1
|
Li S, Guo R, Fang Y, Zhang C, Jiang L, Jia W, Ning Z. Subunit vaccine of PCV3 capsid protein produced by sf9 cells with double knockout of Caspase-1 and Dronc induces strong immune response in mice. Vet Microbiol 2025; 304:110452. [PMID: 40056704 DOI: 10.1016/j.vetmic.2025.110452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 03/01/2025] [Accepted: 03/03/2025] [Indexed: 03/10/2025]
Abstract
Porcine circovirus type 3 (PCV3) associated with multisystemic clinicopathological diseases in swine herds has caused economic losses and there is no available commercial vaccine. Production of PCV3 capsid protein (Cap) by Spodoptera frugiperda 9 (sf9) cells using baculovirus expression vector system (BEVS) is a valid strategy to develop vaccines. Here, we report that subunit vaccine of PCV3 produced by sf9 cells with double knockout of Caspase-1 and Dronc genes induces strong immune response in mice. Three kinds of knockout sf9 cells aimed at Caspase-1 gene, Dronc gene and both genes were successfully generated by clustered regularly interspaced short palindromic repeats-associated protein 9 (CRISPR-Cas9) system, and sequence analysis confirmed this. The anti-apoptosis ability of three kinds of knockout sf9 cells was assessed, and double knockout sf9 cells are the best. The expression of PCV3 Cap was enhanced in double knockout sf9 cells compared to wild type sf9 cells, and subunit vaccines were produced by PCV3 Cap expressed from double knockout sf9 cells and wild type cells, respectively. Results of immunological experiment in mice showed subunit vaccine of PCV3 Cap from double knockout sf9 cells induces higher level of serum antibody, stimulates lymphocyte proliferation and enhances expression of IL-2, IFN-γ, IL-4 and IL-10 compared to wild type cells. These results present knockout sf9 cells to enhance the expression of protein in BEVS, and provide a technical platform for vaccine development of PCV3.
Collapse
Affiliation(s)
- Shuo Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Ruihong Guo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Yinxiang Fang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Chunhong Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Linyu Jiang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Weixin Jia
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Zhangyong Ning
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming 525000, China.
| |
Collapse
|
2
|
Sun H, Dai Q, Zhou B, Lan X, Qiu Y, Zhang Q, Wang D, Cui Y, Guo J, Hou L, Liu J, Zhou J. DDX21 Promotes PCV3 Replication by Binding to Cap Protein and Inhibiting Interferon Responses. Viruses 2025; 17:166. [PMID: 40006921 PMCID: PMC11861039 DOI: 10.3390/v17020166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 01/17/2025] [Accepted: 01/23/2025] [Indexed: 02/27/2025] Open
Abstract
Porcine circovirus type 3 (PCV3) is an emerging pathogen that causes porcine dermatitis, nephropathy syndrome-like symptoms, multisystemic inflammation, and reproductive failure. The PCV3 capsid (Cap) protein interacts with DDX21, which functions mainly through controlling interferon (IFN)-β levels. However, how the interaction between DDX21 and PCV3 Cap regulates viral replication remains unknown. In the present study, upon shRNA-mediated DDX21 depletion in PK-15 cells, we observed impaired PCV3 proliferation via a lentivirus-delivered system, as indicated by reduced replicase (Rep) protein levels and viral titers. Furthermore, DDX21 negatively regulated IFN-β and interferon-stimulated gene (ISG) levels, promoting PCV3 replication. Mechanistically, PCV3 Cap co-localized and interacted with DDX21, and the nuclear localization signal (NLS) of PCV3 Cap and 763GSRSNRFQNK772 at the C-terminal domain (CTD) of DDX21 were indispensable to the interaction. Moreover, PCV3 infection prevented the repression of DDX21 to facilitate its pro-viral activity. Taken together, these results show that DDX21 promotes PCV3 replication by binding to the PCV3 Cap protein and prohibiting IFN-β response, which provides important insight on the prevention and control of PCV3 infection.
Collapse
Affiliation(s)
- Haoyu Sun
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (H.S.); (Q.D.); (B.Z.); (X.L.); (Y.Q.); (Q.Z.); (D.W.); (Y.C.); (J.G.); (L.H.); (J.L.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Qianhong Dai
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (H.S.); (Q.D.); (B.Z.); (X.L.); (Y.Q.); (Q.Z.); (D.W.); (Y.C.); (J.G.); (L.H.); (J.L.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Beiyi Zhou
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (H.S.); (Q.D.); (B.Z.); (X.L.); (Y.Q.); (Q.Z.); (D.W.); (Y.C.); (J.G.); (L.H.); (J.L.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Xiaoyuan Lan
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (H.S.); (Q.D.); (B.Z.); (X.L.); (Y.Q.); (Q.Z.); (D.W.); (Y.C.); (J.G.); (L.H.); (J.L.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Yonghui Qiu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (H.S.); (Q.D.); (B.Z.); (X.L.); (Y.Q.); (Q.Z.); (D.W.); (Y.C.); (J.G.); (L.H.); (J.L.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Qianqian Zhang
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (H.S.); (Q.D.); (B.Z.); (X.L.); (Y.Q.); (Q.Z.); (D.W.); (Y.C.); (J.G.); (L.H.); (J.L.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Dedong Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (H.S.); (Q.D.); (B.Z.); (X.L.); (Y.Q.); (Q.Z.); (D.W.); (Y.C.); (J.G.); (L.H.); (J.L.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Yongqiu Cui
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (H.S.); (Q.D.); (B.Z.); (X.L.); (Y.Q.); (Q.Z.); (D.W.); (Y.C.); (J.G.); (L.H.); (J.L.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Jinshuo Guo
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (H.S.); (Q.D.); (B.Z.); (X.L.); (Y.Q.); (Q.Z.); (D.W.); (Y.C.); (J.G.); (L.H.); (J.L.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Lei Hou
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (H.S.); (Q.D.); (B.Z.); (X.L.); (Y.Q.); (Q.Z.); (D.W.); (Y.C.); (J.G.); (L.H.); (J.L.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Jue Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (H.S.); (Q.D.); (B.Z.); (X.L.); (Y.Q.); (Q.Z.); (D.W.); (Y.C.); (J.G.); (L.H.); (J.L.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Jianwei Zhou
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (H.S.); (Q.D.); (B.Z.); (X.L.); (Y.Q.); (Q.Z.); (D.W.); (Y.C.); (J.G.); (L.H.); (J.L.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
3
|
Ngo TNT, Nguyen NM, Thanawongnuwech R, Thong LM, Nguyen TPT, Nguyen TT, Do DT. Coinfection of Mycoplasma suis and porcine circovirus type 3 is linked to reproductive failure in pig farms. Vet World 2024; 17:2477-2487. [PMID: 39829674 PMCID: PMC11736365 DOI: 10.14202/vetworld.2024.2477-2487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 10/07/2024] [Indexed: 01/22/2025] Open
Abstract
Background and Aim Reproductive disorders in swine herds pose significant challenges to pig breeding due to both infectious and non-infectious factors. In large-scale pig farming, coinfections are increasingly common, affecting sow health and herd productivity. This study aimed to determine occurrence and coinfection patterns of Mycoplasma suis and porcine circovirus type 3 in Vietnamese pig farms and to evaluate their association with reproductive disorders and clinical signs in affected herds. Materials and Methods We collected 291 samples from 15 farms, composed of whole blood and various tissues from fetuses and weak-born piglets. Molecular biological testing was conducted to detect key pathogens of interest. Consistently, porcine circovirus type 3 (PCV3) and porcine Hemoplasma were detected and sequenced for the whole genome and partial 16S rRNA, respectively. The genetic diversity of PCV3 and Mycoplasma suis was analyzed. Results Various clinical signs, including abortion, stillborn, mummified, and weak-born piglets, and dermatitis, were recorded. M. suis was detected in 252/291 (86.59%) samples from all 15 surveyed farms, with an occurrence of 100%. PCV3 was detected in 35.05% (102/291) samples and 73.3% (11/15) of farms. PCV3 and M. suis coinfections were observed in 29.21% of the positive samples. It should be noted that most PCV3 Ct-values were above 30, indicating the existence of PCV3 in the herd but with insufficient data to confirm its pathogenic potential. The complete genomes of 10 PCV3 strains identified in this study exhibited high sequence homology, with >97% nucleotide identity. In addition, the eight partial 16S rRNA porcine Hemoplasma sequences shared absolute identity with M. suis isolates from pigs in China and Germany. Conclusion This report on the occurrence of M. suis and PCV3 in pigs from farms with reproductive failure provides important insights into the expanding global distribution of these pathogens. Our findings warrant further investigations of the pathogenic potential and economic implications of M. suis and PCV3 in pigs with reproductive failure in Vietnam.
Collapse
Affiliation(s)
- Tram Ngoc Thi Ngo
- Department of Infectious Diseases and Veterinary Public Health, Faculty of Animal Science and Veterinary Medicine, Nong Lam University, HCMC, Vietnam
- The Animal Biomedical Research Laboratories, Nong Lam University, HCMC, Vietnam
| | - Nam Minh Nguyen
- Center for Genetics and Reproductive Health (CGRH), School of Medicine, National University HCMC, Vietnam
| | - Roongroje Thanawongnuwech
- Department of Veterinary Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Le Minh Thong
- Department of Biotechnology, International University, Vietnam National University, HCMC, Vietnam
| | - Trang Phuong Thi Nguyen
- Department of Infectious Diseases and Veterinary Public Health, Faculty of Animal Science and Veterinary Medicine, Nong Lam University, HCMC, Vietnam
| | - Toan Tat Nguyen
- Department of Infectious Diseases and Veterinary Public Health, Faculty of Animal Science and Veterinary Medicine, Nong Lam University, HCMC, Vietnam
| | - Duy Tien Do
- Department of Infectious Diseases and Veterinary Public Health, Faculty of Animal Science and Veterinary Medicine, Nong Lam University, HCMC, Vietnam
- The Animal Biomedical Research Laboratories, Nong Lam University, HCMC, Vietnam
| |
Collapse
|
4
|
Hung YF, Liu PC, Lin CH, Lin CN, Wu HY, Chiou MT, Liu HJ, Yang CY. Molecular detection of emerging porcine circovirus in Taiwan. Heliyon 2024; 10:e35579. [PMID: 39170437 PMCID: PMC11336776 DOI: 10.1016/j.heliyon.2024.e35579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 07/31/2024] [Accepted: 07/31/2024] [Indexed: 08/23/2024] Open
Abstract
Porcine Circovirus type (PCV) 2 is an important pathogen that has been circulating worldwide and has cuased serious economic loss in pig industry. However, both PCV3 and PCV4 are newly emerging viruses. In Taiwan, PCV2 has been one of the critical pathogens in pig frams and PCV3 has been detected since 2016; however, the epidemiolog of PCV3 in Taiwan remains unclear and PCV4 has yet to be identified. Therefore, in order to detect the positive rate of PCV2, to investigate the epidemiolog of PCV3 in the pig farms, and to examine whether pigs were infected with PCV4 in Taiwan, a total of 128 samples from 46 clinical cases of pigs were collected from September 2020 to December 2021. The case detection rates were 54.3 % for PCV2, 43.5 % for PCV3, and 2.2 % for PCV4. The results suggested that the positivity rates for both PCV2 and PCV3 were still high in Taiwan. In addition, PCV3 was detected among cases from all 7 sampled counties and in 11 of the 16 sampling months, suggesting that PCV3 may lead to endemic pig disease in Taiwan. Surprisingly, the PCV4 was also detected, suggesting the first PCV4 case in Taiwan. The complete genomes derived from the identified PCV3 and PCV4 strains were subsequently sequenced followed by phylogenetic analysis. The results suggested that the 17 identified PCV3 strains could be divided into Taiwanese-like and Japanese-like strains. In addition, the amino acid residues at positions 27, 80, and 212 in the identified PCV4 cap protein were asparagine, isoleucine, and methionine, respectively, and thus the identified PCV4 was catalorized into clade PCV4b. Consequently, it is concluded that (i) the prevalence of PCV2 and PCV3 is still high in Taiwanese pigs, (ii) PCV3 has may be an endemic infection in Taiwan and can be classified into Japanese-like and Taiwanese-like strains, (iii) PCV4 was detected for the first time in Taiwanese pigs and can be classified into PCV4b. It remains unclear how PCV2, PCV3, and PCV4 were introduced to Taiwan, and thus continuous investigation of emerging pathogens in pigs is needed.
Collapse
Affiliation(s)
- Yu Fan Hung
- Graduate Institute of Veterinary Pathobiology, National Chung Hsing University, Taichung City, 402202, Taiwan
| | - Po-Chen Liu
- Graduate Institute of Veterinary Pathobiology, National Chung Hsing University, Taichung City, 402202, Taiwan
- Animal Disease Diagnostic Center, National Chung Hsing University, Taichung City, 402202, Taiwan
| | - Ching-Hung Lin
- Graduate Institute of Veterinary Pathobiology, National Chung Hsing University, Taichung City, 402202, Taiwan
| | - Chao-Nan Lin
- Department of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, 912301, Taiwan
| | - Hung-Yi Wu
- Graduate Institute of Veterinary Pathobiology, National Chung Hsing University, Taichung City, 402202, Taiwan
| | - Ming-Tang Chiou
- Department of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, 912301, Taiwan
| | - Hung-Jen Liu
- Institute of Molecular Biology, National Chung Hsing University, Taichung City, 402202, Taiwan
- The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung City, 402202, Taiwan
| | - Cheng-Yao Yang
- Graduate Institute of Veterinary Pathobiology, National Chung Hsing University, Taichung City, 402202, Taiwan
- Animal Disease Diagnostic Center, National Chung Hsing University, Taichung City, 402202, Taiwan
| |
Collapse
|
5
|
Wang M, Yu Y, Wu J, Wang S, Giménez-Lirola LG, Piñeyro P, Wang Y, Cui H, He X, Zimmerman JJ, Tu Y, Cai X, Wang G. Genetic and In Vitro Characteristics of a Porcine Circovirus Type 3 Isolate from Northeast China. Vet Sci 2023; 10:517. [PMID: 37624304 PMCID: PMC10459391 DOI: 10.3390/vetsci10080517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/01/2023] [Accepted: 08/02/2023] [Indexed: 08/26/2023] Open
Abstract
Porcine circovirus 3 (PCV3) is an emerging virus first discovered in the United States in 2015, and since then, PCV3 has been found in many regions of the world, including America, Asia, and Europe. Although several PCV3 investigations have been carried out, there is a lack of knowledge regarding the pathogenicity of PCV3, mostly due to the limited number of PCV3 isolates that are readily available. In this study, PCV3-DB-1 was isolated in PK-15 cells and characterized in vitro. Electron microscopy revealed the presence of PCV-like particles, and in situ hybridization RNA analysis demonstrated the replication of PCV3 in PK-15 cell culture. Based on phylogenetic analysis of PCV3 isolates from the Heilongjiang province of China, PCV3-DB-1 with 24 alanine and 27 lysine in the Cap protein was originally isolated and determined to belong to the clade PCV3a.
