysed through polymerase chain reaction (PCR) and sequencing of cytochrome oxidase subunit 1 (cox1) barcoding region. Culicoides pools were screened for virus infection by generic RT-PCR and next-generation sequencing (NGS). Results Analysis of blood-fed specimens confirmed that midges had fed on cattle, goats, sheep, zebra, and birds. Cox1 barcoding of the sampled specimens revealed the presence of known vectors of BTV and epizootic hemorrhagic disease virus (EHDV) including species in the Imicola group (Culicoides imicola) and Schultzei group (C. enderleni, C. kingi, and C. chultzei). Culicoides leucostictus and a cryptic species distantly related to the Imicola group were also identified. Screening of generated pools (11,006 individuals assigned to 333 pools) by generic RT-PCR revealed presence of seven phylogenetically distinct viruses grouping in the genera Goukovirus, Pacuvirus and Orthobunyavirus. The viruses showed an overall minimum infection rate (MIR) of 7.0% (66/333, 95% confidence interval (CI) 5.5-8.9). In addition, full coding sequences of two new iflaviruses, tentatively named Oloisinyai_1 and Oloisinyai_2, were generated by next-generation sequencing (NGS) from individual homogenate of Culicoides pool. Conclusion The results indicate a high genetic diversity of viruses in Kenyan biting midges. Further insights into host-vector-virus interactions as well as investigations on the potential clinical significance of the detected viruses are warranted.
Collapse
Affiliation(s)
- Edwin O. Ogola
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
- Department of Zoology and Entomology, University of Pretoria, Pretoria, South Africa
| | - Armanda D. S. Bastos
- Department of Zoology and Entomology, University of Pretoria, Pretoria, South Africa
| | - Inga Slothouwer
- Institute of Virology, Charité Universitätsmedizin Berlin, Corporate Member of Free University Berlin, Humboldt-University Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Caroline Getugi
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
| | - Josephine Osalla
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
| | - Dorcus C. A. Omoga
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
| | - Dickens O. Ondifu
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
| | - Rosemary Sang
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
| | - Baldwyn Torto
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
- Department of Zoology and Entomology, University of Pretoria, Pretoria, South Africa
| | - Sandra Junglen
- Institute of Virology, Charité Universitätsmedizin Berlin, Corporate Member of Free University Berlin, Humboldt-University Berlin, and Berlin Institute of Health, Berlin, Germany
| | - David P. Tchouassi
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
| |
Collapse
|
4
|
Prudhomme J, Depaquit J, Fite J, Quillery E, Bouhsira E, Liénard E. Systematic review of hematophagous arthropods present in cattle in France. Parasite 2023; 30:56. [PMID: 38084937 PMCID: PMC10714678 DOI: 10.1051/parasite/2023059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 11/21/2023] [Indexed: 12/18/2023] Open
Abstract
The arrival of pathogens, whether zoonotic or not, can have a lasting effect on commercial livestock farms, with dramatic health, social and economic consequences. However, available data concerning the arthropod vectors present and circulating on livestock farms in France are still very imprecise, fragmentary, and scattered. In this context, we conducted a systematic review of the hematophagous arthropod species recorded on different types of cattle farms in mainland France (including Corsica). The used vector "groups" studied were biting flies, biting midges, black flies, fleas, horse flies, lice, louse flies, mosquitoes, sand flies, and ticks. A large number of documents were selected (N = 9,225), read (N = 1,047) and analyzed (N = 290), allowing us to provide distribution and abundance maps of different species of medical and veterinary interest according to literature data. Despite the large number of documents collected and analyzed, there are few data provided on cattle farm characteristics. Moreover, data on all arthropod groups lack numerical detail and are based on limited data in time and/or space. Therefore, they are not generalizable nor comparable. There is still little information on many vectors (and their pathogens) and still many unknowns for most studied groups. It appears necessary to provide new, updated and standardized data, collected in different geographical and climatological areas. Finally, this work highlights the lack of entomologists, funding, training and government support, leading to an increased risk of uncontrolled disease emergence in cattle herds.
Collapse
Affiliation(s)
- Jorian Prudhomme
-
InTheres, University of Toulouse, INRAE, ENVT 31300 Toulouse France
| | - Jérôme Depaquit
-
Université de Reims Champagne-Ardenne, Faculté de Pharmacie, EA7510 EpidémioSurveillance et Circulation de Parasites dans les Environnements, and ANSES, USC Pathogènes-Environnement-Toxoplasme-Arthropodes-Réservoirs-bioDiversité Reims France
-
Centre Hospitalo-Universitaire, Laboratoire de Parasitologie-Mycologie 51092 Reims France
| | - Johanna Fite
-
French Agency for Food, Environmental and Occupational Health & Safety, Risk Assessment Department Maisons-Alfort Cedex France
| | - Elsa Quillery
-
French Agency for Food, Environmental and Occupational Health & Safety, Risk Assessment Department Maisons-Alfort Cedex France
| | - Emilie Bouhsira
-
InTheres, University of Toulouse, INRAE, ENVT 31300 Toulouse France
| | - Emmanuel Liénard
-
InTheres, University of Toulouse, INRAE, ENVT 31300 Toulouse France
| |
Collapse
|
5
|
The investigation of Culicoides (Diptera: Ceratopogonidae) species and Bluetongue virus and Schmallenberg virus in Northwest Türkiye. Trop Anim Health Prod 2023; 55:39. [PMID: 36640201 DOI: 10.1007/s11250-023-03454-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 01/04/2023] [Indexed: 01/15/2023]
Abstract
Culicoides biting midges (Diptera: Ceratopogonidae) act as mechanical and biological vectors of arboviruses and are crucial in the global spread of these viruses. This study investigated the diversity of distribution of Culicoides species and the presence of Bluetongue virus (BTV) and Schmallenberg virus (SBV) in Tekirdağ province in Northwest Türkiye. The fourteen Culicoides species, such as Culicoides newsteadi, Culicoides schultzei, Culicoides nubeculosus comp., Culicoides punctatus, Culicoides circumscriptus, Culicoides obsoletus comp., Culicoides gejgelensis, Culicoides festivipennis, Culicoides longipennis, Culicoides spp., Culicoides pulicaris, Culicoides picturatus, Culicoides odiatus, Culicoides kurensis, and Culicoides flavipulicaris, were detected. Culicoides newsteadi, C. odiatus, and C. pulicaris were the most abundant species. Phylogenetic analyses of Culicoides species' ITS-1 gene region were performed. A pool of C. festivipennis was positive for SBV RNA, while the BTV genomic materials was not found in the qPCR analysis. This is the first report of the presence/detection of SBV in Culicoides species in Türkiye. The survey of bioecological and epizootiological aspects of vector species is essential in implementing effective control measures for arboviral infections.
