1
|
Yoo DS, Cho KH, Hong SK, Kang HE, Park JY. Data-driven risk assessment of the incursion of African swine fever virus via pig products brought illegally into South Korea by travelers based on the temporal relationship between outbreaks in China. Front Vet Sci 2023; 10:994749. [PMID: 37077945 PMCID: PMC10106568 DOI: 10.3389/fvets.2023.994749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 02/27/2023] [Indexed: 04/05/2023] Open
Abstract
Since 2018, Asian countries have been affected by the African swine fever (ASF) virus, with major socioeconomic consequences. Moreover, the number of people traveling in Asian countries has been increasing, leading to an inevitable increase in the risk of ASF spread through livestock products carried by travelers. China and South Korea have close geo-economic ties and numerous international travelers. After the ASF outbreak in China in 2018, many illegally imported pig products (IIPPs) that were confiscated from travelers from China at the port of entry in South Korea tested positive for ASF. The detection of ASF virus (ASFV)-positive IIPPs highlights the need to further assess the risk of incursion by travelers and review the existing prevention strategies. Here, we investigated the temporal relationship between ASF outbreaks in China and the detection of ASFV-positive IIPPs in randomly confiscated samples from all ports of entry, such as flights and ships to South Korea, from 2018 to 2019 using a cross-correlation analysis. Based on the significantly correlated temporal lags between the bivariate time-series data, a risk assessment model, using the Bayesian framework, was built to estimate the distribution of the parameters for the risk assessment model and the monthly probability of ASF being introduced via IIPPs from China to South Korea. ASF outbreaks in China were significantly associated with the detection of ASFV-positive IIPPs in South Korea 5 months later. Hence, the monthly probability of ASFV-infected pig products imported from China via a traveler to South Korea was estimated to be 2.00 × 10-5, corresponding to a 0.98 mean monthly probability of at least one ASF-infected pig product arriving at ports of entry via travelers, from 2018 to 2019. To our knowledge, this study is the first attempt to estimate the risk of ASF introduction via pig products carried by international travelers to all ports from neighboring countries in the Asian region using commonly exchanged observed data. The data presented in this study can be used to refine the intervention strategies to combat the spread of transboundary animal diseases.
Collapse
Affiliation(s)
- Dae-Sung Yoo
- Veterinary Epidemiology Division, Animal and Plant Quarantine Agency, Gimcheon, Republic of Korea
- College of Veterinary Medicine, Chonnam National University, Gwangju, Republic of Korea
| | - Ki-Hyun Cho
- Foreign Animal Disease Division, Animal and Plant Quarantine Agency, Gimcheon, Republic of Korea
| | - Seong-Keun Hong
- Foreign Animal Disease Division, Animal and Plant Quarantine Agency, Gimcheon, Republic of Korea
| | - Hae-Eun Kang
- Foreign Animal Disease Division, Animal and Plant Quarantine Agency, Gimcheon, Republic of Korea
| | - Jee-Yong Park
- Foreign Animal Disease Division, Animal and Plant Quarantine Agency, Gimcheon, Republic of Korea
| |
Collapse
|
2
|
Acosta A, Dietze K, Baquero O, Osowski GV, Imbacuan C, Burbano A, Ferreira F, Depner K. Risk Factors and Spatiotemporal Analysis of Classical Swine Fever in Ecuador. Viruses 2023; 15:288. [PMID: 36851503 PMCID: PMC9966056 DOI: 10.3390/v15020288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/10/2023] [Accepted: 01/15/2023] [Indexed: 01/21/2023] Open
Abstract
Classical swine fever (CSF) is one of the most important re-emergent swine diseases worldwide. Despite concerted control efforts in the Andean countries, the disease remains endemic in several areas, limiting production and trade opportunities. In this study, we aimed to determine the risk factors and spatiotemporal implications associated with CSF in Ecuador. We analysed passive surveillance and vaccination campaign datasets from 2014 to 2020; Then, we structured a herd-level case-control study using a logistic and spatiotemporal Bayesian model. The results showed that the risk factors that increased the odds of CSF occurrence were the following: swill feeding (OR 8.53), time until notification (OR 2.44), introduction of new pigs during last month (OR 2.01) and lack of vaccination against CSF (OR 1.82). The spatiotemporal model showed that vaccination reduces the risk by 33%. According to the priority index, the intervention should focus on Morona Santiago and Los Rios provinces. In conclusion, the results highlight the complexity of the CSF control programs, the importance to improve the overall surveillance system and the need to inform decision-makers and stakeholders.