Collapse
Affiliation(s)
- Menghang Wang
- Heilongjiang Research Center for Veterinary Biopharmaceutical Technology, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (M.W.)
| | - Ying Yu
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao 266109, China
| | - Jianan Wu
- Heilongjiang Research Center for Veterinary Biopharmaceutical Technology, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (M.W.)
| | - Shujie Wang
- Heilongjiang Research Center for Veterinary Biopharmaceutical Technology, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (M.W.)
| | - Luis G Giménez-Lirola
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA
| | - Pablo Piñeyro
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA
| | - Yu Wang
- Heilongjiang Research Center for Veterinary Biopharmaceutical Technology, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (M.W.)
| | - Hongliang Cui
- Heilongjiang Research Center for Veterinary Biopharmaceutical Technology, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (M.W.)
| | - Xijun He
- Heilongjiang Research Center for Veterinary Biopharmaceutical Technology, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (M.W.)
| | - Jeffrey J. Zimmerman
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA
| | - Yabin Tu
- Heilongjiang Research Center for Veterinary Biopharmaceutical Technology, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (M.W.)
| | - Xuehui Cai
- Heilongjiang Research Center for Veterinary Biopharmaceutical Technology, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (M.W.)
| | - Gang Wang
- Heilongjiang Research Center for Veterinary Biopharmaceutical Technology, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (M.W.)
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Veterinary Medicine, Shandong Agricultural University, Tai’an 271002, China
| |
Collapse
|
6
|
Maity HK, Samanta K, Deb R, Gupta VK. Revisiting Porcine Circovirus Infection: Recent Insights and Its Significance in the Piggery Sector. Vaccines (Basel) 2023; 11:1308. [PMID: 37631876 PMCID: PMC10457769 DOI: 10.3390/vaccines11081308] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 07/29/2023] [Accepted: 07/29/2023] [Indexed: 08/27/2023] Open
Abstract
Porcine circovirus (PCV), a member of the Circoviridae family within the genus Circovirus, poses a significant economic risk to the global swine industry. PCV2, which has nine identified genotypes (a-i), has emerged as the predominant genotype worldwide, particularly PCV2d. PCV2 has been commonly found in both domestic pigs and wild boars, and sporadically in non-porcine animals. The virus spreads among swine populations through horizontal and vertical transmission routes. Despite the availability of commercial vaccines for controlling porcine circovirus infections and associated diseases, the continuous genotypic shifts from a to b, and subsequently from b to d, have maintained PCV2 as a significant pathogen with substantial economic implications. This review aims to provide an updated understanding of the biology, genetic variation, distribution, and preventive strategies concerning porcine circoviruses and their associated diseases in swine.
Collapse
Affiliation(s)
- Hemanta Kumar Maity
- Department of Avian Science, Faculty of Veterinary & Animal Science, West Bengal University of Animal & Fishery Sciences, Kolkata 700037, West Bengal, India
| | - Kartik Samanta
- Department of Avian Science, Faculty of Veterinary & Animal Science, West Bengal University of Animal & Fishery Sciences, Kolkata 700037, West Bengal, India
| | - Rajib Deb
- ICAR-National Research Center on Pig, Rani, Guwahati 781131, Assam, India
| | - Vivek Kumar Gupta
- ICAR-National Research Center on Pig, Rani, Guwahati 781131, Assam, India
| |
Collapse
|
7
|
Eddicks M, Gründl J, Seifert A, Eddicks L, Reese S, Tabeling R, Swam H, Strutzberg-Minder K, Ritzmann M, Fux R. Examination on the Occurrence of Coinfections in Diagnostic Transmittals in Cases of Stillbirth, Mummification, Embryonic Death, and Infertility (SMEDI) Syndrome in Germany. Microorganisms 2023; 11:1675. [PMID: 37512848 PMCID: PMC10383851 DOI: 10.3390/microorganisms11071675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/22/2023] [Accepted: 06/23/2023] [Indexed: 07/30/2023] Open
Abstract
The stillbirth, mummification, embryonic death, and infertility (SMEDI) syndrome is most commonly associated with porcine parvovirus 1 (PPV1) infections. Little is known about the occurrence of coinfections with SMEDI-associated pathogens and the associations among these pathogens. In our study, we included 40 SMEDI-affected litters from 18 different farms. In total, 158 out of 358 available fetuses from diagnostic transmittals were selected by systematic random sampling and examined for PCV2, PCV3, PPV1, and Leptospira spp. by q-PCR. Results from diagnostic materials showed the following results: in eleven farms, PCV2 was present; in nine farms, PPV1 was present; in five farms, PCV3 was present; and in two farms, Leptospira spp. was present. The detection of Leptospira spp. was significantly associated with a PCV2 coinfection (OR: 26.3; p < 0.001). PCV3 positivity resulted in a reduced probability of detecting PCV2 in the corresponding fetus (OR: 0.078; p = 0.008). Fetal maceration was associated with Leptospira spp. detection (OR: 8.6; p = 0.003), whereas mummification (p = 0.047), reduced crown-rump length (p < 0.001), and bodyweight (p = 0.001) of fetuses were significantly associated with PPV1 and PCV2 coinfection and thus, presumably, a shorter time to death after infection, indicating an enhanced negative effect on the development of fetuses with PCV2 + PPV1 coinfection.
Collapse
Affiliation(s)
- Matthias Eddicks
- Clinic for Swine at the Centre for Clinical Veterinary Medicine, Ludwig-Maximilians-Universität München, 85764 Oberschleissheim, Germany
| | - Julia Gründl
- Clinic for Swine at the Centre for Clinical Veterinary Medicine, Ludwig-Maximilians-Universität München, 85764 Oberschleissheim, Germany
| | - Annika Seifert
- Clinic for Swine at the Centre for Clinical Veterinary Medicine, Ludwig-Maximilians-Universität München, 85764 Oberschleissheim, Germany
| | - Lina Eddicks
- Institute of Veterinary Pathology at the Centre for Clinical Veterinary Medicine, Ludwig-Maximilians-Universität München, 80539 München, Germany
| | - Sven Reese
- Institute for Anatomy, Histology and Embryology, Department of Veterinary Sciences, Ludwig-Maximilians-Universität München, 80539 München, Germany
| | - Robert Tabeling
- MSD Animal Health, Intervet Deutschland GmbH, 85716 Unterschleissheim, Germany
| | - Hanny Swam
- Intervet International B.V., 5831 AK Boxmeer, The Netherlands
| | - Katrin Strutzberg-Minder
- IVD Innovative Veterinary Diagnostics (IVD GmbH), DVG-Consiliary Laboratory for Leptospira spp., 30926 Seelze, Germany
| | - Mathias Ritzmann
- Clinic for Swine at the Centre for Clinical Veterinary Medicine, Ludwig-Maximilians-Universität München, 85764 Oberschleissheim, Germany
| | - Robert Fux
- Division of Virology, Department of Veterinary Sciences, Ludwig-Maximilians-Universität München, 85764 Oberschleissheim, Germany
| |
Collapse
|
8
|
Hou L, Yang X, Liu C, Guo J, Shi Y, Sun T, Feng X, Zhou J, Liu J. Heme Oxygenase-1 and Its Metabolites Carbon Monoxide and Biliverdin, but Not Iron, Exert Antiviral Activity against Porcine Circovirus Type 3. Microbiol Spectr 2023; 11:e0506022. [PMID: 37140466 PMCID: PMC10269822 DOI: 10.1128/spectrum.05060-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 04/11/2023] [Indexed: 05/05/2023] Open
Abstract
Porcine circovirus type 3 (PCV3) is a newly discovered pathogen that causes porcine dermatitis and nephropathy syndrome (PDNS)-like clinical signs, multisystemic inflammation, and reproductive failure. Heme oxygenase-1 (HO-1), a stress-inducible enzyme, exerts protective functions by converting heme into carbon monoxide (CO), biliverdin (BV), and iron. However, the effects of HO-1 and its metabolites on PCV3 replication remain unknown. In this study, experiments involving specific inhibitors, lentivirus transduction, and small interfering RNA (siRNA) transfection revealed that active PCV3 infection reduced HO-1 expression and that the expression of HO-1 negatively regulated virus replication in cultured cells, depending on its enzymatic activity. Subsequently, the effects of the HO-1 metabolites (CO, BV, and iron) on PCV3 infection were investigated. The CO inducers (cobalt protoporphyrin IX [CoPP] or tricarbonyl dichloro ruthenium [II] dimer [CORM-2]) mediate PCV3 inhibition by generating CO, and this inhibition is reversed by hemoglobin (Hb; a CO scavenger). The inhibition of PCV3 replication by BV depended on BV-mediated reactive oxygen species (ROS) reduction, as N-acetyl-l-cysteine affected PCV3 replication while reducing ROS production. The reduction product of BV, bilirubin (BR), specifically promoted nitric oxide (NO) generation and further activated the cyclic GMP/protein kinase G (cGMP/PKG) pathway to attenuate PCV3 infection. Both the iron provided by FeCl3 and the iron chelated by deferoxamine (DFO) with CoPP treatment failed to affect PCV3 replication. Our data demonstrate that the HO-1-CO-cGMP/PKG, HO-1-BV-ROS, and HO-1-BV-BR-NO-cGMP/PKG pathways contribute crucially to the inhibition of PCV3 replication. These results provide important insights regarding preventing and controlling PCV3 infection. IMPORTANCE The regulation of host protein expression by virus infection is the key to facilitating self-replication. As an important emerging pathogen of swine, clarification of the interaction between PCV3 infection and the host enables us to understand the viral life cycle and pathogenesis better. Heme oxygenase-1 (HO-1) and its metabolites carbon monoxide (CO), biliverdin (BV), and iron have been demonstrated to involve a wealth of viral replications. Here, we, for the first time, demonstrated that HO-1 expression decreases in PCV3-infected cells and negatively regulates PCV3 replication and that the HO-1 metabolic products CO and BV inhibit PCV3 replication by the CO- or BV/BR/NO-dependent cGMP/PKG pathway or BV-mediated ROS reduction, but the iron (the third metabolic product) does not. Specifically, PCV3 infection maintains normal proliferation by downregulating HO-1 expression. These findings clarify the mechanism by which HO-1 modulates PCV3 replication in cells and provide important targets for preventing and controlling PCV3 infection.
Collapse
Affiliation(s)
- Lei Hou
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Xiaoyu Yang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Changzhe Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Jinshuo Guo
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Yongyan Shi
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Tong Sun
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Xufei Feng
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Jianwei Zhou
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Jue Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| |
Collapse
|
9
|
Histopathological Changes and Inflammatory Response in Specific Pathogen-Free (SPF) with Porcine Circovirus Type 3 Infection. Animals (Basel) 2023; 13:ani13030530. [PMID: 36766419 PMCID: PMC9913417 DOI: 10.3390/ani13030530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/24/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Since the first report of PCV3 virus infection in 2016, it has been linked to multisystemic inflammation, reproductive failure, cardiac pathology, and clinical indications resembling porcine dermatitis and nephropathy syndrome (PDNS). However, the pathogenesis and clinical significance of PCV3 is still unclear. In this study, a PCV3 infection model was created using SPF pigs, and histopathology and fluorescence quantitative PCR were utilized to examine PCV3's pathogenicity. Reductions in body weight gain and fever were observed during this study. However, other clinical signs such as Dermatitis and Nephropathy Syndrome were not observed through the study. Viremia was detected in the PCV3-inoculated group from 17 days post-inoculation (p.i.) until the end of the study. Nasal shedding was detected from 21 to 35 dpi and fecal shedding was detected during 25-33 days and 39 days, respectively. Gross lesions and histological evaluation were detected in various tissues and organs, including the lung, heart, kidney, lymph nodes, spleen, liver, small intestine, and testis. The heart, lung, liver, kidney, lymph nodes, and spleen showed pathological changes. The pathological features include swelling, inflammation, cell degeneration, necrosis, and hemorrhage. The lesions are consistent with multisystemic inflammation. Tissue viral load results showed only heart, lung, liver, kidney, lymph nodes, and spleen was positive by qRT-PCR. Moreover, the pro-inflammation cytokines in serum increased a lot in the PCV3-inoculated group compared to the control group, demonstrating that the induced inflammation response may be the cause of tissue damage in PCV3-infection. This study demonstrated that PCV3 can produce mild pathological damage to multiple organs, especially multisystemic inflammatory cell infiltration and prolonged viremia, viral shedding in nasal secretions. This is the first in vivo characterization of PCV3 infection in the SPF piglets model using isolated PCV3 strain, and this is also the first time to show the gross and pathological lesion with all tissue and organs in the PCV3-inoculated group. Our findings might serve as a starting point for more investigation into PCV3's pathogenic mechanism.