Collapse
|
6
|
Kadjoudj N, Bounamous A, Kouba Y, Dik B, Zeroual S, Amira A, Chenchouni H. Composition and diversity of Culicoides biting midges (Diptera: Ceratopogonidae) in rural and suburban environments of Algeria. Acta Trop 2022; 234:106588. [PMID: 35803337 DOI: 10.1016/j.actatropica.2022.106588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 07/01/2022] [Accepted: 07/04/2022] [Indexed: 11/01/2022]
Abstract
Culicoides biting midges are well known biological vectors of several arboviruses causing more than 100 veterinary and medical diseases worldwide. In Algeria, bluetongue virus, which is transmitted by Culicoides midges, is responsible for one of the most critical insect-borne diseases of sheep. For example, this disease caused clinically severe morbidity of about 2,661 confirmed cases out of 21,175 susceptible sheep in Algeria. This study compared the abundance, richness, and diversity of Culicoides species in rural and suburban environments of semi-arid regions in North Africa. It examined the potential influence of the bio-climatic factors on the variation of population sizes and the elevation distribution of biting midges. Specimen collection was carried out from June to September during two successive years (2018 and 2019) using CDC light traps installed at 15 sites in different environments. Culicoides specimens were dissected, slide-mounted, and morphologically identified using the interactive identification key IIKC and various standard morphological criteria. A total of 1,046 Culicoides specimens (1,024 females and 22 males) were trapped and classified into 22 species, belonged to nine distinct subgenera. Two new species records for Algeria and even North Africa are reported: Culicoides albicans (Winnertz, 1852) and Culicoides nubeculosus (Meigen, 1830). Culicoides newsteadi Austen, 1921 (51.6%) was the dominant species, and it was followed by Culicoides punctatus (Meigen, 1804) (16.3%) and Culicoides odiatus Austen, 1921 (11.5%). These three species, comprising 80% of the collected Culicoides, were the most abundant both outside and inside livestock stables in rural and suburban environments. Species diversity was similar in the two settings, with a slight increase in suburban environments. None of the Culicoides species encountered correlated significantly with the climatic factors (mean temperature, precipitation, and relative humidity). Elevation was the most determinant environmental parameter that affected the abundance and distribution of Culicoides midges in the semi-arid and sub-humid areas studied. The maximum distribution of Culicoides species was detected at mid elevations (400‒800 m). Using a modeling approach, we explored for the first time the variation of composition and diversity in Culicoides communities within different climatic regions, environments and livestock settings in Algeria. This survey deepens our understanding of the relationships among environmental factors, abundance, diversity, and geographic distribution of Culicoides. This is a crucial step to assess the epidemiological situation of the diseases transmitted by these biting midges and to allow mitigation of the associated risks.
Collapse
Affiliation(s)
- Nadia Kadjoudj
- Laboratory of Natural Sciences and Materials, Institute of Science and Technology, University Center A. Boussouf of Mila, Mila 43000, Algeria
| | - Azzedine Bounamous
- Laboratory of Natural Sciences and Materials, Institute of Science and Technology, University Center A. Boussouf of Mila, Mila 43000, Algeria
| | - Yacine Kouba
- Department of Geography and Spatial Planning, Larbi Ben Mhidi University, 04000, Algeria
| | - Bilal Dik
- Department of Parasitology, Faculty of Veterinary Medicine, Selçuk University, Konya 42250, Turkey
| | - Samir Zeroual
- Laboratory of Genetics, biotechnology and valorization of bio-resources, University Mohamed Khider, Biskra, Algeria
| | - Aicha Amira
- Laboratory of Natural Sciences and Materials, Institute of Science and Technology, University Center A. Boussouf of Mila, Mila 43000, Algeria
| | - Haroun Chenchouni
- Department of Forest Management, Higher National School of Forests, Khenchela 40000, Algeria; Laboratory of Natural Resources and Management of Sensitive Environments 'RNAMS', Larbi Ben Mhidi University, Oum-El-Bouaghi 04000, Algeria.
| |
Collapse
|
7
|
Takimoto G, Shirakawa H, Sato T. The relationship between vector species richness and the risk of vector-borne infectious diseases. Am Nat 2022; 200:330-344. [DOI: 10.1086/720403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
8
|
An Investigation of Culicoides (Diptera: Ceratopogonidae) as Potential Vectors of Medically and Veterinary Important Arboviruses in South Africa. Viruses 2021; 13:v13101978. [PMID: 34696407 PMCID: PMC8541229 DOI: 10.3390/v13101978] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 12/14/2022] Open
Abstract
Culicoides-borne viruses such as bluetongue, African horse sickness, and Schmallenberg virus cause major economic burdens due to animal outbreaks in Africa and their emergence in Europe and Asia. However, little is known about the role of Culicoides as vectors for zoonotic arboviruses. In this study, we identify both veterinary and zoonotic arboviruses in pools of Culicoides biting midges in South Africa, during 2012–2017. Midges were collected at six surveillance sites in three provinces and screened for Alphavirs, Flavivirus, Orthobunyavirus, and Phlebovirus genera; equine encephalosis virus (EEV); and Rhaboviridae, by reverse transcription polymerase chain reaction. In total, 66/331 (minimum infection rate (MIR) = 0.4) pools tested positive for one or more arbovirus. Orthobunyaviruses, including Shuni virus (MIR = 0.1) and EEV (MIR = 0.2) were more readily detected, while only 2/66 (MIR = 0.1) Middelburg virus and 4/66 unknown Rhabdoviridae viruses (MIR = 0.0) were detected. This study suggests Culicoides as potential vectors of both veterinary and zoonotic arboviruses detected in disease outbreaks in Africa, which may contribute to the emergence of these viruses to new regions.
