1
|
Kapalaga G, Kivunike FN, Kerfua S, Jjingo D, Biryomumaisho S, Rutaisire J, Ssajjakambwe P, Mugerwa S, Kiwala Y. A unified Foot and Mouth Disease dataset for Uganda: evaluating machine learning predictive performance degradation under varying distributions. Front Artif Intell 2024; 7:1446368. [PMID: 39144542 PMCID: PMC11322090 DOI: 10.3389/frai.2024.1446368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 07/09/2024] [Indexed: 08/16/2024] Open
Abstract
In Uganda, the absence of a unified dataset for constructing machine learning models to predict Foot and Mouth Disease outbreaks hinders preparedness. Although machine learning models exhibit excellent predictive performance for Foot and Mouth Disease outbreaks under stationary conditions, they are susceptible to performance degradation in non-stationary environments. Rainfall and temperature are key factors influencing these outbreaks, and their variability due to climate change can significantly impact predictive performance. This study created a unified Foot and Mouth Disease dataset by integrating disparate sources and pre-processing data using mean imputation, duplicate removal, visualization, and merging techniques. To evaluate performance degradation, seven machine learning models were trained and assessed using metrics including accuracy, area under the receiver operating characteristic curve, recall, precision and F1-score. The dataset showed a significant class imbalance with more non-outbreaks than outbreaks, requiring data augmentation methods. Variability in rainfall and temperature impacted predictive performance, causing notable degradation. Random Forest with borderline SMOTE was the top-performing model in a stationary environment, achieving 92% accuracy, 0.97 area under the receiver operating characteristic curve, 0.94 recall, 0.90 precision, and 0.92 F1-score. However, under varying distributions, all models exhibited significant performance degradation, with random forest accuracy dropping to 46%, area under the receiver operating characteristic curve to 0.58, recall to 0.03, precision to 0.24, and F1-score to 0.06. This study underscores the creation of a unified Foot and Mouth Disease dataset for Uganda and reveals significant performance degradation in seven machine learning models under varying distributions. These findings highlight the need for new methods to address the impact of distribution variability on predictive performance.
Collapse
Affiliation(s)
- Geofrey Kapalaga
- Department of Information Technology, College of Computing and Information Sciences, Makerere University, Kampala, Uganda
| | - Florence N. Kivunike
- Department of Information Technology, College of Computing and Information Sciences, Makerere University, Kampala, Uganda
| | - Susan Kerfua
- National Livestock Resources Research Institute, Kampala, Uganda
| | - Daudi Jjingo
- African Center of Excellence in Bioinformatics (ACE-B), Makerere University, Kampala, Uganda
- Department of Computer Science, College of Computing and Information Sciences, Makerere University, Kampala, Uganda
| | - Savino Biryomumaisho
- College of Veterinary Medicine, Animal Resources and Bio-Security, Makerere University, Kampala, Uganda
| | - Justus Rutaisire
- National Livestock Resources Research Institute, Kampala, Uganda
| | | | - Swidiq Mugerwa
- National Livestock Resources Research Institute, Kampala, Uganda
| | - Yusuf Kiwala
- College of Business and Management Sciences, Makerere University, Kampala, Uganda
| |
Collapse
|
2
|
Kabir A, Ullah K, Ali Kamboh A, Abubakar M, Shafiq M, Wang L. The Pathogenesis of Foot-and-Mouth Disease Virus Infection: How the Virus Escapes from Immune Recognition and Elimination. Arch Immunol Ther Exp (Warsz) 2024; 72:aite-2024-0013. [PMID: 38910298 DOI: 10.2478/aite-2024-0013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 04/22/2024] [Indexed: 06/25/2024]
Abstract
Foot-and-mouth disease virus (FMDV) is a highly contagious and economically devastating pathogen that affects cloven-hoofed animals worldwide. FMDV infection causes vesicular lesions in the mouth, feet, and mammary glands, as well as severe systemic symptoms such as fever, salivation, and lameness. The pathogenesis of FMDV infection involves complex interactions between the virus and the host immune system, which determine the outcome of the disease. FMDV has evolved several strategies to evade immune recognition and elimination, such as antigenic variation, receptor switching, immune suppression, and subversion of innate and adaptive responses. This review paper summarizes the current knowledge on the pathogenesis of FMDV infection and the mechanisms of immune evasion employed by the virus. It also discusses the challenges and opportunities for developing effective vaccines and therapeutics against this important animal disease.