Collapse
|
10
|
Dinh PX, Nguyen HN, Lai DC, Nguyen TT, Nguyen NM, Do DT. Genetic diversity in the capsid protein gene of porcine circovirus type 3 in Vietnam from 2018 to 2019. Arch Virol 2023; 168:30. [PMID: 36598656 DOI: 10.1007/s00705-022-05661-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 09/04/2022] [Indexed: 01/05/2023]
Abstract
Porcine circovirus type 3 (PCV3) was first detected in 2016 and has been reported in many pig-producing countries around the world, including Vietnam. PCV3 has been found in complex cases with multiple clinical syndromes in swine. In this study, we investigated the genetic diversity of PCV3 strains circulating in Vietnam. A total of 249 samples were collected from swine farms located in eight provinces of Vietnam, and 11.65% (29/249) of these samples were found to contain PCV3. The ORF2 genes from the 29 PCV3-positive samples were amplified, purified, and sequenced. Phylogenetic analysis showed that 23 of these strains belonged to the PCV3b subtype, while the remaining six strains belonged to subtype c and subtype a (a-1 and a-2). Analysis of the ORF2 genes indicated that the 29 PCV3 strains had high sequence identity (96.90-100% at the genomic level and 96.19-100% at the amino acid level). Fifteen amino acid substitutions were found in predicted B-cell epitopes in the capsid proteins of the Vietnamese PCV3 strains.
Collapse
Affiliation(s)
- Phat Xuan Dinh
- Faculty of Biological Sciences, Nong Lam University-HCMC, Thu Duc City, Vietnam
| | - Hai Ngoc Nguyen
- Department of Infectious Disease and Veterinary Public Health, Faculty of Animal Husbandry and Veterinary Medicine, Nong Lam University-HCMC, Quarter 6, Linh Trung ward, Thu Duc City, Vietnam
| | - Danh Cong Lai
- Department of Infectious Disease and Veterinary Public Health, Faculty of Animal Husbandry and Veterinary Medicine, Nong Lam University-HCMC, Quarter 6, Linh Trung ward, Thu Duc City, Vietnam
| | - Toan Tat Nguyen
- Department of Infectious Disease and Veterinary Public Health, Faculty of Animal Husbandry and Veterinary Medicine, Nong Lam University-HCMC, Quarter 6, Linh Trung ward, Thu Duc City, Vietnam
| | - Nam Minh Nguyen
- Department of Biomedical Engineering, School of Medicine, Vietnam National University Ho Chi Minh City (VNU-HCM), Linh Trung ward, Thu Duc district, Ho Chi Minh City, 700000, Vietnam. .,Research Center for Genetics and Reproductive Health (CGRH), School of Medicine, National University HCMC, Ho Chi Minh City, Vietnam. .,Vietnam National University Ho Chi Minh City (VNU-HCM), Ho Chi Minh City, 700000, Vietnam.
| | - Duy Tien Do
- Department of Infectious Disease and Veterinary Public Health, Faculty of Animal Husbandry and Veterinary Medicine, Nong Lam University-HCMC, Quarter 6, Linh Trung ward, Thu Duc City, Vietnam.
| |
Collapse
|
11
|
A chimeric PCV rescued virus with the immunogenic cap gene of PCV3 cloned into the genomic backbone of the nonpathogenic PCV1 induces specific antibodies but with no pathogenic in pigs. Microb Pathog 2022; 173:105839. [DOI: 10.1016/j.micpath.2022.105839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 10/08/2022] [Accepted: 10/16/2022] [Indexed: 11/05/2022]
|
12
|
Molossi FA, de Cecco BS, de Almeida BA, Henker LC, da Silva MS, Mósena ACS, Canal CW, Brandalise L, Simão GMR, Vanucci F, Pavarini SP, Driemeier D. PCV3-associated reproductive failure in pig herds in Brazil. Trop Anim Health Prod 2022; 54:293. [PMID: 36097231 DOI: 10.1007/s11250-022-03282-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 08/31/2022] [Indexed: 11/24/2022]
Abstract
Porcine circovirus type 3 (PCV3) has been widely detected worldwide in healthy and sick pigs. Recently its association with clinical disease and reproductive failure has been proven through the detection of intralesional viral mRNA in affected pigs. This study aims to describe the occurrence of PCV3-associated reproductive failure (abortions) in sow herds in southern Brazil. Eleven fetuses from five different litters from two herds were analyzed. These herds reported an increase in the rate of late-gestation abortions, stillbirths, and the percentage of mummified piglets. At gross examination, six of the fetuses had large caudally rotated ears and one fetus was mummified. Microscopically, multisystemic vasculitis, lymphocytic interstitial pneumonia, myocarditis, and encephalitis were observed. These six fetuses with gross and histological lesions were positive in qPCR analysis for PCV3, and PCV3 transcription was shown through in situ hybridization (ISH-RNA) within the histologic lesions. Samples from all 11 fetuses tested negative in PCR exam for Porcine Circovirus type 1 and 2, Porcine Reproductive and Respiratory Syndrome, Porcine Parvovirus, and Atypical Porcine Pestivirus. Furthermore, based on the ORF2 analysis, the PCV3a clade was identified. This is the first report of PCV3a-associated reproductive failure in pig herds in South America.
Collapse
Affiliation(s)
- Franciéli Adriane Molossi
- Setor de Patologia Veterinária, Faculdade de Veterinária, Universidade Federal Do Rio Grande Do Sul (UFRGS), Porto Alegre, RS, Brazil.
| | - Bianca Santana de Cecco
- Setor de Patologia Veterinária, Faculdade de Veterinária, Universidade Federal Do Rio Grande Do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Bruno Albuquerque de Almeida
- Setor de Patologia Veterinária, Faculdade de Veterinária, Universidade Federal Do Rio Grande Do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Luan Cleber Henker
- Setor de Patologia Veterinária, Faculdade de Veterinária, Universidade Federal Do Rio Grande Do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Mariana Soares da Silva
- Laboratório de Virologia, Faculdade de Veterinária, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | - Ana Cristina Sbaraini Mósena
- Laboratório de Virologia, Faculdade de Veterinária, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | - Cláudio Wageck Canal
- Laboratório de Virologia, Faculdade de Veterinária, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | | | | | - Fabio Vanucci
- University of Minnesota Veterinary Diagnostic Laboratory, St. Paul, MN, USA
| | - Saulo P Pavarini
- Setor de Patologia Veterinária, Faculdade de Veterinária, Universidade Federal Do Rio Grande Do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - David Driemeier
- Setor de Patologia Veterinária, Faculdade de Veterinária, Universidade Federal Do Rio Grande Do Sul (UFRGS), Porto Alegre, RS, Brazil
| |
Collapse
|
13
|
Yang Z, Marthaler DG, Rovira A. Frequency of porcine circovirus 3 detection and histologic lesions in clinical samples from swine in the United States. J Vet Diagn Invest 2022; 34:602-611. [PMID: 35674058 PMCID: PMC9266519 DOI: 10.1177/10406387221099538] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023] Open
Abstract
Porcine circovirus 3 (PCV3) is widespread in pigs worldwide. Diverse clinical signs and lesions have been associated with PCV3, but the role of PCV3 as a cause of disease in swine remains unclear. We investigated the association of PCV3 with clinical signs and histologic lesions in 730 diagnostic swine cases between February 2016 and January 2018. The cases contained 2,177 samples submitted from 474 sites located in 21 states in the United States. PCR assay results were positive for PCV3 for 577 of 2,177 (27%) samples, 255 of 730 (35%) cases, 181 of 474 (38%) sites, and 17 of 21 (81%) states. We detected PCV3 in 19 of 28 specimen types and in pigs of all ages and clinical presentations, including healthy pigs, with the highest detection rate in adult pigs. PCV3 detection was not associated with respiratory, gastrointestinal, or CNS signs, weight loss, or sudden death. Of 58 types of histologic lesions evaluated, PCV3 detection was associated with myocarditis, cardiac vasculitis, and interstitial pneumonia in growing pigs. A high PCV3 detection rate was observed in aborted fetuses.
Collapse
Affiliation(s)
- Zhen Yang
- College of Veterinary Medicine, St Paul, MN, USA
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | | | - Albert Rovira
- College of Veterinary Medicine and Veterinary Diagnostic Laboratory, University of Minnesota, St Paul, MN, USA
| |
Collapse
|
14
|
Cross-Sectional Study on the Prevalence of PCV Types 2 and 3 DNA in Suckling Piglets Compared to Grow-Finish Pigs in Downstream Production. Pathogens 2022; 11:pathogens11060671. [PMID: 35745525 PMCID: PMC9227362 DOI: 10.3390/pathogens11060671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/02/2022] [Accepted: 06/05/2022] [Indexed: 12/10/2022] Open
Abstract
Vertical transmission is a consistently discussed pathway of porcine circovirus type 2 (PCV2) and porcine circovirus type 3 (PCV3) transmission in pigs. To evaluate the presence of PCV2 and PCV3 in piglets, we collected tissue samples from 185 piglets that were crushed within the first week of life from 16 farms located in Germany and Austria. Pooled samples consisting of thymus, inguinal lymph node, myocardium, lung and spleen were examined for PCV2 and PCV3 by qPCR. Furthermore, oral fluid samples (OFS) from grow−finish pigs were collected and examined the same way. In piglets, PCV2 was highly prevalent (litters: 69.4%; piglets: 61.6%), whereas PCV3 prevalence was low (litters: 13.4%; piglets: 13.0%). In total, 72.6% and 67.2% of all collected OFS were PCV2 or PCV3 positive, respectively. Sow vaccination against PCV2 was identified as a protective factor concerning PCV2 in piglets (OR: 0.279; CI: 0.134−0.578; p < 0.001), whereas the porcine reproductive and respiratory syndrome virus (PRRSV) vaccination of sows was identified as a protective factor concerning PCV3 in piglets (OR: 0.252 CI: 0.104−0.610; p = 0.002). Our results show that PCV2, but not PCV3, is ubiquitous in suckling piglets and that early PCV3 infections might be modulated by PRRSV−PCV3 interaction. However, the ubiquitous nature of both viruses in older pigs could be confirmed.
Collapse
|
15
|
High Prevalence of Porcine Circovirus 3 in Hungarian Pig Herds: Results of a Systematic Sampling Protocol. Viruses 2022; 14:v14061219. [PMID: 35746692 PMCID: PMC9228016 DOI: 10.3390/v14061219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/27/2022] [Accepted: 06/01/2022] [Indexed: 11/16/2022] Open
Abstract
Porcine circovirus type 3 (PCV3) is an emerging pathogen that has been reported worldwide in all ages of healthy and clinically ill pigs. The presence of this virus in Hungary has been confirmed in a commercial farm experiencing reproductive failures, but there were no data on the circulation of PCV3 in the country. Here we report the prevalence and the genetic diversity of PCV3 in Hungarian herds. To estimate the prevalence, 1855 serum samples, 176 oral fluid and 97 processing fluid samples were collected in a systematic, cross-sectional method from 20 large scale swineherds and tested by real-time qPCR. PCV3 was present in at least one type of diagnostic matrix in 19 out of the 20 (95%) pig farms. The highest detection rates were observed in the processing fluid samples (61%), but 41% of the oral fluid and 23% of the serum samples were positive. The virus was found in all age groups, and slightly more adult animals were infected than growing pigs, but the viral burden was lower amongst them. Phylogenetic analysis of nine complete genomes, obtained from either the sampled herds or organ samples of PCV3-positive carcasses, showed high nucleotide identity between the detected sequences, which all belonged to the PCV3a genotype. Our results indicate that PCV3 is widespread in Hungary, but in most cases, the virus seems to circulate subclinically, infecting all age groups and production phases without the presence of apparent clinical disease.
Collapse
|
16
|
The Prevalence and Genetic Diversity of PCV3 and PCV2 in Colombia and PCV4 Survey during 2015–2016 and 2018–2019. Pathogens 2022; 11:pathogens11060633. [PMID: 35745487 PMCID: PMC9228467 DOI: 10.3390/pathogens11060633] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/11/2022] [Accepted: 05/13/2022] [Indexed: 02/04/2023] Open
Abstract
Four genotypes of circovirus have been recognized in swine, with PCV2 and PCV3 being the most associated with clinical manifestations, while PCV4 does not have a defined disease. In addition, PCV2 is associated with different syndromes grouped as diseases associated with porcine circovirus (PCVAD), while PCV3 causes systemic and reproductive diseases. In the present study, we retrospectively detected PCV2, PCV3, and PCV4 in Colombia during two periods: A (2015–2016) and B (2018–2019). During period A, we evaluated stool pools from the 32 Colombian provinces, finding a higher prevalence of PCV3 compared to PCV2 as well as PCV2/PCV3 co-infection. Furthermore, we determined that PCV3 had been circulating since 2015 in Colombia. Regarding period B, we evaluated sera pools and tissues from abortions and stillborn piglets from the five provinces with the highest pig production. The highest prevalence found was for PCV3 in tissues followed by sera pools, while PCV2 was lower and only in sera pools. In addition, PCV2/PCV3 co-infection in sera pools was also found for this period. The complete genome sequences of PCV3 and PCV3-ORF2 placed the Colombian isolates within clade 1 as the majority in the world. For PCV2, the predominant genotype currently in Colombia is PCV2d. Likewise, in some PCV3-ORF2 sequences, a mutation (A24V) was found at the level of the Cap protein, which could be involved in PCV3 immunogenic recognition. Regarding PCV4, retrospective surveillance showed that there is no evidence of the presence of this virus in Colombia.