Collapse
|
9
|
Bayrou C, Lesenfants C, Paternostre J, Volpe R, Moula N, Coupeau D, Muylkens B, Desmecht D, Linden A. Schmallenberg virus, cyclical reemergence in the core region: A seroepidemiologic study in wild cervids, Belgium, 2012-2017. Transbound Emerg Dis 2021; 69:1625-1633. [PMID: 33949132 DOI: 10.1111/tbed.14136] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 04/02/2021] [Accepted: 04/27/2021] [Indexed: 11/27/2022]
Abstract
Schmallenberg virus emerged in 2011 in Europe. The epicentre of primordial spreading was the region straddling Germany, the Netherlands and Belgium. One of the key questions is whether the newcomer would establish a lasting presence on the continent. The apparent seroprevalence in southern Belgium wild deer populations was followed for 6 years. Two years of intense circulation were revealed, 2012 and 2016, characterized by a peak seroprevalence in the two studied populations (Capreolus capreolus and Cervus elaphus). Between the peak years and after 2016, apparent seroprevalences declined rapidly among adults and became nil among juveniles. The general pattern of apparent seroprevalence evolution observed is consistent with a cyclic circulation of Schmallenberg virus, similar to what is observed for other Orthobunyaviruses in endemic areas. These data also suggest that wild cervids play no central role in the circulation dynamics of the virus.
Collapse
Affiliation(s)
- Calixte Bayrou
- Animal Pathology, FARAH Research Center, Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Christophe Lesenfants
- Surveillance Network for Wildlife Diseases, FARAH Research Center, Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Julien Paternostre
- Surveillance Network for Wildlife Diseases, FARAH Research Center, Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Rosario Volpe
- Surveillance Network for Wildlife Diseases, FARAH Research Center, Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Nassim Moula
- Animal Productions, FARAH Research Center, Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Damien Coupeau
- Veterinary Department, Faculty of Sciences, Namur Research Institute for Life Sciences (NARILIS), University of Namur (UNamur), Namur, Belgium
| | - Benoît Muylkens
- Veterinary Department, Faculty of Sciences, Namur Research Institute for Life Sciences (NARILIS), University of Namur (UNamur), Namur, Belgium
| | - Daniel Desmecht
- Animal Pathology, FARAH Research Center, Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Annick Linden
- Surveillance Network for Wildlife Diseases, FARAH Research Center, Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| |
Collapse
|
10
|
Gil P, Dupuy V, Koual R, Exbrayat A, Loire E, Fall AG, Gimonneau G, Biteye B, Talla Seck M, Rakotoarivony I, Marie A, Frances B, Lambert G, Reveillaud J, Balenghien T, Garros C, Albina E, Eloit M, Gutierrez S. A library preparation optimized for metagenomics of RNA viruses. Mol Ecol Resour 2021; 21:1788-1807. [PMID: 33713395 DOI: 10.1111/1755-0998.13378] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 02/23/2021] [Accepted: 02/25/2021] [Indexed: 11/28/2022]
Abstract
Our understanding of the viral communities associated to animals has not yet reached the level attained on the bacteriome. This situation is due to, among others, technical challenges in adapting metagenomics using high-throughput sequencing to the study of RNA viromes in animals. Although important developments have been achieved in most steps of viral metagenomics, there is yet a key step that has received little attention: the library preparation. This situation differs from bacteriome studies in which developments in library preparation have largely contributed to the democratisation of metagenomics. Here, we present a library preparation optimized for metagenomics of RNA viruses from insect vectors of viral diseases. The library design allows a simple PCR-based preparation, such as those routinely used in bacterial metabarcoding, that is adapted to shotgun sequencing as required in viral metagenomics. We first optimized our library preparation using mock viral communities and then validated a full metagenomic approach incorporating our preparation in two pilot studies with field-caught insect vectors; one including a comparison with a published metagenomic protocol. Our approach provided a fold increase in virus-like sequences compared to other studies, and nearly-full genomes from new virus species. Moreover, our results suggested conserved trends in virome composition within a population of a mosquito species. Finally, the sensitivity of our approach was compared to a commercial diagnostic PCR for the detection of an arbovirus in field-caught insect vectors. Our approach could facilitate studies on viral communities from animals and the democratization of metagenomics in community ecology of viruses.