Collapse
Affiliation(s)
- Alfredo Acosta
- Institute of International Animal Health/One Health, Friedrich-Loeffler-Institut, 17493 Greifswald, Germany
- Laboratory of Epidemiology and Biostatistics, School of Veterinary Medicine and Animal Science, Preventive Veterinary Medicine Department, University of São Paulo, São Paulo 05508-270, Brazil
| | - Klaas Dietze
- Institute of International Animal Health/One Health, Friedrich-Loeffler-Institut, 17493 Greifswald, Germany
| | - Oswaldo Baquero
- Laboratory of Epidemiology and Biostatistics, School of Veterinary Medicine and Animal Science, Preventive Veterinary Medicine Department, University of São Paulo, São Paulo 05508-270, Brazil
| | - Germana Vizzotto Osowski
- Laboratory of Epidemiology and Biostatistics, School of Veterinary Medicine and Animal Science, Preventive Veterinary Medicine Department, University of São Paulo, São Paulo 05508-270, Brazil
| | - Christian Imbacuan
- General Coordination of Animal Health, Phyto-Zoosanitary Regulation and Control Agency, Quito 170903, Ecuador
| | - Alexandra Burbano
- General Coordination of Animal Health, Phyto-Zoosanitary Regulation and Control Agency, Quito 170903, Ecuador
| | - Fernando Ferreira
- Laboratory of Epidemiology and Biostatistics, School of Veterinary Medicine and Animal Science, Preventive Veterinary Medicine Department, University of São Paulo, São Paulo 05508-270, Brazil
| | - Klaus Depner
- Institute of International Animal Health/One Health, Friedrich-Loeffler-Institut, 17493 Greifswald, Germany
| |
Collapse
|
3
|
Spronk G, Havas K, Patterson G, Dee S. Will swine veterinarians lead by meeting the next-generation needs of our industry? J Am Vet Med Assoc 2022; 261:424-429. [PMID: 36563066 DOI: 10.2460/javma.22.10.0480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The US swine industry is currently challenged by the potential of transboundary animal disease (eg, African swine fever) entry to the national herd and the relentless pressures of domestic diseases (eg, porcine reproductive and respiratory syndrome). The task of the swine veterinarian is to biosecure both the national herd and their customers' local farms to mitigate these risks. This Viewpoint raises 4 questions that swine veterinarians, including practicing (private and corporate), industry, research, academic, and regulatory (state and federal) veterinarians who spend a portion of their time controlling, treating, preventing, or eradicating diseases of swine, must answer to meet the needs of their farms to compete globally and survive. In addition, it appears that there is sufficient science-based information to move forward in a collaborative manner and that the goals of prevention of African swine fever and elimination of porcine reproductive and respiratory syndrome virus are technically possible. Therefore, as previous generations of swine veterinarians led the US industry in the elimination of foot-and-mouth disease virus, classical swine fever virus, and pseudorabies virus from the national herd, the central challenge is whether the next generation of veterinarians will provide the necessary leadership to deal with the current industry and its next-generation challenges.