Collapse
|
17
|
Five years of porcine circovirus 3: what have we learned about the clinical disease, immune pathogenesis, and diagnosis. Virus Res 2022; 314:198764. [PMID: 35367483 DOI: 10.1016/j.virusres.2022.198764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/25/2022] [Accepted: 03/26/2022] [Indexed: 11/24/2022]
|
18
|
Porcine Circoviruses and Herpesviruses Are Prevalent in an Austrian Game Population. Pathogens 2022; 11:pathogens11030305. [PMID: 35335629 PMCID: PMC8953168 DOI: 10.3390/pathogens11030305] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 02/16/2022] [Accepted: 02/25/2022] [Indexed: 02/06/2023] Open
Abstract
During the annual hunt in a privately owned Austrian game population in fall 2019 and 2020, 64 red deer (Cervus elaphus), 5 fallow deer (Dama dama), 6 mouflon (Ovis gmelini musimon), and 95 wild boars (Sus scrofa) were shot and sampled for PCR testing. Pools of spleen, lung, and tonsillar swabs were screened for specific nucleic acids of porcine circoviruses. Wild ruminants were additionally tested for herpesviruses and pestiviruses, and wild boars were screened for pseudorabies virus (PrV) and porcine lymphotropic herpesviruses (PLHV-1-3). PCV2 was detectable in 5% (3 of 64) of red deer and 75% (71 of 95) of wild boar samples. In addition, 24 wild boar samples (25%) but none of the ruminants tested positive for PCV3 specific nucleic acids. Herpesviruses were detected in 15 (20%) ruminant samples. Sequence analyses showed the closest relationships to fallow deer herpesvirus and elk gammaherpesvirus. In wild boars, PLHV-1 was detectable in 10 (11%), PLHV-2 in 44 (46%), and PLHV-3 in 66 (69%) of animals, including 36 double and 3 triple infections. No pestiviruses were detectable in any ruminant samples, and all wild boar samples were negative in PrV-PCR. Our data demonstrate a high prevalence of PCV2 and PLHVs in an Austrian game population, confirm the presence of PCV3 in Austrian wild boars, and indicate a low risk of spillover of notifiable animal diseases into the domestic animal population.
Collapse
|
19
|
Turlewicz-Podbielska H, Augustyniak A, Pomorska-Mól M. Novel Porcine Circoviruses in View of Lessons Learned from Porcine Circovirus Type 2-Epidemiology and Threat to Pigs and Other Species. Viruses 2022; 14:v14020261. [PMID: 35215854 PMCID: PMC8877176 DOI: 10.3390/v14020261] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 01/21/2022] [Accepted: 01/24/2022] [Indexed: 01/20/2023] Open
Abstract
Porcine circovirus type 2 (PCV2) plays a key role in PCV2-associated disease (PCVAD) etiology and has yielded significant losses in the pig husbandry in the last 20 years. However, the impact of two recently described species of porcine circoviruses, PCV3 and PCV4, on the pork industry remains unknown. The presence of PCV3 has been associated with several clinical presentations in pigs. Reproductive failure and multisystemic inflammation have been reported most consistently. The clinical symptoms, anatomopathological changes and interaction with other pathogens during PCV3 infection in pigs indicate that PCV3 might be pathogenic for these animals and can cause economic losses in the swine industry similar to PCV2, which makes PCV3 worth including in the differential list as a cause of clinical disorders in reproductive swine herds. Moreover, subsequent studies indicate interspecies transmission and worldwide spreading of PCV3. To date, research related to PCV3 and PCV4 vaccine design is at early stage, and numerous aspects regarding immune response and virus characteristics remain unknown.
Collapse
|
20
|
Ruiz A, Saporiti V, Huerta E, Balasch M, Segalés J, Sibila M. Exploratory Study of the Frequency of Detection and Tissue Distribution of Porcine Circovirus 3 (PCV-3) in Pig Fetuses at Different Gestational Ages. Pathogens 2022; 11:118. [PMID: 35215062 PMCID: PMC8877316 DOI: 10.3390/pathogens11020118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 02/01/2023] Open
Abstract
Porcine circovirus 3 (PCV-3) has been associated with several pig diseases. Despite the pathogenicity of this virus has not been completely clarified, reproductive disorders are consistently associated with its infection. The aim of the present work was to analyze the presence of PCV-3 DNA in tissues from pig fetuses from different gestational timepoints. The fetuses were obtained either from farms with no reproductive problems (NRP, n = 249; all of them from the last third of gestation) or from a slaughterhouse (S, n = 51; 49 of the second-third of gestation and 2 from the third one). Tissues collected included brain, heart, lung, kidney, and/or spleen. Overall, the frequency of detection of PCV-3 was significantly higher in fetuses from the last third of the gestation (69/251, 27.5%) when compared to those from the second-third (5/49, 10.2%), although the viral loads were not significantly different. Moreover, the frequency of detection in NRP fetuses (69/249, 27.7%) was significantly higher than in S ones (5/51, 9.8%). Furthermore, PCV-3 DNA was detected in all tissue types analyzed. In conclusion, the present study demonstrates a higher frequency of PCV-3 DNA detection in fetuses from late periods of the gestation and highlights wide organ distributions of the virus in pig fetuses.
Collapse
Affiliation(s)
- Albert Ruiz
- Zoetis Manufacturing & Research Spain S.L., Ctra. Camprodon s/n, La Riba, 17813 Girona, Spain; (A.R.); (M.B.)
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193 Barcelona, Spain; (V.S.); (E.H.)
- OIE Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), 08193 Barcelona, Spain;
| | - Viviane Saporiti
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193 Barcelona, Spain; (V.S.); (E.H.)
- OIE Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), 08193 Barcelona, Spain;
| | - Eva Huerta
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193 Barcelona, Spain; (V.S.); (E.H.)
- OIE Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), 08193 Barcelona, Spain;
| | - Mònica Balasch
- Zoetis Manufacturing & Research Spain S.L., Ctra. Camprodon s/n, La Riba, 17813 Girona, Spain; (A.R.); (M.B.)
| | - Joaquim Segalés
- OIE Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), 08193 Barcelona, Spain;
- Departament de Sanitat i Anatomia Animals, Universitat Autònoma de Barcelona (UAB), 08193 Barcelona, Spain
- Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, UAB, 08193 Barcelona, Spain
| | - Marina Sibila
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193 Barcelona, Spain; (V.S.); (E.H.)
- OIE Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), 08193 Barcelona, Spain;
| |
Collapse
|
21
|
Jia Y, Zhu Q, Xu T, Chen X, Li H, Ma M, Zhang Y, He Z, Chen H. Detection and genetic characteristics of porcine circovirus type 2 and 3 in Henan province of China. Mol Cell Probes 2022; 61:101790. [PMID: 35051595 DOI: 10.1016/j.mcp.2022.101790] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 01/02/2022] [Accepted: 01/11/2022] [Indexed: 11/26/2022]
Abstract
PCV2 is one of the most economically important viral agents in swine worldwide. Recently, PCV3 has been frequently reported, and the co-infection of PCV2 and PCV3 is common in China. In order to explore the distribution, epidemiology and genetic diversity of PCV2 and PCV3, a total of 1,760 clinical tissue samples were randomly collected from 18 different regions in Henan province of China from October 2018 to September 2019 and screened for the presence of PCV2 and PCV3 by a duplex real-time PCR assay. The results showed that the positive rates of PCV2 and PCV3 were 72.90% and 5.17% respectively, and the co-infection rate of the two viruses was 3.64%. PCV2 and PCV3 are prevalent all year round. The prevalence of PCV2 in diseased pigs was 83.98%, higher than that in slaughterhouse pigs, while the prevalence of PCV3 in diseased pigs was 2.16%, slightly lower than that in slaughterhouse pigs. Furthermore, the complete genomes of 14 PCV2 and 3 PCV3 strains were obtained, among which 1 belonged to PCV2a, 5 belonged to PCV2b and 8 belonged to PCV2d. A new variant strain (XX2) might escape the host immune system. The phylogenetic analysis of PCV3 showed high nucleotide identity (>98%) between sequences obtained in this study and reference sequences. The results of this study might enrich the epidemiological data of PCV2 and PCV3 in Henan province and provide reference information for the comprehensive prevention and control of PCVAD.
Collapse
Affiliation(s)
- Yunfei Jia
- College of Economics and Management, Henan Agricultural University, Zhengzhou, 450002, Henan Province, People's Republic of China
| | - Qianlei Zhu
- Henan Center for Animal Disease Control and Prevention, Zhengzhou, Henan, 450002, China
| | - Tong Xu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, Henan Province, People's Republic of China
| | - Ximeng Chen
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, Henan Province, People's Republic of China
| | - Hongxuan Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, Henan Province, People's Republic of China
| | - Mengyao Ma
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, Henan Province, People's Republic of China
| | - Yibei Zhang
- College of Economics and Management, Henan Agricultural University, Zhengzhou, 450002, Henan Province, People's Republic of China
| | - Zejun He
- College of Economics and Management, Henan Agricultural University, Zhengzhou, 450002, Henan Province, People's Republic of China.
| | - Hongying Chen
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, Henan Province, People's Republic of China.
| |
Collapse
|
22
|
A putative PCV3-associated disease in piglets from Southern Brazil. Braz J Microbiol 2022; 53:491-498. [PMID: 34988935 DOI: 10.1007/s42770-021-00644-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 10/21/2021] [Indexed: 12/13/2022] Open
Abstract
Porcine circovirus type 3 (PCV3) is widely distributed worldwide, and its association with clinical disease in pigs has been studied in recent years. This study describes a novel PCV3-associated clinical disease in piglets from Brazil. Since September 2020, we received 48 piglets with large caudally rotated ears, weakness, and dyspnea. Most piglets were from gilts and died 1-5 days after birth. Two piglets that presented similar clinical signs and survived until 35-60 days had a marked decrease in growth rate. At post-mortem examination, the lungs did not collapse due to marked interlobular edema. Microscopically, the main feature was multisystemic vasculitis characterized by lymphocytes and plasma cells infiltrating and disrupting the wall of vessels, lymphohistiocytic interstitial pneumonia, myocarditis, and encephalitis. Viral replication was confirmed in these lesions through in situ hybridization (ISH-RNA). Seventeen cases were positive for PCV3 in PCR analysis, and all samples tested negative for porcine circovirus (PCV1, and PCV2); porcine parvovirus (PPV1, 2, 5, and 6); atypical porcine pestivirus (APPV); porcine reproductive and respiratory syndrome (PRRSV); and ovine herpesvirus-2 (OvHV-2). Phylogenetic analysis of the ORF2 sequence from five different pig farms showed that the PCV3a clade is circulating among Brazil's swineherds and causing neonatal piglet losses. This is the first report of PCV3a-associated disease in neonatal pigs from farms in Brazil.
Collapse
|
23
|
Eddicks M, Müller M, Fux R, Ritzmann M, Stadler J. Detection of porcine circovirus type 3 DNA in serum and semen samples of boars from a German boar stud. Vet J 2021; 279:105784. [PMID: 34902587 DOI: 10.1016/j.tvjl.2021.105784] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 12/08/2021] [Accepted: 12/09/2021] [Indexed: 11/27/2022]
Abstract
Porcine circovirus type 3 (PCV3) is regularly reported in association with various clinical presentations, including porcine dermatitis and nephropathy syndrome (PDNS)-like lesions, respiratory signs, congenital tremor, and reproductive disorders. To investigate the epidemiology of PCV3 in a boar stud, we analysed fresh boar semen and matching sera from 181 boars from a German stud supplying semen for artificial insemination (AI) to approximately 740 breeder farms for PCV3 DNA. PCV3 DNA was detected in 1.7% semen samples and 24.3% sera. Spearman rho correlation demonstrated a significant positive correlation between boar age and quantitative DNA (by PCR quantification cycles [Cq] values) in serum samples (r = 0.636; P < 0.001). Sera from boars up to 12 months of age had higher viral loads (P < 0.001) and were PCV3-positive significantly more often (P < 0.01) than older boars. Detection of PCV3 DNA was not associated with breed (P> 0.05). PCV3 DNA was detected sporadically in fresh boar semen. Based on the assumption that processing fresh semen reduces viral load in semen used for AI, it is likely that the risk of sexual transmission of PCV3 during AI in is low. However, young boars may contribute to the maintenance of PCV3 infection in boar studs.
Collapse
Affiliation(s)
- Matthias Eddicks
- Clinic for Swine at the Centre for Clinical Veterinary Medicine, LMU Munich, Sonnenstrasse 16, 85764, Oberschleissheim, Germany.
| | - Michael Müller
- Clinic for Swine at the Centre for Clinical Veterinary Medicine, LMU Munich, Sonnenstrasse 16, 85764, Oberschleissheim, Germany
| | - Robert Fux
- Division of Virology, Institute for Infectious Diseases and Zoonoses, Department of Veterinary Sciences, LMU Munich, Veterinärstrasse 13, 80539, Munich, Germany
| | - Mathias Ritzmann
- Clinic for Swine at the Centre for Clinical Veterinary Medicine, LMU Munich, Sonnenstrasse 16, 85764, Oberschleissheim, Germany
| | - Julia Stadler
- Clinic for Swine at the Centre for Clinical Veterinary Medicine, LMU Munich, Sonnenstrasse 16, 85764, Oberschleissheim, Germany
| |
Collapse
|
24
|
Bian Z, Cai R, Jiang Z, Song S, Li Y, Chu P, Zhang K, Yang D, Gou H, Li C. Single Multiple Cross Displacement Amplification for Rapid and Real-Time Detection of Porcine Circovirus 3. Front Vet Sci 2021; 8:726723. [PMID: 34540937 PMCID: PMC8448386 DOI: 10.3389/fvets.2021.726723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 08/04/2021] [Indexed: 11/17/2022] Open
Abstract
Since 2016, a novel porcine circovirus, PCV3, has been infecting pigs, causing significant economic losses to the pig industry. In recent years, the infection rate of PCV3 has been increasing, and thus rapid and accurate detection methods for PCV3 are essential. In this study, we established a novel probe-based single multiple cross displacement amplification (P-S-MCDA) method for PCV3. The method was termed as P-S-MCDA. The P-S-MCDA uses seven primers to amplify the capsid gene, and the assay can be performed at 60°C for 30 min, greatly shortening the reaction time. The results of P-S-MCDA can not only be monitored in real time through fluorescence signals but also be determined by observing the fluorescence of the reaction tubes using a smartphone-based cassette. This method demonstrated good specificity and the same sensitivity as qPCR, with a minimum detection limit of 10 copies. In 139 clinical samples, the coincidence rate with qPCR was 100%. The P-S-MCDA can be widely applied in PCV3 detection in laboratories or in rural areas.