Collapse
Affiliation(s)
- Abdul Kabir
- 1Department of Veterinary Microbiology, Faculty of Animal Husbandry and Veterinary Sciences, Sindh Agriculture University Tandojam, Sindh, Pakistan
| | - Kalim Ullah
- 2Laboratory of Human Virology and Oncology, Center of Pathogen Biology and Immunology, Institute of Basic Medical Research, Shantou University Medical College, Shantou, Guangdong, China
| | - Asghar Ali Kamboh
- 1Department of Veterinary Microbiology, Faculty of Animal Husbandry and Veterinary Sciences, Sindh Agriculture University Tandojam, Sindh, Pakistan
| | - Muhammad Abubakar
- 3Department of Microbiology, National Veterinary Laboratories, NVL, Islamabad, Pakistan
| | - Muhammad Shafiq
- 4Department of Pharmacology, Research Institute of Clinical Pharmacy, Shantou University Medical College, Shantou, China
| | - Li Wang
- 5Department of Dermatology, Beijing University of Chinese Medicine Shenzhen Hospital, Longgang, Shenzen, China
- 6Department of Dermatology, Shenzhen University General Hospital, Shenzhen University, Shenzen, China
| |
Collapse
|
3
|
Woldemariyam FT, Kariuki CK, Kamau J, De Vleeschauwer A, De Clercq K, Lefebvre DJ, Paeshuyse J. Epidemiological Dynamics of Foot-and-Mouth Disease in the Horn of Africa: The Role of Virus Diversity and Animal Movement. Viruses 2023; 15:v15040969. [PMID: 37112947 PMCID: PMC10143177 DOI: 10.3390/v15040969] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/11/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
The Horn of Africa is a large area of arid and semi-arid land, holding about 10% of the global and 40% of the entire African livestock population. The region's livestock production system is mainly extensive and pastoralist. It faces countless problems, such as a shortage of pastures and watering points, poor access to veterinary services, and multiple endemic diseases like foot-and-mouth disease (FMD). Foot-and-mouth disease is one of the most economically important livestock diseases worldwide and is endemic in most developing countries. Within Africa, five of the seven serotypes of the FMD virus (FMDV) are described, but serotype C is not circulating anymore, a burden unseen anywhere in the world. The enormous genetic diversity of FMDV is favored by an error-prone RNA-dependent RNA polymerase, intra-typic and inter-typic recombination, as well as the quasi-species nature of the virus. This paper describes the epidemiological dynamics of foot-and-mouth disease in the Horn of Africa with regard to the serotypes and topotypes distribution of FMDV, the livestock production systems practiced, animal movement, the role of wildlife, and the epidemiological complexity of FMD. Within this review, outbreak investigation data and serological studies confirm the endemicity of the disease in the Horn of Africa. Multiple topotypes of FMDV are described in the literature as circulating in the region, with further evolution of virus diversity predicted. A large susceptible livestock population and the presence of wild ungulates are described as complicating the epidemiology of the disease. Further, the husbandry practices and legal and illegal trading of livestock and their products, coupled with poor biosecurity practices, are also reported to impact the spread of FMDV within and between countries in the region. The porosity of borders for pastoralist herders fuels the unregulated transboundary livestock trade. There are no systematic control strategies in the region except for sporadic vaccination with locally produced vaccines, while literature indicates that effective control measures should also consider virus diversity, livestock movements/biosecurity, transboundary trade, and the reduction of contact with wild, susceptible ungulates.