Collapse
Affiliation(s)
| | - Karyn Havas
- 1Pipestone Veterinary Services, Pipestone, MN
| | | | - Scott Dee
- 1Pipestone Veterinary Services, Pipestone, MN
| |
Collapse
|
4
|
Teng KTY, Chang CC, Tsai YL, Chiu CY, Yang CY, Chou CC. A stochastic assessment to quantify the risk of introduction of African swine fever virus to Taiwan via illegal pork products carried by international travellers. Transbound Emerg Dis 2021; 69:e592-e604. [PMID: 34564956 DOI: 10.1111/tbed.14337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 08/29/2021] [Accepted: 09/23/2021] [Indexed: 11/27/2022]
Abstract
The current study quantified the risk of releasing African swine fever virus (ASFV) into Taiwan from pork products illegally carried by international travellers from 157 countries or territories through six international airports and three international seaports. The association between various factors and the number of pork products detected by the border control authorities was also examined. The risk was estimated with a stochastic process after modelling the number of undetected illegal pork products, probability of pork product detection at international airports and seaports and probability of ASFV contamination of pork products from various countries. The overall annual probability of ASFV release to Taiwan was estimated to be 1 [95% confidence interval (CI): 1-1] under no enhanced mitigation measures. All the median airport-level risks were higher than .921, and four of them reached 1. The total annual risk was .570 (95% CI: .109-.937) for international seaports. The country or territory level risk was estimated to be 1 for Vietnam, China, Hong Kong, the Philippines and South Korea, .999 (95% CI: .628-1) for Macao and .967 (95% CI: .359-1) for Indonesia. After the total number of travellers was factored in, the number of detected illegal pork products was the highest in January and February, and travellers from Vietnam [risk ratio to Japan (RR): 80.45; 95% CI: 58.68-110.3], the Philippines (RR: 37.67; 95% CI: 26.9-52.74) and Cambodia (RR: 28.39; 95% CI: 12.69-63.51) were most likely to bring pork products to Taiwan. Our study indicated a high risk of ASFV introduction through international travellers and also identified the factors associated with the risk. This information can be used as empirical evidence for cost-effective risk mitigation practices.
Collapse
Affiliation(s)
- Kendy Tzu-Yun Teng
- Department of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, Taipei City, Taiwan
| | - Chao-Chin Chang
- Graduate Institute of Microbiology and Public Health, College of Veterinary Medicine, National Chung Hsing University, Taichung City, Taiwan
| | - Yi-Lun Tsai
- Department of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung County, Taiwan
| | - Chun-Yao Chiu
- Animal Quarantine Division, Bureau of Animal and Plant Health Inspection and Quarantine, Council of Agriculture, Executive Yuan, Taipei City, Taiwan
| | - Cheng-Yao Yang
- Graduate Institute of Veterinary Pathobiology, College of Veterinary Medicine, National Chung Hsing University, Taichung City, Taiwan
| | - Chin-Cheng Chou
- Department of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, Taipei City, Taiwan
| |
Collapse
|
5
|
Fanelli A, Muñoz O, Mantegazza L, De Nardi M, Capua I. Is the COVID-19 pandemic impacting on the risk of African Swine Fever virus (ASFV) introduction into the United States? A short-term assessment of the risk factors. Transbound Emerg Dis 2021; 69:e505-e516. [PMID: 34549530 PMCID: PMC8661688 DOI: 10.1111/tbed.14330] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/06/2021] [Accepted: 09/15/2021] [Indexed: 11/29/2022]
Abstract
African swine fever (ASF) is a contagious disease with high mortality in domestic and feral swine populations. Although it is not a zoonosis, its spread may have severe socio-economic and public health consequences. The activities of veterinary services are essential for controlling ASF outbreaks within a country, but also for diminishing its threat of spread to neighbouring countries, and for recognizing its entry into countries that are currently free. ASF requires quick responses and permanent monitoring to identify outbreaks and prevent spread, and both aspects can be heavily undercut during the COVID-19 pandemic. This paper analyses changing patterns of the main drivers and pathways for the potential introduction of ASFV into the United States during the COVID-19 pandemic, including international movements of people, swine products and by-products. Data on commercial flights and merchant ships was used as a proxy to indirectly assess the flow of illegal products coming from ASF affected countries. Results from this study highlight a decreasing trend in the legal imports of swine products and by-products from ASF affected countries (Sen's slope = -99, 95% CI: -215.34 to -21.26, p-value < 0.05), while no trend was detected for confiscations of illegal products at ports of entry. Additionally, increasing trends were detected for the monthly number of merchant ships coming from ASF affected countries (Sen's slope = 0.46, 95%CI 0.25-0.59), the monthly value of imported goods ($) through merchant ships (Sen's slope = 1513196160, 95%CI 1072731702-1908231855), and the monthly percentage of commercial flights (Sen's slope = 0.005, 95%CI 0.003-0.007), with the majority of them originating from China. Overall, the findings show an increased connection of the United States with ASF affected countries, highlighting the risk posed by ASF during a global public health crisis.