Collapse
Affiliation(s)
- Zhibiao Bian
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Livestock Disease Prevention, Guangzhou, China.,Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, China.,Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Guangzhou, China
| | - Rujian Cai
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Livestock Disease Prevention, Guangzhou, China.,Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, China.,Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Guangzhou, China
| | - Zhiyong Jiang
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Livestock Disease Prevention, Guangzhou, China.,Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, China.,Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Guangzhou, China
| | - Shuai Song
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Livestock Disease Prevention, Guangzhou, China.,Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, China.,Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Guangzhou, China
| | - Yan Li
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Livestock Disease Prevention, Guangzhou, China.,Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, China.,Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Guangzhou, China
| | - Pinpin Chu
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Livestock Disease Prevention, Guangzhou, China.,Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, China.,Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Guangzhou, China
| | - Kunli Zhang
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Livestock Disease Prevention, Guangzhou, China.,Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, China.,Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Guangzhou, China
| | - Dongxia Yang
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Livestock Disease Prevention, Guangzhou, China.,Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, China.,Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Guangzhou, China
| | - Hongchao Gou
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Livestock Disease Prevention, Guangzhou, China.,Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, China.,Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Guangzhou, China
| | - Chunling Li
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Livestock Disease Prevention, Guangzhou, China.,Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, China.,Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Guangzhou, China
| |
Collapse
|
25
|
Nguyen NH, Do DT, Nguyen TQ, Nguyen TT, Nguyen MN. Genetic Diversity of Porcine Circovirus Subtypes from Aborted Sow Fetuses in Vietnam. Curr Microbiol 2021; 78:3751-3756. [PMID: 34468854 DOI: 10.1007/s00284-021-02641-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 08/23/2021] [Indexed: 11/25/2022]
Abstract
Porcine circovirus type 3 (PCV3) is an emerging circovirus that is highly distributed among swine worldwide and associated with porcine dermatitis and nephropathy syndrome, reproductive failure, and multisystemic inflammation. Here, we investigated and characterized PCV3 from aborted fetuses in Vietnam. We found that the whole genomes of PCV3 collected in these Vietnamese pig farms share 98.4-99.45% sequence identity with reference PCV3 sequences. Several distinct mutation were identified in both the Rep protein and Cap protein of these strains. These strains were clustered into two distinct subtypes (3a1 and 3b). This study contributes to a better understanding of the molecular characteristics and genetic diversity of PCV3 in Vietnam.
Collapse
Affiliation(s)
- Ngoc Hai Nguyen
- Department of Infectious Diseases and Veterinary Public Health Faculty of Animal Science and Veterinary Medicine, Nong Lam University HCMC, Thu Duc district, Ho Chi Minh City, Vietnam. .,Han-Viet Veterinary Diagnosis Laboratory, Faculty of Animal Science and Veterinary Medicine, Nong Lam University, Ho Chi Minh City, Vietnam.
| | - Duy Tien Do
- Department of Infectious Diseases and Veterinary Public Health Faculty of Animal Science and Veterinary Medicine, Nong Lam University HCMC, Thu Duc district, Ho Chi Minh City, Vietnam
| | - Trung Quan Nguyen
- Han-Viet Veterinary Diagnosis Laboratory, Faculty of Animal Science and Veterinary Medicine, Nong Lam University, Ho Chi Minh City, Vietnam
| | - Thuy Trang Nguyen
- Han-Viet Veterinary Diagnosis Laboratory, Faculty of Animal Science and Veterinary Medicine, Nong Lam University, Ho Chi Minh City, Vietnam
| | - Minh Nam Nguyen
- Research Center for Genetics and Reproductive Health, School of Medicine, Vietnam National University Ho Chi Minh City, Linh Trung ward, Thu Duc district, Ho Chi Minh City, Vietnam.
| |
Collapse
|
26
|
Assao VS, Santos MR, Pereira CER, Vannucci F, Silva-Júnior A. Porcine circovirus 3 in North and South America: Epidemiology and genetic diversity. Transbound Emerg Dis 2021; 68:2949-2956. [PMID: 34310859 DOI: 10.1111/tbed.14238] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 07/11/2021] [Accepted: 07/13/2021] [Indexed: 11/30/2022]
Abstract
Porcine circovirus 3 (PCV3) is a recently discovered virus that has been detected in the swine population worldwide. PCV3 infection has been associated with several signs, but its pathogenicity is currently uncertain. This review article aimed to analyse the PCV3 strains that circulate in different countries in North and South America. We demonstrated the main regions of polymorphisms in the capsid protein structure. Furthermore, we found that PCV3 has at least six different lineages circulating in the Americas. Additional studies are required to determine the role of PCV3 in different clinical syndromes and its epidemiology in swine herds in North and South American countries.
Collapse
Affiliation(s)
| | | | | | - Fabio Vannucci
- College of Veterinary Medicine, University of Minnesota, Saint Paul, Minnesota
| | | |
Collapse
|
27
|
Saporiti V, Franzo G, Sibila M, Segalés J. Porcine circovirus 3 (PCV-3) as a causal agent of disease in swine and a proposal of PCV-3 associated disease case definition. Transbound Emerg Dis 2021; 68:2936-2948. [PMID: 34184834 PMCID: PMC9291921 DOI: 10.1111/tbed.14204] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/09/2021] [Accepted: 06/23/2021] [Indexed: 01/14/2023]
Abstract
Porcine circovirus 3 (PCV‐3) was discovered in 2015 using next‐generation sequencing (NGS) methods. Since then, the virus has been detected worldwide in pigs displaying several clinical–pathological outcomes as well as in healthy animals. The objective of this review is to critically discuss the evidence existing so far regarding PCV‐3 as a swine pathogen. In fact, a significant number of publications claim PCV‐3 as a disease causal infectious agent, but very few of them have shown strong evidence of such potential causality. The most convincing proofs of disease association are those that demonstrate a clinical picture linked to multisystemic lymphoplasmacytic to lymphohistiocytic perivascular inflammation and presence of viral nucleic acid within these lesions. Based on these evidence, individual case definitions for PCV‐3‐reproductive disease and PCV‐3‐systemic disease are proposed to standardize diagnostic criteria for PCV‐3‐associated diseases. However, the real frequency of these clinical–pathological conditions linked to the novel virus is unknown, and the most frequent outcome of PCV‐3 infection is likely subclinical based on its worlwide distribution.
Collapse
Affiliation(s)
- Viviane Saporiti
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Giovanni Franzo
- Department of Animal Medicine, Production and Health (MAPS), University of Padua, Padua, Italy
| | - Marina Sibila
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, Barcelona, Spain.,OIE Collaborating Centre for the Research and Control of Emerging and Re-emerging Swine Diseases in Europe (IRTA-CReSA), Bellaterra, Barcelona, Spain
| | - Joaquim Segalés
- OIE Collaborating Centre for the Research and Control of Emerging and Re-emerging Swine Diseases in Europe (IRTA-CReSA), Bellaterra, Barcelona, Spain.,UAB, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, Barcelona, Spain.,Departament de Sanitat i Anatomia Animals, Facultat de Veterinària, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
28
|
Pathogenic Characterization of a Porcine Circovirus Type 3 Isolate from Heilongjiang, China. DISEASE MARKERS 2021; 2021:9434944. [PMID: 34257749 PMCID: PMC8253634 DOI: 10.1155/2021/9434944] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 05/30/2021] [Indexed: 12/23/2022]
Abstract
The clinical outcome of porcine circovirus 3 (PCV3) infection is still controversial. Herein, a novel PCV3 isolate (PCV3-China/DB-1/2017) with the molecular characterization of 24A and 27K in the Cap protein was used to inoculate three-week-old cesarean-derived, colostrum-deprived piglets. The nine PCV3 DB-1 inoculated piglets exhibited no obvious clinical symptoms or macroscopic lesions. PCV3 displayed a broad histotropism, including the heart, liver, spleen, lung, kidney, brain, lymph nodes, and tonsil, and the lungs and lymph nodes contained a higher quantity of viral genomes compared to that of the other organs. From 7 days after PCV3 DB-1 inoculation, the piglets showed obvious IgG antibody responses against PCV3 rCap-VLPs. The cumulative results demonstrated that PCV3 trend to low pathogenicity.
Collapse
|
29
|
Geng SC, Li XL, Fang WH. Porcine circovirus 3 capsid protein induces autophagy in HEK293T cells by inhibiting phosphorylation of the mammalian target of rapamycin. J Zhejiang Univ Sci B 2021; 21:560-570. [PMID: 32633110 DOI: 10.1631/jzus.b1900657] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Porcine circovirus 3 (PCV3) has been detected in major pig-producing countries around the world since its first report in the US in 2016. Most current studies have focused on epidemiological investigations and detection methods of PCV3 because of lack of live virus strains for research on its pathogenesis in porcine cells or even in pigs. We constructed a recombinant plasmid pCMV-Cap carrying the PCV3 orf2 gene to investigate the effects of capsid (Cap) protein expression on autophagic response in human embryonic kidney cell line 293T (HEK293T). We demonstrate that PCV3 Cap protein induced complete autophagy shown as formation of autophagosomes and autophagosome-like vesicles as well as LC3-II conversion from LC3-I via inhibiting phosphorylation of the mammalian target of rapamycin (mTOR) in HEK293T cells. The ubiquitin-proteasome pathway is also involved in the autophagy process. These findings provide insight for further exploration of PCV3 pathogenetic mechanisms in porcine cells.
Collapse
Affiliation(s)
- Shi-Chao Geng
- Institute of Preventive Veterinary Medicine, Zhejiang University, Hangzhou 310058, China.,Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou 310058, China
| | - Xiao-Liang Li
- Institute of Preventive Veterinary Medicine, Zhejiang University, Hangzhou 310058, China.,Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou 310058, China
| | - Wei-Huan Fang
- Institute of Preventive Veterinary Medicine, Zhejiang University, Hangzhou 310058, China.,Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou 310058, China
| |
Collapse
|
30
|
Tan CY, Lin CN, Ooi PT. What do we know about porcine circovirus 3 (PCV3) diagnosis so far?: A review. Transbound Emerg Dis 2021; 68:2915-2935. [PMID: 34110095 DOI: 10.1111/tbed.14185] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/01/2021] [Accepted: 06/05/2021] [Indexed: 11/30/2022]
Abstract
Porcine circovirus 3 (PCV3) was first discovered in 2016, almost concomitantly by two groups of researchers in the United States. The novel case was reported in a group of sows with chronic reproductive problems with clinical presentation alike porcine dermatitis and nephropathy syndrome (PDNS), where metagenomic sequencing revealed a genetically divergent porcine circovirus designated PCV3. The discovery of PCV3 in a PDNS case, which used to be considered as part of PCVAD attributed to PCV2 (porcine circovirus 2), has garnered attention and effort in further research of the novel virus. Just when an infectious molecular DNA clone of PCV3 has been developed and successfully used in an in vivo pathogenicity study, yet another novel PCV strain surfaced, designated PCV4 (porcine circovirus 4). So far, PCV3 has been reported in domestic swine population globally at low to moderate prevalence, from almost all sample types including organ tissues, faecal, semen and colostrum samples. PCV3 has been associated with a myriad of clinical presentations, from PDNS to porcine respiratory disease complex (PRDC). This review paper summarizes the studies on PCV3 to date, with focus on diagnosis.
Collapse
Affiliation(s)
- Chew Yee Tan
- Faculty of Veterinary Medicine, Universiti Putra Malaysia, Selangor, Malaysia
| | - Chao-Nan Lin
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Peck Toung Ooi
- Faculty of Veterinary Medicine, Universiti Putra Malaysia, Selangor, Malaysia
| |
Collapse
|
31
|
Dhandapani G, Yoon SW, Noh JY, Jang SS, Han SH, Jeong DG, Kim HK. Detection of Porcine circovirus 3 from captured wild boars in Korea. Vet Med Sci 2021; 7:1807-1814. [PMID: 34057302 PMCID: PMC8464250 DOI: 10.1002/vms3.518] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 04/13/2021] [Accepted: 04/22/2021] [Indexed: 12/13/2022] Open
Abstract
Porcine circovirus 3 (PCV3) is a newly discovered ssDNA virus. The virus was first reported in pigs suffering from several clinical syndromes, including porcine dermatitis and nephropathy syndrome, reproductive disorders, respiratory disease and myocarditis. PCV3 was recently reported in wild boars with high prevalence as well. In this study, 266 wild boar anal swab, feces, nasal swab and whole blood samples were collected from three mainland provinces and one island province (Chungbuk, Gangwon, Gyeonggi, Jeju) of South Korea between 2019 and 2020 including 119 from male, 142 from female and 5 undetermined. PCV3 was diagnosed targeting conserved rep (replication associated protein) gene region using Direct PCR and sequencing. Out of 266 tested samples, 15 were positive for PCV3 with detection frequency at 5.6%. Among 266 samples tested, we obtained 14 partial rep gene sequences and one complete genome sequence of PCV3 with a genome size of 2000nt. Here we present the evidence of PCV3 circulation in Korean wild boars.