Collapse
Affiliation(s)
- Fanos Tadesse Woldemariyam
- Laboratory of Host-Pathogen Interaction in Livestock, Division of Animal and Human Health Engineering, Department of Biosystems, KU Leuven, 3001 Leuven, Belgium
- College of Veterinary Medicine, Addis Ababa University, Bishoftu P.O. Box 34, Ethiopia
| | - Christopher Kinyanjui Kariuki
- Laboratory of Host-Pathogen Interaction in Livestock, Division of Animal and Human Health Engineering, Department of Biosystems, KU Leuven, 3001 Leuven, Belgium
- Institute of Primate Research, Karen, Nairobi P.O. Box 24481-00502, Kenya
| | - Joseph Kamau
- Institute of Primate Research, Karen, Nairobi P.O. Box 24481-00502, Kenya
- Department of Biochemistry, University of Nairobi, Nairobi P.O. Box 30197, Kenya
| | | | - Kris De Clercq
- Sciensano, Service for Exotic and Vector-Borne Diseases, 1050 Brussels, Belgium
| | - David J Lefebvre
- Sciensano, Service for Exotic and Vector-Borne Diseases, 1050 Brussels, Belgium
| | - Jan Paeshuyse
- Laboratory of Host-Pathogen Interaction in Livestock, Division of Animal and Human Health Engineering, Department of Biosystems, KU Leuven, 3001 Leuven, Belgium
| |
Collapse
|
4
|
Li Q, Wubshet AK, Wang Y, Heath L, Zhang J. B and T Cell Epitopes of the Incursionary Foot-and-Mouth Disease Virus Serotype SAT2 for Vaccine Development. Viruses 2023; 15:v15030797. [PMID: 36992505 PMCID: PMC10059872 DOI: 10.3390/v15030797] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/26/2023] [Accepted: 03/03/2023] [Indexed: 03/31/2023] Open
Abstract
Failure of cross-protection among interserotypes and intratypes of foot-and-mouth disease virus (FMDV) is a big threat to endemic countries and their prevention and control strategies. However, insights into practices relating to the development of a multi-epitope vaccine appear as a best alternative approach to alleviate the cross-protection-associated problems. In order to facilitate the development of such a vaccine design approach, identification and prediction of the antigenic B and T cell epitopes along with determining the level of immunogenicity are essential bioinformatics steps. These steps are well applied in Eurasian serotypes, but very rare in South African Territories (SAT) Types, particularly in serotype SAT2. For this reason, the available scattered immunogenic information on SAT2 epitopes needs to be organized and clearly understood. Therefore, in this review, we compiled relevant bioinformatic reports about B and T cell epitopes of the incursionary SAT2 FMDV and the promising experimental demonstrations of such designed and developed vaccines against this serotype.
Collapse
Affiliation(s)
- Qian Li
- Key Laboratory of Veterinary Etiological Biology, National/WOAH Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
| | - Ashenafi Kiros Wubshet
- Key Laboratory of Veterinary Etiological Biology, National/WOAH Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
- Department of Veterinary Basics and Diagnostic Sciences, College of Veterinary Science, Mekelle University, Mekelle 2084, Tigray, Ethiopia
| | - Yang Wang
- Key Laboratory of Veterinary Etiological Biology, National/WOAH Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
| | - Livio Heath
- Transboundary Animal Diseases: Vaccine Production Programme, Onderstepoort Veterinary Research Institute, Agricultural Research Council, Pretoria 0110, South Africa
| | - Jie Zhang
- Hebei Key Laboratory of Preventive Veterinary Medicine, College of Animal Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao 066004, China
| |
Collapse
|
5
|
Complete Coding Genome Sequences of Five Foot-and-Mouth Disease Viruses Belonging to Serotype O, Isolated from Cattle in Uganda in 2015 to 2016. Microbiol Resour Announc 2022; 11:e0044522. [PMID: 35863055 PMCID: PMC9387231 DOI: 10.1128/mra.00445-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Complete coding genome sequences of five foot-and-mouth disease virus (FMDV) serotype O strains that were isolated from the field between 2015 and 2016 showed five lineages within the EA-2 topotype circulating in four different regions (northern, western, eastern, and central) of Uganda. The genomic diversity may help in devising FMDV control strategies for Uganda.