Collapse
Affiliation(s)
- Angela Fanelli
- Department of Veterinary Medicine, University of Bari, Valenzano, Bari, Italy.,One Health Center of Excellence, University of Florida, Gainesville, Florida, USA
| | - Olga Muñoz
- One Health Center of Excellence, University of Florida, Gainesville, Florida, USA
| | - Luca Mantegazza
- One Health Center of Excellence, University of Florida, Gainesville, Florida, USA
| | | | - Ilaria Capua
- One Health Center of Excellence, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
6
|
Mayer JJ, Edwards TB, Garabedian JE, Kilgo JC. Sanitary Waste Landfill Effects on an Invasive Wild Pig Population. J Wildl Manage 2021. [DOI: 10.1002/jwmg.22042] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- John J. Mayer
- Savannah River National Laboratory Savannah River Nuclear Solutions LLC, Savannah River Site Bldg. 999‐W Aiken SC 29808 USA
| | - Thomas B. Edwards
- Savannah River National Laboratory Savannah River Nuclear Solutions LLC, Savannah River Site Bldg. 999‐W Aiken SC 29808 USA
| | - James E. Garabedian
- USDA Forest Service Southern Research Station P.O. Box 700 New Ellenton SC 29809 USA
| | - John C. Kilgo
- USDA Forest Service Southern Research Station P.O. Box 700 New Ellenton SC 29809 USA
| |
Collapse
|
7
|
Yang J, Tang K, Cao Z, Pfeiffer DU, Zhao K, Zhang Q, Zeng DD. Demand-driven spreading patterns of African swine fever in China. CHAOS (WOODBURY, N.Y.) 2021; 31:061102. [PMID: 34241307 DOI: 10.1063/5.0053601] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 05/10/2021] [Indexed: 06/13/2023]
Abstract
African swine fever (ASF) is a highly contagious hemorrhagic viral disease of domestic and wild pigs. ASF has led to major economic losses and adverse impacts on livelihoods of stakeholders involved in the pork food system in many European and Asian countries. While the epidemiology of ASF virus (ASFV) is fairly well understood, there is neither any effective treatment nor vaccine. In this paper, we propose a novel method to model the spread of ASFV in China by integrating the data of pork import/export, transportation networks, and pork distribution centers. We first empirically analyze the overall spatiotemporal patterns of ASFV spread and conduct extensive experiments to evaluate the efficacy of a number of geographic distance measures. These empirical analyses of ASFV spread within China indicate that the first occurrence of ASFV has not been purely dependent on the geographical distance from existing infected regions. Instead, the pork supply-demand patterns have played an important role. Predictions based on a new distance measure achieve better performance in predicting ASFV spread among Chinese provinces and thus have the potential to enable the design of more effective control interventions.
Collapse
Affiliation(s)
- Jiannan Yang
- School of Data Science, City University of Hong Kong, Hong Kong 999077, China
| | - Kaichen Tang
- School of Data Science, City University of Hong Kong, Hong Kong 999077, China
| | - Zhidong Cao
- The State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
| | - Dirk U Pfeiffer
- Department of Infectious Diseases and Public Health, City University of Hong Kong, Hong Kong 999077, China
| | - Kang Zhao
- Tippie College of Business, The University of Iowa, Iowa City, Iowa 52242, USA
| | - Qingpeng Zhang
- School of Data Science, City University of Hong Kong, Hong Kong 999077, China
| | - Daniel Dajun Zeng
- The State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
8
|
Gebhardt JT, Dritz SS, Jones CK, Woodworth JC, Paulk CB. Lessons learned from preliminary monitoring for African swine fever virus in a region of ongoing transmission. J Am Vet Med Assoc 2021; 258:35-38. [PMID: 33314976 DOI: 10.2460/javma.258.1.35] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
9
|
Brown VR, Miller RS, McKee SC, Ernst KH, Didero NM, Maison RM, Grady MJ, Shwiff SA. Risks of introduction and economic consequences associated with African swine fever, classical swine fever and foot-and-mouth disease: A review of the literature. Transbound Emerg Dis 2020; 68:1910-1965. [PMID: 33176063 DOI: 10.1111/tbed.13919] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 10/13/2020] [Accepted: 11/06/2020] [Indexed: 12/31/2022]
Abstract
African swine fever (ASF), classical swine fever (CSF) and foot-and-mouth disease (FMD) are considered to be three of the most detrimental animal diseases and are currently foreign to the U.S. Emerging and re-emerging pathogens can have tremendous impacts in terms of livestock morbidity and mortality events, production losses, forced trade restrictions, and costs associated with treatment and control. The United States is the world's top producer of beef for domestic and export use and the world's third-largest producer and consumer of pork and pork products; it has also recently been either the world's largest or second largest exporter of pork and pork products. Understanding the routes of introduction into the United States and the potential economic impact of each pathogen are crucial to (a) allocate resources to prevent routes of introduction that are believed to be more probable, (b) evaluate cost and efficacy of control methods and (c) ensure that protections are enacted to minimize impact to the most vulnerable industries. With two scoping literature reviews, pulled from global data, this study assesses the risk posed by each disease in the event of a viral introduction into the United States and illustrates what is known about the economic costs and losses associated with an outbreak.