Collapse
Affiliation(s)
- Gowtham Dhandapani
- Department of Biological Sciences and Biotechnology, College of Natural Sciences, Chungbuk National University, Cheongju, Republic of Korea
| | - Sun-Woo Yoon
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea.,College of Bioscience, University of Science and Technology, Daejeon, Republic of Korea
| | - Ji Yeong Noh
- Department of Biological Sciences and Biotechnology, College of Natural Sciences, Chungbuk National University, Cheongju, Republic of Korea
| | - Seong Sik Jang
- Department of Biological Sciences and Biotechnology, College of Natural Sciences, Chungbuk National University, Cheongju, Republic of Korea
| | - Sang-Hoon Han
- Inter-Korea Wildlife Institute, Inje-gun, Republic of Korea
| | - Dae Gwin Jeong
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea.,College of Bioscience, University of Science and Technology, Daejeon, Republic of Korea
| | - Hye Kwon Kim
- Department of Biological Sciences and Biotechnology, College of Natural Sciences, Chungbuk National University, Cheongju, Republic of Korea
| |
Collapse
|
32
|
Porcine Circovirus 3a Field Strains in Free-Living Wild Boars in Paraná State, Brazil. Animals (Basel) 2021; 11:ani11061634. [PMID: 34073023 PMCID: PMC8227967 DOI: 10.3390/ani11061634] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/22/2021] [Accepted: 05/24/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Porcine circovirus 3 (PCV-3) was first identified in pigs in the USA and was subsequently detected in several other countries, including Brazil. PCV-3 can be associated with diseases in pigs. To date, there are only a few reports of PCV-3 in wild boars worldwide. This study aimed to investigate the presence of PCV-3 in wild boars in Paraná state, Brazil. The results revealed that PCV-3 was present in the serum and lungs of the sampled boars. The complete genome of the PCV-3a strain was determined and compared with other PCV-3 strains around the world. Phylogenetic analysis has shown a close relationship to the strains already described in domestic and wild pigs. At this moment, there is no evidence that PCV-3 causes disease in wild boars. However, the monitoring of circulation of PCV-3 in wild boars is important for pig industry biosecurity because these animals share pathogens with domestic pigs. Abstract Porcine circovirus 3 (PCV-3) was identified in domestic pigs worldwide. Although PCV-3 has also been detected in wild boars, information regarding its circulation in this free-living animal species is scarce. To investigate PCV-3 occurrence in free-living wild boars in Brazil, 70 serum samples collected between January 2017 and June 2019 in Paraná state, Brazil were analyzed by PCR assay. Amplicons measuring 330 bp in length were amplified in seven (10.0%) of the serum samples and confirmed to be PCV3-specific by nucleotide (nt) sequencing. As the amplified products from the serum samples yielded only intermediate levels of viral DNA, lung samples from the seven PCR-positive wild boars were also evaluated by PCR. Of these samples, five lung samples were positive and provided high levels of viral DNA. The three lung samples that presented the highest levels of viral DNA were selected for amplification and sequencing of the whole PCV-3 genome. The three full-length sequences obtained were grouped in PCV-3 clade “a”, and the sequences exhibited 100% nucleotide similarity among them. The PCV-3 field strains of this study showed nucleotide and amino acid similarities of 98.5–99.8% and 98.8–100%, respectively, with whole-genome PCV-3 sequences from around the world.
Collapse
|
33
|
Histological Lesions and Replication Sites of PCV3 in Naturally Infected Pigs. Animals (Basel) 2021; 11:ani11061520. [PMID: 34073660 PMCID: PMC8224807 DOI: 10.3390/ani11061520] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/15/2021] [Accepted: 05/18/2021] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Diagnosing porcine circovirus type 3 (PCV3) is a challenge in pig production. Although the virus has been recently isolated, the patterns of PCV3-associated histological lesions are still to be elucidated. The present study describes the association of PCV3 mRNA by in situ hybridization within histological lesions and PCV3 DNA detected by real-time PCR in naturally infected pigs. The main histologic lesions associated with PCV3 mRNA detection were lymphoplasmacytic myocarditis and lymphoplasmacytic interstitial pneumonia, in heart and lung, respectively. Our findings offer robust guidance of microscopic lesions associated with PCV3, which may have a key role in PCV3 diagnosis. Abstract Porcine circovirus type 3 (PCV3) has been recently described as a potential cause of abortions and systemic vasculitis in pigs. Although the virus has been detected by real-time PCR in several porcine tissues from countries worldwide, PCV3-associated diseases have not been satisfactorily clarified. The objective of this study was to investigate the association between the presence of PCV3 mRNA detected by in situ hybridization (ISH) within histological lesions and PCV3 DNA detected by real-time PCR in naturally infected pigs. A total of 25 PCV3 PCR-positive cases were analyzed. Formalin-fixed tissues from these cases were evaluated for histologic lesions and for ISH-RNA positive signals for PCV3. The most frequent tissue type with histopathologic lesions was heart, 76.2%, with lymphoplasmacytic myocarditis and epicarditis as the most frequent lesions observed. Lymphoplasmacytic interstitial pneumonia was also a frequent finding, 47.6%. There were also lesions in kidney, liver, spleen and lymph nodes. PCV3-ISH-RNA positive signals were mostly observed in association with lymphoplasmacytic inflammatory infiltrate in various tissues, including arteries. Based on our results, the minimum set of specimens to be submitted for histopathology and mRNA in situ hybridization to confirm or exclude a diagnosis of PCV3 are heart, lung and lymphoid tissues (i.e., spleen and lymph nodes), especially for differential diagnosis related with PCV2-associated diseases.
Collapse
|
34
|
Identification and whole-genome characterization of a novel Porcine Circovirus 3 subtype b strain from swine populations in Vietnam. Virus Genes 2021; 57:385-389. [PMID: 33993380 DOI: 10.1007/s11262-021-01844-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 05/05/2021] [Indexed: 12/16/2022]
Abstract
Porcine circovirus 3 (PCV3) is a novel circovirus detected in pigs suffering from porcine dermatitis and nephropathy syndrome (PDNS), reproductive failure, and multisystemic infection. In this study, we identified PCV3 infection in aborted fetuses and reported the full-length genome sequence of a PCV3 strain identified from southern Vietnam. The complete genome of this PCV3 strain is 2000 nucleotides in length. We found that it shares 98.5-99.25% sequence identity with other reference sequences and that it clusters with the PCV3b subtype. Several specific mutated sites were found to be unique to this Vietnamese PCV3b strain, including I14M in the Rep protein and K139R, I150F, and P169T in the Cap protein. The sequence data that have been made publically available as part of this study will help investigators to better understand the molecular characteristics, genetic diversity, and evolutionary history of PCV3. Careful and in-depth investigations into the epidemiology, pathogenicity, and the evolution of this novel virus is a matter of urgent economic and agricultural interest in Vietnam.
Collapse
|
35
|
Temeeyasen G, Lierman S, Arruda BL, Main R, Vannucci F, Gimenez-Lirola LG, Piñeyro PE. Pathogenicity and immune response against porcine circovirus type 3 infection in caesarean-derived, colostrum-deprived pigs. J Gen Virol 2021; 102. [PMID: 33206034 DOI: 10.1099/jgv.0.001502] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Recently, a novel PCV species (PCV3) has been detected in cases associated with sow mortality, lesions consistent with porcine dermatitis and nephropathy syndrome, reproductive failure and multisystemic inflammation. The pathogenesis and clinical significance of PCV3 is still unclear. In this study, we investigated the immunopathogenesis of PCV3 in CD/CD pigs. Four treatment groups, PCV3 (n=6), PCV3-KLH (n=6), control (n=3) and control-KLH (n=3), were included with PCV3-positive tissue homogenate (gc=3.38×1012 ml-1 and gc=1.04×1011 ml-1), confirmed by quantitative PCR (qPCR) and next-generation sequencing. Clinical signs, viremia, viral shedding, systemic cytokines, humoral (IgG) and T-cellular response were evaluated for 42 days. At necropsy, tissues were collected for histological evaluation and PCV3 detection by qPCR and in situ hybridization. No significant clinical signs were observed through the study. Viremia was detected in both PCV3-inoculated groups from 3 days post-inoculation (p.i.) until the end of the study. Nasal shedding was detected from 3 to 28 days p.i. and faecal shedding was transient. PCV3 induced an early (7 days p.i.) and sustained (42 days p.i.) IgG response. No significant T-cell response was observed. Histological evaluation demonstrated lesions consistent with multisystemic inflammation and perivasculitis. All tissues evaluated were positive by qPCR and virus replication was confirmed by positive in situ hybridization. This study demonstrated the potential role of PCV3 in subclinical infection, producing a mild, multisystemic inflammatory response, prolonged viremia detectable for 42 days p.i., presence of IgG humoral response and viral shedding in nasal secretions. More research is required to understand and elucidate potential co-factors necessary in the manifestation and severity of clinical disease.
Collapse
Affiliation(s)
- Gun Temeeyasen
- Veterinary Diagnostic Laboratory, Veterinary Diagnostic and Production Animal Medicine, Iowa State University, IA, USA
| | - Shay Lierman
- Veterinary Diagnostic Laboratory, Veterinary Diagnostic and Production Animal Medicine, Iowa State University, IA, USA
| | - Bailey L Arruda
- Veterinary Diagnostic Laboratory, Veterinary Diagnostic and Production Animal Medicine, Iowa State University, IA, USA
| | - Rodger Main
- Veterinary Diagnostic Laboratory, Veterinary Diagnostic and Production Animal Medicine, Iowa State University, IA, USA
| | - Fabio Vannucci
- Veterinary Diagnostic Laboratory, University of Minnesota, 1333 Gortner Ave, St Paul, MN, USA
| | - Luis G Gimenez-Lirola
- Veterinary Diagnostic Laboratory, Veterinary Diagnostic and Production Animal Medicine, Iowa State University, IA, USA
| | - Pablo E Piñeyro
- Veterinary Diagnostic Laboratory, Veterinary Diagnostic and Production Animal Medicine, Iowa State University, IA, USA
| |
Collapse
|
36
|
Hou CY, Xu T, Zhang LH, Cui JT, Zhang YH, Li XS, Zheng LL, Chen HY. Simultaneous detection and differentiation of porcine circovirus 3 and 4 using a SYBR Green І-based duplex quantitative PCR assay. J Virol Methods 2021; 293:114152. [PMID: 33845107 DOI: 10.1016/j.jviromet.2021.114152] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 04/01/2021] [Accepted: 04/07/2021] [Indexed: 12/31/2022]
Abstract
Porcine circovirus 4 (PCV4) was a novel circovirus identified from diseased pigs in 2019 in Hunan Province, China, and PCV3 and PCV4 co-infection has been reported. In order to detect and differentiate PCV3 and PCV4 simultaneously, the SYBR Green І-based duplex quantitative PCR (qPCR) assay was established in the present study. The two viruses could be easily distinguished by different Tm values: 86.5°C for PCV3 and 79°C for PCV4, while other porcine pathogens did not shown specific melting peaks. The detection limits of this duplex qPCR assay were 51.7 copies/μL for PCV3 and 67.7 copies/μL for PCV4, and both of the intra-assay and inter-assay of the CV analysis of this assay were less than 2.0 %. Sixty-four clinical samples from 22 different swine farms were screened by the duplex qPCR assay. The results showed that the positive detection rate of PCV3 was 37.5 % (24/64) and PCV4 was 34.38 % (22/64), and PCV3 and PCV4 co-infection rate was 17.19 % (11/64). The detection rate of the duplex qPCR assay was higher than that of the conventional PCR assay. The duplex qPCR was of high sensitivity and specificity, being able to provide technical support for clinical detection, differential diagnosis and control of PCV3 and PCV4.
Collapse
Affiliation(s)
- Cheng-Yao Hou
- Zhengzhou Key Laboratory for Pig Disease Prevention and Control, College of Veterinary Medicine, Henan Agricultural University, Zhengdong New District Longzi Lake 15#, Zhengzhou, 450046, Henan Province, People's Republic of China
| | - Tong Xu
- Zhengzhou Key Laboratory for Pig Disease Prevention and Control, College of Veterinary Medicine, Henan Agricultural University, Zhengdong New District Longzi Lake 15#, Zhengzhou, 450046, Henan Province, People's Republic of China
| | - Liu-Hui Zhang
- Zhengzhou Key Laboratory for Pig Disease Prevention and Control, College of Veterinary Medicine, Henan Agricultural University, Zhengdong New District Longzi Lake 15#, Zhengzhou, 450046, Henan Province, People's Republic of China
| | - Jian-Tao Cui
- Zhengzhou Key Laboratory for Pig Disease Prevention and Control, College of Veterinary Medicine, Henan Agricultural University, Zhengdong New District Longzi Lake 15#, Zhengzhou, 450046, Henan Province, People's Republic of China
| | - Yuan-Hang Zhang
- Zhengzhou Key Laboratory for Pig Disease Prevention and Control, College of Veterinary Medicine, Henan Agricultural University, Zhengdong New District Longzi Lake 15#, Zhengzhou, 450046, Henan Province, People's Republic of China
| | - Xin-Sheng Li
- Zhengzhou Key Laboratory for Pig Disease Prevention and Control, College of Veterinary Medicine, Henan Agricultural University, Zhengdong New District Longzi Lake 15#, Zhengzhou, 450046, Henan Province, People's Republic of China
| | - Lan-Lan Zheng
- Zhengzhou Key Laboratory for Pig Disease Prevention and Control, College of Veterinary Medicine, Henan Agricultural University, Zhengdong New District Longzi Lake 15#, Zhengzhou, 450046, Henan Province, People's Republic of China.
| | - Hong-Ying Chen
- Zhengzhou Key Laboratory for Pig Disease Prevention and Control, College of Veterinary Medicine, Henan Agricultural University, Zhengdong New District Longzi Lake 15#, Zhengzhou, 450046, Henan Province, People's Republic of China.
| |
Collapse
|
37
|
Vargas-Bermúdez DS, Vargas-Pinto MA, Mogollón JD, Jaime J. Field infection of a gilt and its litter demonstrates vertical transmission and effect on reproductive failure caused by porcine circovirus type 3 (PCV3). BMC Vet Res 2021; 17:150. [PMID: 33832500 PMCID: PMC8028087 DOI: 10.1186/s12917-021-02862-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 03/27/2021] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND PCV3 is a member of the Circovirus family, associated with disease and mortality in pigs. It is not clear whether PCV3 putatively causes clinical symptoms and disease. In the present case, we reported a gilt infected with PCV3 associated with reproductive failures, vertical transmission, tissue lesions, viral replication by in situ hybridization, and the hypothesis that some strains of PCV3 clade one are associated with reproductive failures at the field level. CASE PRESENTATION In May 2019, a pig farm in Colombia reported increased reproductive failures, and the presence of PCV3 in gilts and sows was established in a single form or coinfections, mainly with PCV2 and PPV7. Ten sows with a single infection with PCV3 were found, and one gilt with a pre-farrowing serum viral load above 103 was studied. This gilt was followed up during the pre-farrowing, farrowing period and on her litter for 6 weeks. During dystocic farrowing, a mummy and ten piglets were released, including two weak-born piglets. The highest viral loads for PCV3 were found in the mummy and the placenta. In the weak-born piglets, there were viral loads both in serum and in tissues, mainly in the mesenteric ganglia and lung. Replication of PCV3 in these tissues was demonstrated by in situ hybridizations. PCV3 was also found in the precolostrum sera of piglets and colostrum, showing vertical transmission. The viral load in piglets decreased gradually until week six of life. The viral genome's complete sequencing was made from the mummy, and its analysis classified it as PCV3 clade one. CONCLUSIONS This report confirms that PCV3 can cause disease at the field level, and putatively, in this case, we find the generation of reproductive failures. The ability of PCV3 to cause disease as a putative pathogen may be associated with the viral load present in the pig and the strain that is affecting the farm. For this case, we found that viral loads above 103 (4.93 log genomic copies / mL) in the gilt were associated with clinical manifestation and that some PCV3 strains belonging to clade one are more associated with the reproductive presentation.