Collapse
Affiliation(s)
- Patricia Gil
- ASTRE, Cirad, INRAE, University of Montpellier, Montpellier, France.,Cirad, UMR ASTRE, Montpellier, F-34398, France
| | - Virginie Dupuy
- ASTRE, Cirad, INRAE, University of Montpellier, Montpellier, France.,Cirad, UMR ASTRE, Montpellier, F-34398, France
| | - Rachid Koual
- ASTRE, Cirad, INRAE, University of Montpellier, Montpellier, France.,Cirad, UMR ASTRE, Montpellier, F-34398, France
| | - Antoni Exbrayat
- ASTRE, Cirad, INRAE, University of Montpellier, Montpellier, France.,Cirad, UMR ASTRE, Montpellier, F-34398, France
| | - Etienne Loire
- ASTRE, Cirad, INRAE, University of Montpellier, Montpellier, France.,Cirad, UMR ASTRE, Montpellier, F-34398, France
| | - Assane G Fall
- Laboratoire National de l'Elevage et de Recherches Vétérinaires, Institut Sénégalais de Recherches Agricoles (ISRA), Dakar-Hann, Senegal
| | - Geoffrey Gimonneau
- ASTRE, Cirad, INRAE, University of Montpellier, Montpellier, France.,Cirad, UMR ASTRE, Montpellier, F-34398, France.,Laboratoire National de l'Elevage et de Recherches Vétérinaires, Institut Sénégalais de Recherches Agricoles (ISRA), Dakar-Hann, Senegal
| | - Biram Biteye
- Laboratoire National de l'Elevage et de Recherches Vétérinaires, Institut Sénégalais de Recherches Agricoles (ISRA), Dakar-Hann, Senegal
| | - Momar Talla Seck
- Laboratoire National de l'Elevage et de Recherches Vétérinaires, Institut Sénégalais de Recherches Agricoles (ISRA), Dakar-Hann, Senegal
| | - Ignace Rakotoarivony
- ASTRE, Cirad, INRAE, University of Montpellier, Montpellier, France.,Cirad, UMR ASTRE, Montpellier, F-34398, France
| | | | | | | | - Julie Reveillaud
- ASTRE, Cirad, INRAE, University of Montpellier, Montpellier, France
| | - Thomas Balenghien
- ASTRE, Cirad, INRAE, University of Montpellier, Montpellier, France.,Cirad, UMR ASTRE, Montpellier, F-34398, France
| | - Claire Garros
- ASTRE, Cirad, INRAE, University of Montpellier, Montpellier, France.,Cirad, UMR ASTRE, Montpellier, F-34398, France
| | - Emmanuel Albina
- ASTRE, Cirad, INRAE, University of Montpellier, Montpellier, France.,Cirad, UMR ASTRE, Montpellier, F-34398, France
| | - Marc Eloit
- Pathogen Discovery Laboratory, Institut Pasteur, Paris, France.,The OIE Collaborating Centre for Detection and Identification in Humans of Emerging Animal Pathogens, Institut Pasteur, Paris, France.,École nationale vétérinaire d'Alfort, Maisons-Alfort, France
| | - Serafin Gutierrez
- ASTRE, Cirad, INRAE, University of Montpellier, Montpellier, France.,Cirad, UMR ASTRE, Montpellier, F-34398, France
| |
Collapse
|
11
|
Hagenaars TJ, Backx A, van Rooij EMA, Vrouenraets RMMI, Bontje DM, Bouma A, Elbers ARW. Within-farm transmission characteristics of bluetongue virus serotype 8 in cattle and sheep in the Netherlands, 2007-2008. PLoS One 2021; 16:e0246565. [PMID: 33556122 PMCID: PMC7870048 DOI: 10.1371/journal.pone.0246565] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 01/21/2021] [Indexed: 11/18/2022] Open
Abstract
In 2006 and 2007, sheep and cattle farms in the Netherlands were affected by an epidemic of bluetongue virus serotype 8 (BTV-8). In order to obtain insight into the within-farm spread of the virus, five affected cattle and five affected sheep farms were longitudinally monitored between early 2007 and mid or late 2008. The farms were visited between four and seven times to collect blood samples. During each visit, all animals present in the flock or herd were sampled. The samples were analysed for the presence of BTV-8 antibodies (ELISA) and BTV-8 antigen (rRT-PCR). The observed patterns of RT-PCR positives indicate a rapid within-farm virus spread during the vector season. During vector-free periods we observed a complete rRT-PCR positivity decline within a few months. During the vector season a lower bound estimate of the basic reproduction number (R0) ranges from 2.9-6.9 in the cattle herds (one herd not analysed), and from 1.3-3.2 in the sheep flocks in this study.
Collapse
Affiliation(s)
| | - Anoek Backx
- Wageningen Bioveterinary Research, Lelystad, The Netherlands
| | | | | | | | - Annemarie Bouma
- Ministry of Agriculture, Nature and Food Quality, The Hague, The Netherlands
| | | |
Collapse
|
12
|
Belkharchouche M, Berchi S, Mathieu B, Rakotoarivony I, Duhayon M, Baldet T, Balenghien T. Update of the Culicoides (Diptera: Ceratopogonidae) species checklist from Algeria with 10 new records. Parasit Vectors 2020; 13:463. [PMID: 32912306 PMCID: PMC7488159 DOI: 10.1186/s13071-020-04335-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 09/01/2020] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND The Culicoides fauna of Algeria has been historically investigated, leading to the description of many new species by Kieffer in the 1920s, Clastrier in the 1950s or Callot in the 1960s and to a comprehensive inventory by Szadziewski in the 1980s. The emergence of bluetongue in the late 1990s enhanced Culicoides collections made in the country over the last two decades, but information remained mostly unpublished. The aim of this study is therefore to provide a comprehensive and updated checklist of Culicoides biting midge species in Algeria. METHODS The literature (published and grey, in French and in English) from 1920 to date on Culicoides collections in Algeria was collected and analyzed in the light of the current taxonomic and systematic knowledge and methods. Fresh Culicoides material was also analyzed using light/suction trap collections carried out from November 2015 to September 2018 in nine localities of the 'wilayah' of Tiaret (northwestern Algeria). Slide mounted specimens were identified morphologically using the interactive identification key IIKC and original descriptions. Specimens were then compared with non-type material originating from different countries and partly with type material. RESULTS A total of 13,709 Culicoides, belonging to at least 36 species within 10 subgenera, were examined leading to 10 new records in Algeria, including C. chiopterus, C. dewulfi, C. navaiae, C. grisescens, C. paradoxalis, C. shaklawensis, C. simulator, C. univittatus, C. achrayi and C. picturatus. These new records and all previous records provided by the literature review were discussed. CONCLUSIONS We propose a Culicoides checklist for the Algerian fauna of 59 valid species, including species mainly with a large Palaearctic distribution and a specific Mediterranean distribution, and only a few species from the Afrotropical region. Among them, several species, mainly of the subgenera Avaritia and Culicoides, are confirmed or probable vectors of arboviruses important in animal health.