Collapse
Affiliation(s)
- Vienna R Brown
- National Feral Swine Damage Management Program, United States Department of Agriculture, Animal and Plant Health Inspection Service, Fort Collins, CO, USA
| | - Ryan S Miller
- Center for Epidemiology and Animal Health, United States Department of Agriculture, Animal and Plant Health Inspection Service, Veterinary Services, Fort Collins, CO, USA
| | - Sophie C McKee
- National Feral Swine Damage Management Program, United States Department of Agriculture, Animal and Plant Health Inspection Service, Fort Collins, CO, USA.,Department of Economics, Colorado State University, Fort Collins, CO, USA
| | - Karina H Ernst
- National Feral Swine Damage Management Program, United States Department of Agriculture, Animal and Plant Health Inspection Service, Fort Collins, CO, USA.,Department of Economics, Colorado State University, Fort Collins, CO, USA
| | - Nicole M Didero
- National Feral Swine Damage Management Program, United States Department of Agriculture, Animal and Plant Health Inspection Service, Fort Collins, CO, USA.,Department of Economics, Colorado State University, Fort Collins, CO, USA
| | - Rachel M Maison
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Meredith J Grady
- Human Dimensions of Natural Resources Department, Colorado State University, Fort Collins, CO, USA
| | - Stephanie A Shwiff
- National Wildlife Research Center, United States Department of Agriculture, Animal and Plant Health Inspection Service, Fort Collins, CO, USA
| |
Collapse
|
10
|
Gebhardt JT, Tokach MD, Dritz SS, DeRouchey JM, Woodworth JC, Goodband RD, Henry SC. Postweaning mortality in commercial swine production II: review of infectious contributing factors. Transl Anim Sci 2020; 4:txaa052. [PMID: 32705048 PMCID: PMC7277696 DOI: 10.1093/tas/txaa052] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 04/27/2020] [Indexed: 11/14/2022] Open
Abstract
Postweaning mortality is extremely complex with a multitude of noninfectious and infectious contributing factors. In the current review, our objective is to describe the current state of knowledge regarding infectious causes of postweaning mortality, focusing on estimates of frequency and magnitude of effect where available. While infectious mortality is often categorized by physiologic body system affected, we believe the complex multifactorial nature is better understood by an alternative stratification dependent on intervention type. This category method subjectively combines disease pathogenesis knowledge, epidemiology, and economic consequences. These intervention categories included depopulation of affected cohorts of animals, elimination protocols using knowledge of immunity and epidemiology, or less aggressive interventions. The most aggressive approach to control infectious etiologies is through herd depopulation and repopulation. Historically, these protocols were successful for Actinobacillus pleuropneumoniae and swine dysentery among others. Additionally, this aggressive measure likely would be used to minimize disease spread if either a foreign animal disease was introduced or pseudorabies virus was reintroduced into domestic swine populations. Elimination practices have been successful for Mycoplasma hyopneumoniae, porcine reproductive and respiratory syndrome virus, coronaviruses, including transmissible gastroenteritis virus, porcine epidemic diarrhea virus, and porcine deltacoronavirus, swine influenza virus, nondysentery Brachyspira spp., and others. Porcine circovirus type 2 can have a significant impact on morbidity and mortality; however, it is often adequately controlled through immunization. Many other infectious etiologies present in swine production have not elicited these aggressive control measures. This may be because less aggressive control measures, such as vaccination, management, and therapeutics, are effective, their impact on mortality or productivity is not great enough to warrant, or there is inadequate understanding to employ control procedures efficaciously and efficiently. Since there are many infectious agents and noninfectious contributors, emphasis should continue to be placed on those infectious agents with the greatest impact to minimize postweaning mortality.