Collapse
|
6
|
Outbreaks of Foot-and-Mouth Disease in Burundi, East Africa, in 2016, Caused by Different Serotypes. Viruses 2022; 14:v14051077. [PMID: 35632817 PMCID: PMC9143720 DOI: 10.3390/v14051077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/05/2022] [Accepted: 05/10/2022] [Indexed: 02/01/2023] Open
Abstract
Burundi is a small, densely populated country in the African Great Lakes region. In March 2016, several hundreds of cattle were reported with vesicular lesions, suggesting foot-and-mouth disease (FMD). Epithelial samples, saliva, and blood were collected in six of the affected provinces spread over the country. The overall seroprevalence of FMD virus (FMDV) in the affected herds, as determined by antibodies against FMDV non-structural proteins, was estimated at 87%. Antibodies against FMDV serotypes O (52%), A (44%), C (19%), SAT1 (36%), SAT2 (58%), and SAT3 (23%) were detected across the provinces. FMDV genome was detected in samples from five of the six provinces using rRT-PCR. FMDV was isolated from samples from three provinces: in Cibitoke province, serotypes A and SAT2 were isolated, while in Mwaro and Rutana provinces, only serotype SAT2 was isolated. In Bururi and Cankuzo provinces, the serological profile suggested a recent incursion with serotype SAT2, while in Bubanza province, the serological profile suggested past incursions with serotype O and possibly serotype SAT1. The phylogenetic assessments showed the presence of topotypes A/Africa/G-I and SAT2/IV, similarly to previously characterized virus strains from other countries in the region, suggesting a transboundary origin and necessitating a regional approach for vaccination and control of FMD.
Collapse
|
7
|
Ecological and Anthropogenic Spatial Gradients Shape Patterns of Dispersal of Foot-and-Mouth Disease Virus in Uganda. Pathogens 2022; 11:pathogens11050524. [PMID: 35631045 PMCID: PMC9143568 DOI: 10.3390/pathogens11050524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 04/26/2022] [Accepted: 04/27/2022] [Indexed: 02/04/2023] Open
Abstract
Using georeferenced phylogenetic trees, phylogeography allows researchers to elucidate interactions between environmental heterogeneities and patterns of infectious disease spread. Concordant with the increasing availability of pathogen genetic sequence data, there is a growing need for tools to test epidemiological hypotheses in this field. In this study, we apply tools traditionally used in ecology to elucidate the epidemiology of foot-and-mouth disease virus (FMDV) in Uganda. We analyze FMDV serotype O genetic sequences and their corresponding spatiotemporal metadata from a cross-sectional study of cattle. We apply step selection function (SSF) models, typically used to study wildlife habitat selection, to viral phylogenies to show that FMDV is more likely to be found in areas of low rainfall. Next, we use a novel approach, a resource gradient function (RGF) model, to elucidate characteristics of viral source and sink areas. An RGF model applied to our data reveals that areas of high cattle density and areas near livestock markets may serve as sources of FMDV dissemination in Uganda, and areas of low rainfall serve as viral sinks that experience frequent reintroductions. Our results may help to inform risk-based FMDV control strategies in Uganda. More broadly, these tools advance the phylogenetic toolkit, as they may help to uncover patterns of spread of other organisms for which genetic sequences and corresponding spatiotemporal metadata exist.
Collapse
|
8
|
Hole K, Nfon C, Rodriguez LL, Velazquez-Salinas L. A Multiplex Real-Time Reverse Transcription Polymerase Chain Reaction Assay With Enhanced Capacity to Detect Vesicular Stomatitis Viral Lineages of Central American Origin. Front Vet Sci 2022; 8:783198. [PMID: 34988142 PMCID: PMC8720762 DOI: 10.3389/fvets.2021.783198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 12/01/2021] [Indexed: 11/13/2022] Open
Abstract
Vesicular stomatitis virus (VSV) causes a disease in susceptible livestock that is clinically indistinguishable from foot-and-mouth disease. Rapid testing is therefore critical to identify VSV and rule out FMD. We previously developed and validated a multiplex real-time reverse transcription polymerase chain reaction assay (mRRT-PCR) for detection of both VS New Jersey virus (VSNJV) and VS Indiana virus (VSIV). However, it was subsequently apparent that this assay failed to detect some VSNJV isolates in Mexico, especially in genetic group II, lineage 2.1. In order to enhance the sensitivity of the mRRT-PCR for VSNJV, parts of the assay were redesigned and revalidated using new and improved PCR chemistries. The redesign markedly improved the assay by increasing the VSNJV detection sensitivity of lineage 2.1 and thereby allowing detection of all VSNJV clades. The new assay showed an increased capability to detect VSNJV. Specifically, the new mRRT-PCR detected VSNJV in 100% (87/87) of samples from Mexico in 2006-2007 compared to 74% for the previous mRRT-PCR. Furthermore, the analytical sensitivity of the new mRRT-PCR was enhanced for VSNJV. Importantly, the modified assay had the same sensitivity and specificity for VSIV as the previously published assay. Our results highlight the challenges the large genetic variability of VSV pose for virus detection by mRRT-PCR and show the importance of frequent re-evaluation and validation of diagnostic assays for VSV to ensure high sensitivity and specificity.