Collapse
Affiliation(s)
- Mounira Belkharchouche
- Ecole Nationale Supérieure de Biotechnologie, Taoufik Khaznadar, nouveau pôle universitaire Ali Mendjeli, B.P. E66, 25100 Constantine, Algérie
- Faculté des Sciences de la Nature et de la Vie, Université Ibn Khaldoun, B.P.75 Zaaroura, Tiaret, 1400 Algérie
- Laboratoire de Biosystématique et Ecologie des Arthropodes, Faculté des Sciences de la Nature et de la Vie, Département de Biologie Animale, Université Frères Mentouri, Constantine 1, 2500 Algérie
- CIRAD, UMR ASTRE, 34398 Montpellier, France
| | - Selima Berchi
- Laboratoire de Biosystématique et Ecologie des Arthropodes, Faculté des Sciences de la Nature et de la Vie, Département de Biologie Animale, Université Frères Mentouri, Constantine 1, 2500 Algérie
| | - Bruno Mathieu
- Institut de Parasitologie et de Pathologies Tropicales de Strasbourg (IPPTS), UR 7292, 3 Rue Koeberlé, 67000 Strasbourg, France
| | - Ignace Rakotoarivony
- CIRAD, UMR ASTRE, 34398 Montpellier, France
- ASTRE, University of Montpellier, CIRAD, INRAE, Montpellier, France
| | - Maxime Duhayon
- CIRAD, UMR ASTRE, 34398 Montpellier, France
- ASTRE, University of Montpellier, CIRAD, INRAE, Montpellier, France
| | - Thierry Baldet
- ASTRE, University of Montpellier, CIRAD, INRAE, Montpellier, France
- CIRAD, UMR ASTRE, 97491 Sainte-Clotilde, La Réunion France
| | - Thomas Balenghien
- ASTRE, University of Montpellier, CIRAD, INRAE, Montpellier, France
- CIRAD, UMR ASTRE, 10101 Rabat, Morocco
- Institut Agronomique et Vétérinaire Hassan II, Unité Microbiologie, Immunologie et Maladies Contagieuses, 10100 Rabat, Morocco
| |
Collapse
|
13
|
Hristescu D, Bărbuceanu F, Dascălu L, Nițescu C, Goffredo M, Santilli A, Quaglia M, Balenghien T, Predoi G. Species composition and relative abundance of the genus Culicoides (Diptera: Ceratopogonidae) in Romania. Parasit Vectors 2020; 13:393. [PMID: 32746908 PMCID: PMC7397577 DOI: 10.1186/s13071-020-04247-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 07/20/2020] [Indexed: 11/13/2022] Open
Abstract
Background Culicoides biting midges are vectors involved in the biological transmission cycle of important animal diseases such as bluetongue and African horse sickness. In Romania, the first outbreaks of bluetongue were reported in 2014, leading to increased activities within the existing entomological surveillance network. The main goals of the surveillance activities were the establishment of the vector free period in relation to animal trade and the identification of Culicoides species involved in the transmission of the pathogen. This study was conducted on the composition and relative abundance of the species belonging to the genus Culicoides (Diptera: Ceratopogonidae) in certain regions of Romania and provided the opportunity to update the existing checklist of Culicoides species of this country. Methods The study was conducted in 33 of the 42 administrative units (counties), including a total of 659 catches, in 102 locations. The collections were carried out with UV blacklight suction traps (OVI type). The collected insects were preserved in 70% ethanol. Morphological insect identification was carried out using a stereomicroscope, according to established identification keys. In ten localities the relative abundance of the cryptic species of the Obsoletus complex was determined by multiplex PCR assay based on the ITS2 segment. The identification of the Culicoides chiopterus (Meigen) species by morphological examination was confirmed by PCR assay based on the ITS1 segment. Results Eleven species were identified using morphological and PCR tools. The rest of the individuals were separated into five taxa. The species of the Obsoletus complex (grouping Culicoides obsoletus (Meigen) and Culicoides scoticus Downes & Kettle) were the most abundant, accounting for 59% of the total number of captured Culicoides spp. Three of the identified species are mentioned, according to our knowledge, for the first time in Romania: Culicoides newsteadi Austen, Culicoides flavipulicaris Dzhafarov and Culicoides bysta Sarvašová, Kočisová, Candolfi & Mathieu. Conclusions Our study demonstrates that the Culicoides species most commonly cited as being involved in the transmission of arboviruses in Europe (i.e. bluetongue and Schmallenberg viruses) make up a high proportion of adult Culicoides trapped in Romania. ![]()
Collapse
Affiliation(s)
- Doru Hristescu
- Institute for Diagnosis and Animal Health, Bucharest, Romania.