Collapse
Affiliation(s)
- Diana S Vargas-Bermúdez
- Universidad Nacional de Colombia, Sede Bogotá. Facultad de Medicina Veterinaria y de Zootecnia. Departamento de Salud Animal, Centro de Investigación en Inmunología e Infectología Veterinaria (CI3V)., Carrera 30 No. 45-03, Bogotá, CP 11001, Colombia
| | - Mayra A Vargas-Pinto
- Universidad Nacional de Colombia, Sede Bogotá. Facultad de Medicina Veterinaria y de Zootecnia. Departamento de Salud Animal, Centro de Investigación en Inmunología e Infectología Veterinaria (CI3V)., Carrera 30 No. 45-03, Bogotá, CP 11001, Colombia
| | - José Darío Mogollón
- Universidad Nacional de Colombia, Sede Bogotá. Facultad de Medicina Veterinaria y de Zootecnia. Departamento de Salud Animal, Centro de Investigación en Inmunología e Infectología Veterinaria (CI3V)., Carrera 30 No. 45-03, Bogotá, CP 11001, Colombia
| | - Jairo Jaime
- Universidad Nacional de Colombia, Sede Bogotá. Facultad de Medicina Veterinaria y de Zootecnia. Departamento de Salud Animal, Centro de Investigación en Inmunología e Infectología Veterinaria (CI3V)., Carrera 30 No. 45-03, Bogotá, CP 11001, Colombia.
| |
Collapse
|
38
|
Structural insight into the type-specific epitope of porcine circovirus type 3. Biosci Rep 2021; 40:225017. [PMID: 32458997 PMCID: PMC7295619 DOI: 10.1042/bsr20201109] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/22/2020] [Accepted: 05/26/2020] [Indexed: 01/12/2023] Open
Abstract
The recently identified pathogenic Porcine circovirus type 3 (PCV3) may threaten to reduce the pig population dramatically worldwide. In our previous study, a PCV3-specific monoclonal antibody (mAb-1H11) was successfully applied in immune-histochemistry staining and ELISA, which specifically recognize PCV3 capsid protein in PCV3-positive pig tissues. In the present study, we expressed and purified the soluble sole capsid protein of PCV3. The purified capsid protein was capable of self-assembly into virus-like-particles (VLPs), which is validated by transmission electron microscopy and dynamic light scattering assays. Moreover, the epitope of mAb-1H11 was identified in the CD-loop region (a.a. 72-79) on the VLP surface, which is confirmed by PCV2-PCV3 epitope swapping assay. For the first time, we determined the cryo-EM structure of PCV3-VLP at 8.5 Å resolution that reveals the detailed structural information of PCV3-VLP. In our cryo-EM structure, PCV3-VLP is composed of 60 capsid protein subunits assembled with T = 1 icosahedral symmetry. Consistent to our bio-dot Western blot assay, the structural comparison between PCV3 and PCV2 revealed significant structural differences in the surface-exposed loops, including the CD-loop (a.a. 72-79) and the EF-loop (a.a. 109-131). Our work provides a structural framework for engineering future PCV3 vaccine and diagnosis kits development.
Collapse
|
39
|
Genetic diversity of porcine circovirus 3 strains and the first detection of two different PCV3 strains coinfecting the same host in Minas Gerais, Brazil. Arch Virol 2021; 166:1463-1468. [PMID: 33718993 DOI: 10.1007/s00705-021-05032-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 01/23/2021] [Indexed: 02/06/2023]
Abstract
Porcine circovirus 3 (PCV3) is a recently emerged circovirus discovered in 2016 that has drawn the attention of the swine industry worldwide. In this study, we evaluated the genetic diversity of PCV3 strains on pig farms. A total of 261 samples from sows, weaning pigs, growing pigs, and stillborn/mummified fetuses were analyzed by quantitative real-time PCR. The results revealed that at least two main lineages of PCV3 are circulating in Brazil. For the first time, it was possible to detect the presence of two different PCV3 strains in the same host.
Collapse
|
40
|
Porcine Circovirus 3 Detection in Aborted Fetuses and Stillborn Piglets from Swine Reproductive Failure Cases. Viruses 2021; 13:v13020264. [PMID: 33572209 PMCID: PMC7915229 DOI: 10.3390/v13020264] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/27/2021] [Accepted: 02/05/2021] [Indexed: 12/25/2022] Open
Abstract
Porcine circovirus 3 (PCV-3) has been widely detected in healthy and diseased pigs; among different pathologic conditions, the strongest evidence of association comes from reproductive disease cases. However, simple viral detection does not imply the causality of the clinical conditions. Detection of PCV-3 within lesions may provide stronger evidence of causality. Thus, this study aimed to assess the frequency of PCV-3 detection in tissues from fetuses/stillborn piglets in cases of reproductive problems in domestic swine, as well as the histopathologic assessment of fetal tissues. Fetuses or stillborn piglets from 53 cases of reproductive failure were collected and analyzed by PCV-3 qPCR. The presence of porcine reproductive and respiratory syndrome virus (PRRSV), porcine circovirus 2 (PCV-2), and porcine parvovirus 1 (PPV1) was also checked. PCV-3 qPCR positive samples with a high viral load were tested by PCV-3 in situ hybridization (ISH), sequenced, and phylogenetically analyzed. PCV-3 DNA was detected in 18/53 (33.9%) reproductive failure cases and in 16 of them PCV-3 was the only pathogen found. PCV-2 DNA was found in 5/53 (9.4%), PRRSV RNA in 4/53 (7.5%) and PPV1 was not detected. Four out of the six PCV-3 qPCR-positive cases with Ct value <30 were positive when tested by ISH. In these samples, PCV-3 was detected within mild histopathologic lesions, such as arteritis and periarteritis in multiple tissues. The present work emphasizes the need to include PCV-3 as a potential causative agent of reproductive failure in swine.
Collapse
|
41
|
Nguyen VG, Do HQ, Huynh TML, Park YH, Park BK, Chung HC. Molecular-based detection, genetic characterization and phylogenetic analysis of porcine circovirus 4 from Korean domestic swine farms. Transbound Emerg Dis 2021; 69:538-548. [PMID: 33529468 DOI: 10.1111/tbed.14017] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 01/26/2021] [Accepted: 01/31/2021] [Indexed: 01/18/2023]
Abstract
Porcine circovirus 4 (PCV4), a novel and unclassified member of the genus Circovirus, was first reported in China in 2019. Aiming to provide more evidence about the active circulation of PCV4, this study screened 335 pooled internal organs and detected the virus (i) at a rate of 3.28%, (ii) from both clinically healthy and clinically sick pigs of various age groups, and (iii) in six out of nine provinces of Korea. The complete genomic sequence of the Korean PCV4 strain (E115) was 1,770 nucleotides in length and had 98.5%-98.9% identity to three PCV4 strains currently available at GenBank. Utilizing a set of bioinformatic programs, it was revealed that the Korean PCV4 strain contained several genomic features of (i) a palindrome stem-loop structure with a conserved nonanucleotide, (ii) packed overlapping ORFs oriented in different directions and (iii) two intergenic regions in between genes encoding the putative replication-associated protein (Rep) and capsid (Cap) proteins. This study also predicted the presence of essential elements for the replication of circoviruses in all PCV4 strains, for example the origin of DNA replication, endonuclease and helicase domains of Rep, and the nuclear localization signal on the putative Cap protein. Finally, based on the phylogeny inferred from sequences of the putative Rep protein, this study further clarified the genetic relationships between PCV4 and other CRESS DNA viruses in general and circoviruses in particular.
Collapse
Affiliation(s)
- Van-Giap Nguyen
- Department of Veterinary Microbiology and Infectious Diseases, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Hanoi, Vietnam
| | - Hai-Quynh Do
- Department of Veterinary Medicine Virology Lab, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, Korea.,Department of Veterinary Microbiology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, Korea
| | - Thi-My-Le Huynh
- Department of Veterinary Microbiology and Infectious Diseases, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Hanoi, Vietnam
| | - Yong-Ho Park
- Department of Veterinary Microbiology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, Korea
| | - Bong-Kyun Park
- Department of Veterinary Medicine Virology Lab, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, Korea
| | - Hee-Chun Chung
- Department of Veterinary Medicine Virology Lab, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, Korea
| |
Collapse
|
42
|
Zhou J, Li J, Li H, Zhang Y, Dong W, Jin Y, Yan Y, Gu J, Zhou J. The serine-48 residue of nucleolar phosphoprotein nucleophosmin-1 plays critical role in subcellular localization and interaction with porcine circovirus type 3 capsid protein. Vet Res 2021; 52:4. [PMID: 33413620 PMCID: PMC7792357 DOI: 10.1186/s13567-020-00876-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 12/03/2020] [Indexed: 12/25/2022] Open
Abstract
The transport of circovirus capsid protein into nucleus is essential for viral replication in infected cell. However, the role of nucleolar shuttle proteins during porcine circovirus 3 capsid protein (PCV3 Cap) import is still not understood. Here, we report a previously unidentified nucleolar localization signal (NoLS) of PCV3 Cap, which hijacks the nucleolar phosphoprotein nucleophosmin-1 (NPM1) to facilitate nucleolar localization of PCV3 Cap. The NoLS of PCV3 Cap and serine-48 residue of N-terminal oligomerization domain of NPM1 are essential for PCV3 Cap/NPM1 interaction. In addition, charge property of serine-48 residue of NPM1 is critical for nucleolar localization and interaction with PCV3 Cap. Taken together, our findings demonstrate for the first time that NPM1 interacts with PCV3 Cap and is responsible for its nucleolar localization.
Collapse
Affiliation(s)
- Jianwei Zhou
- MOA Key Laboratory of Animal Virology, Center of Veterinary Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, PR China
| | - Juan Li
- MOA Key Laboratory of Animal Virology, Center of Veterinary Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, PR China
| | - Haimin Li
- MOA Key Laboratory of Animal Virology, Center of Veterinary Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, PR China
| | - Ying Zhang
- MOA Key Laboratory of Animal Virology, Center of Veterinary Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, PR China
| | - Weiren Dong
- MOA Key Laboratory of Animal Virology, Center of Veterinary Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, PR China
| | - Yulan Jin
- MOA Key Laboratory of Animal Virology, Center of Veterinary Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, PR China
| | - Yan Yan
- MOA Key Laboratory of Animal Virology, Center of Veterinary Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, PR China
| | - Jinyan Gu
- MOA Key Laboratory of Animal Virology, Center of Veterinary Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, PR China.
| | - Jiyong Zhou
- MOA Key Laboratory of Animal Virology, Center of Veterinary Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, PR China. .,Collaborative Innovation Center and State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, Zhejiang University, Hangzhou, PR China.
| |
Collapse
|
43
|
Abstract
Swine DNA viruses have developed unique mechanisms for evasion of the host immune system, infection and DNA replication, and finally, construction and release of new viral particles. This article reviews four classes of DNA viruses affecting swine: porcine circoviruses, African swine fever virus, porcine parvoviruses, and pseudorabies virus. Porcine circoviruses belonging to the Circoviridae family are small single-stranded DNA viruses causing different diseases in swine including poly-weaning multisystemic wasting syndrome, porcine dermatitis and nephropathy syndrome, and porcine respiratory disease complex. African swine fever virus, the only member of the Asfivirus genus in the Asfarviridae family, is a large double-stranded DNA virus and for its propensity to cause high mortality, it is currently considered the most dangerous virus in the pig industry. Porcine parvoviruses are small single-stranded DNA viruses belonging to the Parvoviridae family that cause reproductive failure in pregnant gilts. Pseudorabies virus, or suid herpesvirus 1, is a large double-stranded DNA virus belonging to the Herpesviridae family and Alphaherpesvirinae subfamily. Recent findings including general as well as genetic classification, virus structure, clinical syndromes and the host immune system responses and vaccine protection are described for all four swine DNA virus classes.