Collapse
Affiliation(s)
- Kate Hole
- National Centre for Foreign Animal Disease, Canadian Food Inspection Agency, Winnipeg, MB, Canada
| | - Charles Nfon
- National Centre for Foreign Animal Disease, Canadian Food Inspection Agency, Winnipeg, MB, Canada
| | - Luis L Rodriguez
- Foreign Animal Disease Research Unit, Plum Island Animal Disease Center, United States Department of Agriculture-Agricultural Research Service, Greenport, NY, United States
| | - Lauro Velazquez-Salinas
- Foreign Animal Disease Research Unit, Plum Island Animal Disease Center, United States Department of Agriculture-Agricultural Research Service, Greenport, NY, United States
| |
Collapse
|
9
|
Adamchick J, Rich KM, Perez AM. Assessment of the Risk of Foot and Mouth Disease among Beef Cattle at Slaughter from East African Production Systems. Viruses 2021; 13:v13122407. [PMID: 34960676 PMCID: PMC8706184 DOI: 10.3390/v13122407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/21/2021] [Accepted: 11/22/2021] [Indexed: 11/16/2022] Open
Abstract
Endemic foot and mouth disease (FMD) in East African cattle systems is one factor that limits access to export markets. The probability of FMD transmission associated with export from such systems have never been quantified and there is a need for data and analyses to guide strategies for livestock exports from regions where FMD remains endemic. The probability of infection among animals at slaughter is an important contributor to the risk of FMD transmission associated with the final beef product. In this study, we built a stochastic model to estimate the probability that beef cattle reach slaughter while infected with FMD virus for four production systems in two East African countries (Kenya and Uganda). Input values were derived from the primary literature and expert opinion. We found that the risk that FMD-infected animals reach slaughter under current conditions is high in both countries (median annual probability ranging from 0.05 among cattle from Kenyan feedlots to 0.62 from Ugandan semi-intensive systems). Cattle originating from feedlot and ranching systems in Kenya had the lowest overall probabilities of the eight systems evaluated. The final probabilities among cattle from all systems were sensitive to the likelihood of acquiring new infections en route to slaughter and especially the probability and extent of commingling with other cattle. These results give insight into factors that could be leveraged by potential interventions to lower the probability of FMD among beef cattle at slaughter. Such interventions should be evaluated considering the cost, logistics, and tradeoffs of each, ultimately guiding resource investment that is grounded in the values and capacity of each country.
Collapse
Affiliation(s)
- Julie Adamchick
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, Minneapolis, MN 55108, USA;
- Correspondence:
| | - Karl M. Rich
- Department of Agricultural Economics, Ferguson College of Agriculture, Oklahoma State University, Stillwater, OK 74078, USA;
| | - Andres M. Perez
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, Minneapolis, MN 55108, USA;
| |
Collapse
|
10
|
Adamchick J, Pérez Aguirreburualde MS, Perez AM, O'Brien MK. One Coin, Two Sides: Eliciting Expert Knowledge From Training Participants in a Capacity-Building Program for Veterinary Professionals. Front Vet Sci 2021; 8:729159. [PMID: 34760954 PMCID: PMC8573137 DOI: 10.3389/fvets.2021.729159] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 09/27/2021] [Indexed: 11/28/2022] Open
Abstract
Scientific research may include the elicitation of judgment from non-academic subject-matter experts in order to improve the quality and/or impact of research studies. Elicitation of expert knowledge or judgment is used when data are missing, incomplete, or not representative for the specific setting and processes being studied. Rigorous methods are crucial to ensure robust study results, and yet the quality of the elicitation can be affected by a number of practical constraints, including the understanding that subject-matter experts have of the elicitation process itself. In this paper, we present a case of expert elicitation embedded within an extended training course for veterinary professionals as an example of overcoming these constraints. The coupling of the two activities enabled extended opportunities for training and a relationship of mutual respect to be the foundation for the elicitation process. In addition, the participatory research activities reinforced knowledge synthesis objectives of the educational program. Finally, the synergy between the two concurrent objectives may produce benefits which transcend either independent activity: solutions and ideas built by local professionals, evolving collaborative research and training approaches, and a network of diverse academic and practicing professionals. This approach has the versatility to be adapted to many training and research opportunities.