| | - Florica Bărbuceanu
- Institute for Diagnosis and Animal Health, Bucharest, Romania.,Faculty of Veterinary Medicine, Bucharest, Romania
| | - Lenuța Dascălu
- Institute for Diagnosis and Animal Health, Bucharest, Romania
| | | | - Maria Goffredo
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise 'G. Caporale', Teramo, Italy
| | - Adriana Santilli
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise 'G. Caporale', Teramo, Italy
| | - Michela Quaglia
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise 'G. Caporale', Teramo, Italy
| | - Thomas Balenghien
- ASTRE, University of Montpellier, Cirad, INRA, Montpellier, France.,Cirad, UMR ASTRE, 10101, Rabat, Morocco.,Unité Parasitologie et maladies parasitaires, Institut Agronomique et Vétérinaire Hassan II, 10100, Rabat, Morocco
| | | |
Collapse
|
14
|
Continuous Cell Lines from the European Biting Midge Culicoides nubeculosus (Meigen, 1830). Microorganisms 2020; 8:microorganisms8060825. [PMID: 32486323 PMCID: PMC7356041 DOI: 10.3390/microorganisms8060825] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 05/25/2020] [Accepted: 05/28/2020] [Indexed: 01/15/2023] Open
Abstract
Culicoides biting midges (Diptera: Ceratopogonidae) transmit arboviruses of veterinary or medical importance, including bluetongue virus (BTV) and Schmallenberg virus, as well as causing severe irritation to livestock and humans. Arthropod cell lines are essential laboratory research tools for the isolation and propagation of vector-borne pathogens and the investigation of host-vector-pathogen interactions. Here we report the establishment of two continuous cell lines, CNE/LULS44 and CNE/LULS47, from embryos of Culicoides nubeculosus, a midge distributed throughout the Western Palearctic region. Species origin of the cultured cells was confirmed by polymerase chain reaction (PCR) amplification and sequencing of a fragment of the cytochrome oxidase 1 gene, and the absence of bacterial contamination was confirmed by bacterial 16S rRNA PCR. Both lines have been successfully cryopreserved and resuscitated. The majority of cells examined in both lines had the expected diploid chromosome number of 2n = 6. Transmission electron microscopy of CNE/LULS44 cells revealed the presence of large mitochondria within cells of a diverse population, while arrays of virus-like particles were not seen. CNE/LULS44 cells supported replication of a strain of BTV serotype 1, but not of a strain of serotype 26 which is not known to be insect-transmitted. These new cell lines will expand the scope of research on Culicoides-borne pathogens.
Collapse
|
15
|
Collins ÁB, Doherty ML, Barrett DJ, Mee JF. Schmallenberg virus: a systematic international literature review (2011-2019) from an Irish perspective. Ir Vet J 2019; 72:9. [PMID: 31624588 PMCID: PMC6785879 DOI: 10.1186/s13620-019-0147-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 09/05/2019] [Indexed: 11/10/2022] Open
Abstract
In Autumn 2011, nonspecific clinical signs of pyrexia, diarrhoea, and drop in milk yield were observed in dairy cattle near the German town of Schmallenberg at the Dutch/German border. Targeted veterinary diagnostic investigations for classical endemic and emerging viruses could not identify a causal agent. Blood samples were collected from animals with clinical signs and subjected to metagenomic analysis; a novel orthobunyavirus was identified and named Schmallenberg virus (SBV). In late 2011/early 2012, an epidemic of abortions and congenital malformations in calves, lambs and goat kids, characterised by arthrogryposis and hydranencephaly were reported in continental Europe. Subsequently, SBV RNA was confirmed in both aborted and congenitally malformed foetuses and also in Culicoides species biting midges. It soon became evident that SBV was an arthropod-borne teratogenic virus affecting domestic ruminants. SBV rapidly achieved a pan-European distribution with most countries confirming SBV infection within a year or two of the initial emergence. The first Irish case of SBV was confirmed in the south of the country in late 2012 in a bovine foetus. Since SBV was first identified in 2011, a considerable body of scientific research has been conducted internationally describing this novel emerging virus. The aim of this systematic review is to provide a comprehensive synopsis of the most up-to-date scientific literature regarding the origin of SBV and the spread of the Schmallenberg epidemic, in addition to describing the species affected, clinical signs, pathogenesis, transmission, risk factors, impact, diagnostics, surveillance methods and control measures. This review also highlights current knowledge gaps in the scientific literature regarding SBV, most notably the requirement for further research to determine if, and to what extent, SBV circulation occurred in Europe and internationally during 2017 and 2018. Moreover, recommendations are also made regarding future arbovirus surveillance in Europe, specifically the establishment of a European-wide sentinel herd surveillance program, which incorporates bovine serology and Culicoides entomology and virology studies, at national and international level to monitor for the emergence and re-emergence of arboviruses such as SBV, bluetongue virus and other novel Culicoides-borne arboviruses.
Collapse
Affiliation(s)
- Áine B Collins
- Animal and Bioscience Research Department, Teagasc, Moorepark, Fermoy, Co, Cork, Ireland.,2School of Veterinary Medicine, University College Dublin, Dublin 4, Ireland
| | - Michael L Doherty
- 2School of Veterinary Medicine, University College Dublin, Dublin 4, Ireland
| | - Damien J Barrett
- Department of Agriculture, Surveillance, Animal By-Products and TSE Division, Food and the Marine, Backweston, Celbridge, Co. Kildare Ireland
| | - John F Mee
- Animal and Bioscience Research Department, Teagasc, Moorepark, Fermoy, Co, Cork, Ireland
| |
Collapse
|
16
|
Kęsik-Maliszewska J, Larska M, Collins ÁB, Rola J. Post-Epidemic Distribution of Schmallenberg Virus in Culicoides Arbovirus Vectors in Poland. Viruses 2019; 11:v11050447. [PMID: 31100887 PMCID: PMC6563501 DOI: 10.3390/v11050447] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 05/06/2019] [Accepted: 05/14/2019] [Indexed: 12/12/2022] Open
Abstract
Pooled samples of female and male Culicoides midges (5146 and 332 pools, respectively) that corresponded to a total number of 124,957 specimens were collected between 2013-2017 in the vicinity of cattle barns that were distributed throughout Poland were analyzed for the presence of Schmallenberg virus (SBV) RNA. Sixty-six pools tested positive (1.2%) with mean Ct value of 34.95. The maximum likelihood estimated infection rate (MLE) was calculated at 0.53 per 1000 individuals; however, it peaked in 2016 with MLE of 3.7. Viral RNA was detected in C. obsoletus/scoticus complex, C. punctatus, and C. pulicaris pools. Moreover, viral material was present in nulliparous (virgin) Culicoides females (MLE 0.27) and for the first time reported in males (MLE 0.34), which suggests the possibility of transovarial route of SBV or virus RNA transmission, as both do not fed on host blood. The accuracy of targeted versus random SBV surveillance in Culicoides vectors was compared. The relationship between infection rate (expressed as minimum infection rate; MIR), in addition to MLE, was compared with the density of virus infected midges (DIM). In conclusion, the SBV infection rate in the vector was significantly higher in 2016 as compared to other surveillance years; this is consistent with the simultaneous increase in SBV seroprevalence (seroconversion) in ruminants during the same year.