Collapse
Affiliation(s)
- Jordan T Gebhardt
- Department of Animal Sciences and Industry, College of Agriculture, Kansas State University, Manhattan, KS
| | - Mike D Tokach
- Department of Animal Sciences and Industry, College of Agriculture, Kansas State University, Manhattan, KS
| | - Steve S Dritz
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS
| | - Joel M DeRouchey
- Department of Animal Sciences and Industry, College of Agriculture, Kansas State University, Manhattan, KS
| | - Jason C Woodworth
- Department of Animal Sciences and Industry, College of Agriculture, Kansas State University, Manhattan, KS
| | - Robert D Goodband
- Department of Animal Sciences and Industry, College of Agriculture, Kansas State University, Manhattan, KS
| | | |
Collapse
|
11
|
Risk Assessment of African Swine Fever Virus Exposure to Sus scrofa in Japan Via Pork Products Brought in Air Passengers' Luggage. Pathogens 2020; 9:pathogens9040302. [PMID: 32326040 PMCID: PMC7238144 DOI: 10.3390/pathogens9040302] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 04/18/2020] [Accepted: 04/18/2020] [Indexed: 02/01/2023] Open
Abstract
In recent years, African swine fever (ASF) has become prevalent in many areas, including Asia. The repeated detection of the ASF virus (ASFV) genome in pork products brought in air passenger’s luggage (PPAP) was also reported from Japanese airports. In the present study, the risk of ASFV exposure to susceptible hosts in Japan via three different pathways was assessed. Two quantitative stochastic risk assessment models were built to estimate the annual probability of ASFV exposure to domestic pigs, which could be attributed to foreign job trainees or foreign tourists. A semi-quantitative stochastic model was built to assess the risk of ASFV exposure to wild boar caused by foreign tourists. The overall mean annual probability of ASFV exposure to domestic pigs via PPAP carried by foreign job trainees was 0.169 [95% confidence interval (CI): 0.000–0.600], whereas that by foreign tourists was 0.050 [95% CI: 0.000–0.214], corresponding to approximately one introduction every 5.9 and 20 years, respectively. The risk of ASFV exposure to domestic pigs was dispersed over the country, whereas that of wild boar was generally higher in the western part of Japan, indicating that the characteristics of the potential ASF risk in each prefecture were varied.
Collapse
|
12
|
Ito S, Jurado C, Sánchez-Vizcaíno JM, Isoda N. Quantitative risk assessment of African swine fever virus introduction to Japan via pork products brought in air passengers' luggage. Transbound Emerg Dis 2019; 67:894-905. [PMID: 31692238 DOI: 10.1111/tbed.13414] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 10/02/2019] [Accepted: 10/27/2019] [Indexed: 11/30/2022]
Abstract
The spread of African swine fever (ASF) has reached pandemic levels over the last decade, and outbreaks of this disease in China, Mongolia, Vietnam and Cambodia in 2018 and 2019 could accelerate its transmission to neighbouring Asian territories. Thus, the risk that the ASF virus (ASFV) will be introduced to disease-free territories increases each year. Since Japan is an island nation, the most likely way in which ASFV would be introduced is via pork products brought in air passengers' luggage (PPAP). Therefore, in the present study, we assessed the risk of ASFV introduction to Japan via PPAP. For the purposes of this analysis, we considered 214 international commercial flights travelling from 47 origin territories to 31 destination airports as potential routes of ASFV introduction via PPAP. The risk was estimated quantitatively through a stochastic model that considered the volume of air passengers' luggage, the amount of confiscated pork products that were carried in air passengers' luggage and the disease status of the origin territory. The overall mean annual probability of ASFV introduction to Japan via PPAP was found to be 0.941 [95% confidence interval (CI), 0.661-1.000], which approximately corresponds to one introduction every 1.06 years. At the origin territory level, Mongolia was led as the highest risk territory, with a risk of 0.864 (95% CI, 0.434-1.000), followed by China (0.697; 0.223-0.999), Vietnam (0.662; 0.196-0.998) and the Russian Federation (0.136; 0.018-0.401). At the destination airport level, Narita International Airport had the highest risk (0.905; 0.537-1.000), followed by Kansai International Airport (0.496; 0.109-0.961), Tokyo International Airport (0.389; 0.072-0.879) and Chubu Centrair International Airport (0.338; 0.058-0.816). This information will help improve risk management activities and monitoring systems to prevent the introduction of ASFV to Japan.