Collapse
Affiliation(s)
- Julie Adamchick
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, Saint Paul, MN, United States
| | - María Sol Pérez Aguirreburualde
- Center for Animal Health and Food Safety, College of Veterinary Medicine, University of Minnesota, Saint Paul, MN, United States
| | - Andres M. Perez
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, Saint Paul, MN, United States
| | - Mary Katherine O'Brien
- Center for Animal Health and Food Safety, College of Veterinary Medicine, University of Minnesota, Saint Paul, MN, United States
| |
Collapse
|
11
|
Adamchick J, Rich KM, Perez AM. Self-Reporting of Risk Pathways and Parameter Values for Foot-and-Mouth Disease in Slaughter Cattle from Alternative Production Systems by Kenyan and Ugandan Veterinarians. Viruses 2021; 13:v13112112. [PMID: 34834919 PMCID: PMC8621966 DOI: 10.3390/v13112112] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 10/09/2021] [Accepted: 10/13/2021] [Indexed: 01/07/2023] Open
Abstract
Countries in which foot-and-mouth disease (FMD) is endemic may face bans on the export of FMD-susceptible livestock and products because of the associated risk for transmission of FMD virus. Risk assessment is an essential tool for demonstrating the fitness of one’s goods for the international marketplace and for improving animal health. However, it is difficult to obtain the necessary data for such risk assessments in many countries where FMD is present. This study bridged the gaps of traditional participatory and expert elicitation approaches by partnering with veterinarians from the National Veterinary Services of Kenya (n = 13) and Uganda (n = 10) enrolled in an extended capacity-building program to systematically collect rich, local knowledge in a format appropriate for formal quantitative analysis. Participants mapped risk pathways and quantified variables that determine the risk of infection among cattle at slaughter originating from each of four beef production systems in each country. Findings highlighted that risk processes differ between management systems, that disease and sale are not always independent events, and that events on the risk pathway are influenced by the actions and motivations of value chain actors. The results provide necessary information for evaluating the risk of FMD among cattle pre-harvest in Kenya and Uganda and provide a framework for similar evaluation in other endemic settings.
Collapse
Affiliation(s)
- Julie Adamchick
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, Minneapolis, MN 55108, USA;
- Correspondence:
| | - Karl M. Rich
- Department of Agricultural Economics, Ferguson College of Agriculture, Oklahoma State University, Stillwater, OK 74078, USA;
| | - Andres M. Perez
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, Minneapolis, MN 55108, USA;
| |
Collapse
|
12
|
Munsey A, Mwiine FN, Ochwo S, Velazquez-Salinas L, Ahmed Z, Maree F, Rodriguez LL, Rieder E, Perez A, Dellicour S, VanderWaal K. Phylogeographic analysis of foot-and-mouth disease virus serotype O dispersal and associated drivers in East Africa. Mol Ecol 2021; 30:3815-3825. [PMID: 34008868 DOI: 10.1111/mec.15991] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 05/06/2021] [Accepted: 05/10/2021] [Indexed: 02/06/2023]
Abstract
The continued endemicity of foot and mouth disease virus (FMDV) in East Africa has significant implications for livestock production and poverty reduction, yet its complex epidemiology in endemic settings remains poorly understood. Identifying FMDV dispersal routes and drivers of transmission is key to improved control strategies. Environmental heterogeneity and anthropogenic drivers (e.g., demand for animal products) can impact viral spread by influencing host movements. Here, we utilized FMDV serotype O VP1 genetic sequences and corresponding spatiotemporal data in order to (i) infer the recent dispersal history, and (II) investigate the impact of external factors (cattle density, human population density, proximity to livestock markets, and drought) on dispersal velocity, location, and direction of FMDV serotype O in East Africa. We identified statistical evidence of long-distance transmission events, and we found that FMDV serotype O tends to remain circulating in areas of high cattle density, high human population density, and in close proximity to livestock markets. The latter two findings highlight the influence of anthropogenic factors on FMDV serotype O spread in this region. These findings contribute to the understanding of FMDV epidemiology in East Africa and can help guide improved control measures.