Collapse
Affiliation(s)
| | - Magdalena Larska
- Department of Virology, National Veterinary Institute, 24-100 Puławy, Poland.
| | - Áine B Collins
- Department of Agriculture Food and the Marine, C/o Centre for Veterinary Epidemiology and Risk Analysis, UCD School of Veterinary Medicine University College Dublin, Belfield, D04 W6F6 Dublin 4, Ireland.
| | - Jerzy Rola
- Department of Virology, National Veterinary Institute, 24-100 Puławy, Poland.
| |
Collapse
|
17
|
Sick F, Beer M, Kampen H, Wernike K. Culicoides Biting Midges-Underestimated Vectors for Arboviruses of Public Health and Veterinary Importance. Viruses 2019; 11:E376. [PMID: 31022868 PMCID: PMC6520762 DOI: 10.3390/v11040376] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 04/10/2019] [Accepted: 04/18/2019] [Indexed: 01/12/2023] Open
Abstract
Culicoides biting midges, small hematophagous dipterans, are the demonstrated or putative vectors of multiple arboviruses of veterinary and public health importance. Despite its relevance in disease spread, the ceratopogonid genus Culicoides is still a largely neglected group of species, predominantly because the major human-affecting arboviruses are considered to be transmitted by mosquitoes. However, when a pathogen is detected in a certain vector species, a thorough search for further vectors often remains undone and, therefore, the relevant vector species may remain unknown. Furthermore, for many hematophagous arthropods, true vector competence is often merely suspected and not experimentally proven. Therefore, we aim to illuminate the general impact of Culicoides biting midges and to summarize the knowledge about biting midge-borne disease agents using the order Bunyavirales, the largest and most diverse group of RNA viruses, as an example. When considering only viruses evidentially transmitted by Culicoides midges, the Simbu serogroup (genus Orthobunyavirus) is presumably the most important group within the virus order. Its members are of great veterinary importance, as a variety of simbuviruses, e.g., the species Akabane orthobunyavirus or Schmallenberg orthobunyavirus, induces severe congenital infections in pregnant animals. The major zoonotic representative of this serogroup occurs in South and Central America and causes the so-called Oropouche fever, an acute febrile illness in humans.
Collapse
Affiliation(s)
- Franziska Sick
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Suedufer 10, 17493 Greifswald-Insel Riems, Germany.
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Suedufer 10, 17493 Greifswald-Insel Riems, Germany.
| | - Helge Kampen
- Institute of Infectology, Friedrich-Loeffler-Institut, Suedufer 10, 17493 Greifswald-Insel Riems, Germany.
| | - Kerstin Wernike
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Suedufer 10, 17493 Greifswald-Insel Riems, Germany.
| |
Collapse
|
18
|
Longitudinal monitoring of Culicoides in Belgium between 2007 and 2011: local variation in population dynamics parameters warrant cautious use of monitoring data. Parasit Vectors 2018; 11:512. [PMID: 30223878 PMCID: PMC6142705 DOI: 10.1186/s13071-018-3082-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 08/28/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Several European countries suffered important economic losses during the past decade due to the emergence of bluetongue and Schmallenberg viruses. Both are viruses of veterinary importance and are spread by Culicoides spp. This triggered many European countries to start Culicoides population monitoring. Recently a one year monitoring study at 16 sites in Belgium revealed that important variation existed in Culicoides abundance and species diversity between collection sites. In order to analyze whether this variation is consistent over years, a detailed analysis of monitoring data collected at seven locations in Belgium between 2007 and 2011 was performed in this study. At all locations, biting midges were collected with OVI black light traps set-up in close proximity to livestock. RESULTS In total, 42 different Culicoides species were morphologically identified. Species of the subgenus Avaritia represented 83% of all collected midges. Nevertheless, important differences in species composition were found between sites. Furthermore, statistical differences between sites were found for the total and maximum annual abundance, showing that a consistent higher or lower number of Culicoides could be collected depending on the selected collection site. Yearly, up to 16 and 30-fold differences in total and maximum annual abundances between sites, respectively, were found. Also the month in which most Culicoides were collected varied greatly between years, both at local (from May to October) and country level [May (2008), June (2010), July (2009), August (2011), October (2007)]. Finally, the average vector-free period over all sites and years was 173 days and could roughly be defined between November and the end of April. Interestingly, important yearly variations of up to two months in the duration of the vector-free period were found between the studied collection sites. In contrast to the abundance parameters, no specific sites could however be identified where monitoring consistently showed shorter or longer vector-free periods. CONCLUSIONS In conclusion, our results show that the selection of collection sites for Culicoides monitoring, even in a small country such as Belgium, strongly influences abundance parameters and that yearly variation in seasonality occurs. This emphasizes that care should be taken when using such parameters in risk assessments for transmission of Culicoides-borne diseases and that more clear and strict guidelines for Culicoides monitoring should be considered when monitoring data are used for legislative purposes.