Collapse
Affiliation(s)
- Satoshi Ito
- Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan.,VISAVET Center and Animal Health Department, University Complutense of Madrid, Madrid, Spain
| | - Cristina Jurado
- VISAVET Center and Animal Health Department, University Complutense of Madrid, Madrid, Spain
| | | | - Norikazu Isoda
- Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan.,Global Station for Zoonosis Control, Global Institute for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo, Japan
| |
Collapse
|
13
|
Risk of African swine fever virus introduction into the United States through smuggling of pork in air passenger luggage. Sci Rep 2019; 9:14423. [PMID: 31594957 PMCID: PMC6783460 DOI: 10.1038/s41598-019-50403-w] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 09/11/2019] [Indexed: 12/12/2022] Open
Abstract
African swine fever causes substantial economic losses in the swine industry in affected countries. Traditionally confined to Africa with only occasional incursions into other regions, ASF began spreading into Caucasian countries and Eastern Europe in 2007, followed by Western Europe and Asia in 2018. Such a dramatic change in the global epidemiology of ASF has resulted in concerns that the disease may continue to spread into disease-free regions such as the US. In this study, we estimated the risk of introduction of ASF virus into the US through smuggling of pork in air passenger luggage. Results suggest that the mean risk of ASFV introduction into the US via this route has increased by 183.33% from the risk estimated before the disease had spread into Western Europe or Asia. Most of the risk (67.68%) was associated with flights originating from China and Hong Kong, followed by the Russian Federation (26.92%). Five US airports accounted for >90% of the risk. Results here will help to inform decisions related to the design of ASF virus surveillance strategies in the US.
Collapse
|
14
|
Miller RS, Pepin KM. BOARD INVITED REVIEW: Prospects for improving management of animal disease introductions using disease-dynamic models. J Anim Sci 2019; 97:2291-2307. [PMID: 30976799 PMCID: PMC6541823 DOI: 10.1093/jas/skz125] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 04/10/2019] [Indexed: 12/27/2022] Open
Abstract
Management and policy decisions are continually made to mitigate disease introductions in animal populations despite often limited surveillance data or knowledge of disease transmission processes. Science-based management is broadly recognized as leading to more effective decisions yet application of models to actively guide disease surveillance and mitigate risks remains limited. Disease-dynamic models are an efficient method of providing information for management decisions because of their ability to integrate and evaluate multiple, complex processes simultaneously while accounting for uncertainty common in animal diseases. Here we review disease introduction pathways and transmission processes crucial for informing disease management and models at the interface of domestic animals and wildlife. We describe how disease transmission models can improve disease management and present a conceptual framework for integrating disease models into the decision process using adaptive management principles. We apply our framework to a case study of African swine fever virus in wild and domestic swine to demonstrate how disease-dynamic models can improve mitigation of introduction risk. We also identify opportunities to improve the application of disease models to support decision-making to manage disease at the interface of domestic and wild animals. First, scientists must focus on objective-driven models providing practical predictions that are useful to those managing disease. In order for practical model predictions to be incorporated into disease management a recognition that modeling is a means to improve management and outcomes is important. This will be most successful when done in a cross-disciplinary environment that includes scientists and decision-makers representing wildlife and domestic animal health. Lastly, including economic principles of value-of-information and cost-benefit analysis in disease-dynamic models can facilitate more efficient management decisions and improve communication of model forecasts. Integration of disease-dynamic models into management and decision-making processes is expected to improve surveillance systems, risk mitigations, outbreak preparedness, and outbreak response activities.
Collapse
Affiliation(s)
- Ryan S Miller
- Center for Epidemiology and Animal Health, United States Department of Agriculture-Veterinary Services, Fort Collins, CO
| | - Kim M Pepin
- National Wildlife Research Center, United States Department of Agriculture-Wildlife Services, Fort Collins, CO
| |
Collapse
|
15
|
Affiliation(s)
- Stephen Higgs
- Editor-in-Chief, Vector-Borne and Zoonotic Diseases, Biosecurity Research Institute (BRI), Kansas State University, Manhattan, Kansas
| |
Collapse
|