Collapse
Affiliation(s)
- Anna Munsey
- Veterinary Population Medicine Department, University of Minnesota College of Veterinary Medicine, St. Paul, MN, USA
| | - Frank Norbert Mwiine
- Makerere University College of Veterinary Medicine, Animal Resources and Biosecurity (COVAB), Kampala, Uganda
| | - Sylvester Ochwo
- Makerere University College of Veterinary Medicine, Animal Resources and Biosecurity (COVAB), Kampala, Uganda
| | - Lauro Velazquez-Salinas
- Veterinary Population Medicine Department, University of Minnesota College of Veterinary Medicine, St. Paul, MN, USA.,Foreign Animal Disease Research Unit, Plum Island Animal Disease Center, Agricultural Research Service (ARS), United States Department of Agriculture, Greenport, NY, USA
| | - Zaheer Ahmed
- Animal and Plant Health Inspection Services (APHIS), National Veterinary Services Laboratories, Foreign Animal Disease Diagnostic Laboratory, Plum Island Animal Disease Center, United States Department of Agriculture, Greenport, NY, USA
| | - Francois Maree
- Onderstepoort Veterinary Institute, Pretoria, South Africa
| | - Luis L Rodriguez
- Foreign Animal Disease Research Unit, Plum Island Animal Disease Center, Agricultural Research Service (ARS), United States Department of Agriculture, Greenport, NY, USA
| | - Elizabeth Rieder
- Foreign Animal Disease Research Unit, Plum Island Animal Disease Center, Agricultural Research Service (ARS), United States Department of Agriculture, Greenport, NY, USA
| | - Andres Perez
- Veterinary Population Medicine Department, University of Minnesota College of Veterinary Medicine, St. Paul, MN, USA
| | - Simon Dellicour
- Spatial Epidemiology Laboratory (SpELL), Université Libre de Bruxelles, Bruxelles, Belgium.,Department of Microbiology, Immunology and Transplantation, Laboratory for Clinical and Epidemiological Virology, Rega Institute, KU Leuven, Leuven, Belgium
| | - Kimberly VanderWaal
- Veterinary Population Medicine Department, University of Minnesota College of Veterinary Medicine, St. Paul, MN, USA
| |
Collapse
|
13
|
Sequence Analysis of Egyptian Foot-and-Mouth Disease Virus Field and Vaccine Strains: Intertypic Recombination and Evidence for Accidental Release of Virulent Virus. Viruses 2020; 12:v12090990. [PMID: 32899903 PMCID: PMC7552000 DOI: 10.3390/v12090990] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 08/29/2020] [Accepted: 09/02/2020] [Indexed: 01/24/2023] Open
Abstract
In spite of annual mass vaccination programs with polyvalent inactivated vaccines, the incidence and economic impact of foot-and-mouth disease (FMD) in Egypt is high. Viruses of the A, O and SAT 2 serotypes are endemic and repeated incursions of new lineages from other countries lead to an unstable situation that makes the selection of appropriate vaccine antigens very difficult. In this study, whole genome sequencing of a 2016 serotype A isolate from Egypt revealed a recombination event with an African serotype O virus. Based on available vaccine matching data, none of the vaccines currently used in Egypt are expected to sufficiently protect against this virus or other viruses of this lineage (A/AFRICA/G-IV) circulating there since 2012. In addition to the risk of vaccine failure caused by strain mismatch, the production of inactivated FMD vaccines is dangerous if adequate biosafety cannot be maintained. Using a high-throughput sequencing protocol optimized for short nucleic acid fragments, the composition of a local inactivated vaccine was analyzed in depth. The serotype O strain identified in the vaccine was genetically identical to viruses found in recent FMD outbreaks in Egypt.