Collapse
|
44
|
Liu BY, Gao B, Liu MZ, Zhang TT, Liu BS, Chen ZL. High repetitive arginine in the anterior of PCV3 capsid protein is a severe obstacle for its expression in E. coli. AMB Express 2020; 10:214. [PMID: 33306160 PMCID: PMC7732928 DOI: 10.1186/s13568-020-01163-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 12/08/2020] [Indexed: 12/16/2022] Open
Abstract
Porcine circovirus type 3 (PCV3) is a novel circovirus identified in sows with PDNS-like clinical signs and reproductive failure. The capsid protein (CAP) of PCV3 is expected to be an effective vaccine candidate. Here, we expressed the original capsid protein, truncated capsid protein without anterior highly repetitive arginine (ΔCAP) and their codon-optimized counterparts in E. coli. These results showed that lots of repeated arginine could severely lower the expression of PCV3 capsid protein in E. coli. At the same time, the recombined truncated PCV3 capsid protein forms typic virions. The efficient expression of capsid protein is expected to serve the development of PCV3 vaccines and other studies of PCV3 capsid protein.
Collapse
|
45
|
Cruz A, Rodrigues I, Souza A, Knackfuss F, Silveira R, Castro T. Molecular detection and clinical aspects of porcine circovirus 3 infection in pigs from Brazil. ARQ BRAS MED VET ZOO 2020. [DOI: 10.1590/1678-4162-11924] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
ABSTRACT Porcine circovirus 3 (PCV-3) DNA has been detected in serum samples from apparently healthy pigs as well as pigs with different clinical conditions. Molecular detection of PCV-3 was observed in swine serum samples from Southeastern - Brazil using a nested PCR designed specifically for this study. The epidemiology and clinical aspects of PCV-3 infection were evaluated. The samples originated from 154 pigs of both genders from different production phases and with different clinical presentations, sampled from 31 pig farms visited between 2013 and 2018. In this study, PCV-3 was detected in 26.7% of samples from all populations across varying ages. Statistical association (P=0.0285) was observed only between animals with respiratory signs and PCV-3; no PCV-3-positive animal had diarrhea. No statistical association was observed between PCV-3 and age, or gender of the pigs. Because PCV-3 is a newly discovered virus, there is very little information about its epidemiology. We hope that these data can help in future studies investigating PCV-3 epidemiology.
Collapse
|
46
|
Gu W, Shi Q, Wang L, Zhang J, Yuan G, Chen S, Zuo Y, Fan J. Detection and phylogenetic analysis of porcine circovirus 3 in part of northern China from 2016 to 2018. Arch Virol 2020; 165:2003-2011. [PMID: 32594321 DOI: 10.1007/s00705-020-04709-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Accepted: 05/20/2020] [Indexed: 02/07/2023]
Abstract
Porcine circovirus 3 (PCV3) is a recently identified virus that is associated with reproductive failure, porcine dermatitis and nephropathy syndrome, and multi-systemic inflammation. To investigate the molecular epidemic characteristics and genetic evolution of PCV3 in northern China, a commercial TaqMan-based real-time quantitative PCR kit was used to detect PCV3 in 435 tissue specimens collected from pigs with various clinical signs from 105 different swine farms in northern China. The results showed that 48 out of 105 (45.7%) farms and 97 out of 435 (22.3%) samples tested positive for PCV3. Of the 97 PCV3-positive samples, 80 (82.5%) tested positive for other pathogens. PCV3 was found more frequently in pigs with reproductive failure than in those with other clinical signs. This study is the first to detect PCV3 in Tianjin. The complete genome sequences of six PCV3 isolates and the capsid (Cap) protein gene sequences of 11 isolates were determined. Based on the predicted amino acids at positions 24 and 27 of the Cap protein and their evolutionary relationships, the 17 PCV3 strains obtained from northern China and 49 reference strains downloaded from the GenBank database were divided into four major groups (3a-3d). An analysis of selection pressure and polymorphism indicated that the PCV3 Cap protein seems to be evolving under balancing selection, that the population is in dynamic equilibrium, and that no population expansion occurred during the study period. Our results provide new information about the molecular epidemiology and evolution of PCV3.
Collapse
Affiliation(s)
- Wenyuan Gu
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, 071001, China
- Animal Diseases Control Center of Hebei, Shijiazhuang, 050053, China
| | - Qiankai Shi
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, 071001, China
| | - Leyi Wang
- Department of Veterinary Clinical Medicine and the Veterinary Diagnostic Laboratory, College of Veterinary Medicine, University of Illinois, Urbana, Illinois, 61802, USA
| | - Jianlou Zhang
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, 071001, China
| | - Guangfu Yuan
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, 071001, China
| | - Shaojie Chen
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, 071001, China
| | - Yuzhu Zuo
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, 071001, China.
| | - Jinghui Fan
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, 071001, China.
| |
Collapse
|
47
|
Plut J, Jamnikar-Ciglenecki U, Golinar-Oven I, Knific T, Stukelj M. A molecular survey and phylogenetic analysis of porcine circovirus type 3 using oral fluid, faeces and serum. BMC Vet Res 2020; 16:281. [PMID: 32778107 PMCID: PMC7419202 DOI: 10.1186/s12917-020-02489-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 07/22/2020] [Indexed: 11/23/2022] Open
Abstract
Background Porcine circovirus type 3 is the most recently discovered porcine circovirus, and an emerging pathogen. In this study the status of its presence on some Slovenian farms is reported. The effectiveness of the vaccine against porcine circovirus type 2 was assessed against porcine circovirus type 3. Group samples of oral fluid, faeces and individual serum samples were taken from six different pig categories and tested for presence of viral DNA, using both real time and conventional PCR. Positive samples were subjected to direct Sanger sequencing. Nucleotide sequences were analyzed and compared to GenBank PCV3 sequences. Results Positive samples were sent for genome sequencing, which confirmed the presence of virus in all different pig categories on five farms. A high to moderate correlation of strong statistical significance was found between individual serum samples, oral fluid and faeces. Slovenian PCV3 was found to be distributed in a way similar to that of other countries. Slovenian PCV3 nt sequences are highly related, sharing more than 99.5% nt identity. On one farm a commercially available vaccine against porcine circovirus type 2 was used on 3-week-old pigs. It did not affect the presence of porcine circovirus type 3 in oral fluid or sera of any of the seven age groups of pigs, each with two control groups. Conclusions The results constitute the first discovery of the virus in Slovenia. Genome sequencing has revealed a high degree of similarity between Slovenian and GenBank isolates.
Collapse
Affiliation(s)
- Jan Plut
- Clinic for Ruminants and Pigs, Clinic for Reproduction and Farm Animals, Veterinary Faculty, University of Ljubljana, Ljubljana, Slovenia.
| | - Urska Jamnikar-Ciglenecki
- Department of Food Safety, Institute of Safe Food, Animal Nutrition and Environment, Veterinary Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Irena Golinar-Oven
- Clinic for Ruminants and Pigs, Clinic for Reproduction and Farm Animals, Veterinary Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Tanja Knific
- Institute of Microbiology and Parasitology, Veterinary Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Marina Stukelj
- Clinic for Ruminants and Pigs, Clinic for Reproduction and Farm Animals, Veterinary Faculty, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
48
|
Yuan L, Liu Y, Chen Y, Gu X, Dong H, Zhang S, Han T, Zhou Z, Song X, Wang C. Optimized real-time fluorescence PCR assay for the detection of porcine Circovirus type 3 (PCV3). BMC Vet Res 2020; 16:249. [PMID: 32680512 PMCID: PMC7368764 DOI: 10.1186/s12917-020-02435-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 06/18/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Porcine circovirus type 3 (PCV3) has been an emerging porcine virus spread around the world. The conserved DNA sequence of PCV3 enabled good performance in molecular biological assays. RESULT In this study, we developed a real-time fluorescence PCR assay for the detection of PCV3. The conserved region within Capsid genome of PCV3 was selected for the design of primer pairs and probes. After optimizing, a primer pair and probe was screened, providing high sensitivity (10 copies/μL) and specificity (no cross reaction with other porcine viruses or common bacterium). In addition, this method was applied in the detection of 110 clinical samples, and the performance was compared with other previously reported PCR and real-time PCR methods. This method provided higher detection rate. CONCLUSION A real-time fluorescence PCR assay has been developed for the detection of PCV3, with high sensitivity and specificity, exhibiting good performance in detecting clinical samples.
Collapse
Affiliation(s)
- Lin Yuan
- China Animal Disease Control Center, OIE Porcine Reproductive and Respiratory Syndrome Reference Laboratory, No. 17 Tiangui Street, Biomedical Base, Daxing District, Beijing, 102618, China
| | - Yingyi Liu
- China Animal Disease Control Center, OIE Porcine Reproductive and Respiratory Syndrome Reference Laboratory, No. 17 Tiangui Street, Biomedical Base, Daxing District, Beijing, 102618, China
| | - Yana Chen
- China Animal Disease Control Center, OIE Porcine Reproductive and Respiratory Syndrome Reference Laboratory, No. 17 Tiangui Street, Biomedical Base, Daxing District, Beijing, 102618, China
| | - Xiaoxue Gu
- China Animal Disease Control Center, OIE Porcine Reproductive and Respiratory Syndrome Reference Laboratory, No. 17 Tiangui Street, Biomedical Base, Daxing District, Beijing, 102618, China
| | - Hao Dong
- China Animal Disease Control Center, OIE Porcine Reproductive and Respiratory Syndrome Reference Laboratory, No. 17 Tiangui Street, Biomedical Base, Daxing District, Beijing, 102618, China
| | - Shuo Zhang
- China Animal Disease Control Center, OIE Porcine Reproductive and Respiratory Syndrome Reference Laboratory, No. 17 Tiangui Street, Biomedical Base, Daxing District, Beijing, 102618, China
| | - Tao Han
- China Animal Disease Control Center, OIE Porcine Reproductive and Respiratory Syndrome Reference Laboratory, No. 17 Tiangui Street, Biomedical Base, Daxing District, Beijing, 102618, China
| | - Zhi Zhou
- China Animal Disease Control Center, OIE Porcine Reproductive and Respiratory Syndrome Reference Laboratory, No. 17 Tiangui Street, Biomedical Base, Daxing District, Beijing, 102618, China
| | - Xiaohui Song
- China Animal Disease Control Center, OIE Porcine Reproductive and Respiratory Syndrome Reference Laboratory, No. 17 Tiangui Street, Biomedical Base, Daxing District, Beijing, 102618, China.
| | - Chuanbin Wang
- China Animal Disease Control Center, OIE Porcine Reproductive and Respiratory Syndrome Reference Laboratory, No. 17 Tiangui Street, Biomedical Base, Daxing District, Beijing, 102618, China.
| |
Collapse
|
49
|
Frequency of Detection and Phylogenetic Analysis of Porcine circovirus 3 (PCV-3) in Healthy Primiparous and Multiparous Sows and Their Mummified Fetuses and Stillborn. Pathogens 2020; 9:pathogens9070533. [PMID: 32630733 PMCID: PMC7399965 DOI: 10.3390/pathogens9070533] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 06/25/2020] [Accepted: 06/29/2020] [Indexed: 01/04/2023] Open
Abstract
Porcine circovirus 3 (PCV-3) has been suggested as a putative causal agent of swine reproductive disease. A number of different studies have pointed out this association, but there is still a lack of information regarding the normal rates of PCV-3 infection in farms with normal reproductive parameters. The objective of the present study was to assess the frequency of PCV-3 detection in primiparous and multiparous sows and in tissues from their respective fetuses from farms with average reproductive parameters. Sera from 57 primiparous and 64 multiparous sows from 3 different farms were collected at two time points. Brain and lung tissues from 49 mummies and 206 stillborn were collected at farrowing. Samples were tested by PCR, and when positive, quantified by quantitative PCR. Thirty-nine complete genomes were obtained and phylogenetically analyzed. All sera from multiparous sows were negative, while 19/57 (33.3%) primiparous sows were PCV-3 PCR positive. From the 255 tested fetuses, 86 (33.7%) had at least one tissue positive to PCV-3. The frequency of detection in fetuses from primiparous sows (73/91, 80.2%) was significantly higher than those from multiparous ones (13/164, 7.9%). It can be concluded that PCV-3 is able to cause intrauterine infections in absence of overt reproductive disorders.
Collapse
|
50
|
Hou L, Wang J, Zhang W, Quan R, Wang D, Zhu S, Jiang H, Wei L, Liu J. Dynamic Alterations of Gut Microbiota in Porcine Circovirus Type 3-Infected Piglets. Front Microbiol 2020; 11:1360. [PMID: 32714299 PMCID: PMC7341976 DOI: 10.3389/fmicb.2020.01360] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 05/27/2020] [Indexed: 01/14/2023] Open
Abstract
Porcine circovirus type 3 (PCV3) is a novel porcine circovirus species associated with several diseases such as porcine dermatitis and nephropathy syndrome (PDNS)-like clinical signs, reproductive failure, cardiac pathologies, and multisystemic inflammation in piglets and sows. Currently, many studies have focused on the interaction between microbiota composition and disease progression. However, dynamic changes in the composition of the gut microbiota following PCV3 infection are still unknown. In this study, alterations in gut microbiota in PCV3-inoculated and sham-inoculated piglets were analyzed at various time points [7, 14, 21, and 28 days post-inoculation (dpi)] using the Illumina MiSeq platform. Using principal coordinate analysis, obvious structural segregations were observed in bacterial diversity and richness between PCV3- and sham-inoculated piglets, as well as at the four different time points. The abundance of gut microbiota exhibited a remarkable time-related decrease in Clostridium_sensu_stricto_1 in PCV3-inoculated piglets. In addition, significant differences were observed in functional classification based on cluster of orthologous groups assignment, between PCV3- and sham-inoculated piglets. Our findings demonstrated that PCV3 infection caused dynamic changes in the gut microbiota community. Therefore, regulating gut microbiota community may be an effective approach for preventing PCV3 infection.
Collapse
Affiliation(s)
- Lei Hou
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Jing Wang
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Wei Zhang
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Rong Quan
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Dan Wang
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Shanshan Zhu
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Haijun Jiang
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Li Wei
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Jue Liu
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China.,College of Veterinary Medicine, Yangzhou University, Yangzou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| |
Collapse
|