Collapse
|
19
|
Cuéllar AC, Kjær LJ, Kirkeby C, Skovgard H, Nielsen SA, Stockmarr A, Andersson G, Lindstrom A, Chirico J, Lühken R, Steinke S, Kiel E, Gethmann J, Conraths FJ, Larska M, Hamnes I, Sviland S, Hopp P, Brugger K, Rubel F, Balenghien T, Garros C, Rakotoarivony I, Allène X, Lhoir J, Chavernac D, Delécolle JC, Mathieu B, Delécolle D, Setier-Rio ML, Venail R, Scheid B, Chueca MÁM, Barceló C, Lucientes J, Estrada R, Mathis A, Tack W, Bødker R. Spatial and temporal variation in the abundance of Culicoides biting midges (Diptera: Ceratopogonidae) in nine European countries. Parasit Vectors 2018; 11:112. [PMID: 29482593 PMCID: PMC5828119 DOI: 10.1186/s13071-018-2706-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 02/12/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Biting midges of the genus Culicoides (Diptera: Ceratopogonidae) are vectors of bluetongue virus (BTV), African horse sickness virus and Schmallenberg virus (SBV). Outbreaks of both BTV and SBV have affected large parts of Europe. The spread of these diseases depends largely on vector distribution and abundance. The aim of this analysis was to identify and quantify major spatial patterns and temporal trends in the distribution and seasonal variation of observed Culicoides abundance in nine countries in Europe. METHODS We gathered existing Culicoides data from Spain, France, Germany, Switzerland, Austria, Denmark, Sweden, Norway and Poland. In total, 31,429 Culicoides trap collections were available from 904 ruminant farms across these countries between 2007 and 2013. RESULTS The Obsoletus ensemble was distributed widely in Europe and accounted for 83% of all 8,842,998 Culicoides specimens in the dataset, with the highest mean monthly abundance recorded in France, Germany and southern Norway. The Pulicaris ensemble accounted for only 12% of the specimens and had a relatively southerly and easterly spatial distribution compared to the Obsoletus ensemble. Culicoides imicola Kieffer was only found in Spain and the southernmost part of France. There was a clear spatial trend in the accumulated annual abundance from southern to northern Europe, with the Obsoletus ensemble steadily increasing from 4000 per year in southern Europe to 500,000 in Scandinavia. The Pulicaris ensemble showed a very different pattern, with an increase in the accumulated annual abundance from 1600 in Spain, peaking at 41,000 in northern Germany and then decreasing again toward northern latitudes. For the two species ensembles and C. imicola, the season began between January and April, with later start dates and increasingly shorter vector seasons at more northerly latitudes. CONCLUSION We present the first maps of seasonal Culicoides abundance in large parts of Europe covering a gradient from southern Spain to northern Scandinavia. The identified temporal trends and spatial patterns are useful for planning the allocation of resources for international prevention and surveillance programmes in the European Union.
Collapse
Affiliation(s)
- Ana Carolina Cuéllar
- Division for Diagnostics and Scientific Advice, National Veterinary Institute, Technical University of Denmark (DTU), Copenhagen, Denmark.
| | - Lene Jung Kjær
- Division for Diagnostics and Scientific Advice, National Veterinary Institute, Technical University of Denmark (DTU), Copenhagen, Denmark
| | - Carsten Kirkeby
- Division for Diagnostics and Scientific Advice, National Veterinary Institute, Technical University of Denmark (DTU), Copenhagen, Denmark
| | - Henrik Skovgard
- Department of Agroecology - Entomology and Plant Pathology, Aarhus University, Aarhus, Denmark
| | - Søren Achim Nielsen
- Department of Science and Environment, Roskilde University, Roskilde, Denmark
| | - Anders Stockmarr
- Department of Applied Mathematics and Computer Science, Technical University of Denmark (DTU), Copenhagen, Denmark
| | | | | | - Jan Chirico
- National Veterinary Institute (SVA), Uppsala, Sweden
| | - Renke Lühken
- Bernhard Nocht Institute for Tropical Medicine, WHO Collaborating Centre for Arbovirus and Hemorrhagic Fever Reference and Research National Reference Centre for Tropical Infectious Diseases, Hamburg, Germany
| | - Sonja Steinke
- Department of Biology and Environmental Sciences, Carl von Ossietzky University, Oldenburg, Germany
| | - Ellen Kiel
- Department of Biology and Environmental Sciences, Carl von Ossietzky University, Oldenburg, Germany
| | - Jörn Gethmann
- Institute of Epidemiology, Friedrich Loeffler Institute, Greifswald, Germany
| | - Franz J Conraths
- Institute of Epidemiology, Friedrich Loeffler Institute, Greifswald, Germany
| | - Magdalena Larska
- Department of Virology, National Veterinary Research Institute, Pulawy, Poland
| | | | | | - Petter Hopp
- Norwegian Veterinary Institute, Oslo, Norway
| | | | - Franz Rubel
- Institute for Veterinary Public Health, Vetmeduni, Vienna, Austria
| | | | | | | | | | | | | | - Jean-Claude Delécolle
- Institute of Parasitology and Tropical Pathology of Strasbourg, EA7292, Université de Strasbourg, Strasbourg, France
| | - Bruno Mathieu
- Institute of Parasitology and Tropical Pathology of Strasbourg, EA7292, Université de Strasbourg, Strasbourg, France
| | - Delphine Delécolle
- Institute of Parasitology and Tropical Pathology of Strasbourg, EA7292, Université de Strasbourg, Strasbourg, France
| | | | - Roger Venail
- EID Méditerranée, Montpellier, France
- Avia-GIS NV, Zoersel, Belgium
| | | | | | - Carlos Barceló
- Laboratory of Zoology, University of the Balearic Islands, Palma de Mallorca, Spain
| | - Javier Lucientes
- Department of Animal Pathology, University of Zaragoza, Zaragoza, Spain
| | - Rosa Estrada
- Department of Animal Pathology, University of Zaragoza, Zaragoza, Spain
| | - Alexander Mathis
- Institute of Parasitology, University of Zürich, Zürich, Switzerland
| | | | - Rene Bødker
- Division for Diagnostics and Scientific Advice, National Veterinary Institute, Technical University of Denmark (DTU), Copenhagen, Denmark
| |
Collapse
|