Collapse
|
14
|
Velazquez-Salinas L, Mwiine FN, Ahmed Z, Ochwo S, Munsey A, Lutwama JJ, Perez AM, VanderWaal K, Rieder E. Genetic Diversity of Circulating Foot and Mouth Disease Virus in Uganda Cross-Sectional Study During 2014-2017. Front Vet Sci 2020; 7:162. [PMID: 32270002 PMCID: PMC7109301 DOI: 10.3389/fvets.2020.00162] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 03/05/2020] [Indexed: 01/23/2023] Open
Affiliation(s)
- Lauro Velazquez-Salinas
- Foreign Animal Disease Research Unit, USDA/ARS Plum Island Animal Disease Center, Greenport, NY, United States
- College of Veterinary Medicine, University of Minnesota, Minnesota, MN, United States
| | - Frank Norbert Mwiine
- College of Veterinary Medicine, Animal Resources and Biosecurity (COVAB), Makerere University, Kampala, Uganda
| | - Zaheer Ahmed
- Foreign Animal Disease Research Unit, USDA/ARS Plum Island Animal Disease Center, Greenport, NY, United States
| | - Sylvester Ochwo
- College of Veterinary Medicine, Animal Resources and Biosecurity (COVAB), Makerere University, Kampala, Uganda
| | - Anna Munsey
- College of Veterinary Medicine, University of Minnesota, Minnesota, MN, United States
| | - Julius J. Lutwama
- Department of Emerging and Re-emerging Diseases, Uganda Virus Research Institute, Entebbe, Uganda
| | - Andres M. Perez
- College of Veterinary Medicine, University of Minnesota, Minnesota, MN, United States
| | - Kimberly VanderWaal
- College of Veterinary Medicine, University of Minnesota, Minnesota, MN, United States
| | - Elizabeth Rieder
- Foreign Animal Disease Research Unit, USDA/ARS Plum Island Animal Disease Center, Greenport, NY, United States
| |
Collapse
|
15
|
Munsey A, Mwiine FN, Ochwo S, Velazquez-Salinas L, Ahmed Z, Maree F, Rodriguez LL, Rieder E, Perez A, VanderWaal K. Spatial distribution and risk factors for foot and mouth disease virus in Uganda: Opportunities for strategic surveillance. Prev Vet Med 2019; 171:104766. [PMID: 31541845 DOI: 10.1016/j.prevetmed.2019.104766] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 07/23/2019] [Accepted: 08/31/2019] [Indexed: 12/22/2022]
Abstract
Foot-and-mouth disease virus (FMDV) has a substantial impact on cattle populations in Uganda, causing short- and long-term production losses and hampering local and international trade. Although FMDV has persisted in Uganda for at least 60 years, its epidemiology there and in other endemic settings remains poorly understood. Here, we utilized a large-scale cross-sectional study of cattle to elucidate the dynamics of FMDV spread in Uganda. Sera samples (n = 14,439) from 211 herds were analyzed for non-structural protein reactivity, an indication of past FMDV exposure. Serological results were used to determine spatial patterns, and a Bayesian multivariable logistic regression mixed model was used to identify risk factors for FMDV infection. Spatial clustering of the disease was evident, with higher risk demonstrated near international borders. Additionally, high cattle density, low annual rainfall, and pastoralism were associated with increased likelihood of FMD seropositivity. These results provide insights into the complex epidemiology of FMDV in Uganda and will help inform refined control strategies in Uganda and other FMDV-endemic settings.
Collapse
Affiliation(s)
- Anna Munsey
- University of Minnesota College of Veterinary Medicine, 222 Veterinary Medical Center, 1365 Gortner Avenue, St. Paul, Minnesota, 55418, USA
| | - Frank Norbert Mwiine
- Makerere University College of Veterinary Medicine, Animal Resources and Biosecurity (COVAB), Makerere Hill Road, P.O. Box 7062, Kampala, Uganda
| | - Sylvester Ochwo
- Makerere University College of Veterinary Medicine, Animal Resources and Biosecurity (COVAB), Makerere Hill Road, P.O. Box 7062, Kampala, Uganda
| | - Lauro Velazquez-Salinas
- Agricultural Research Service (ARS), Foreign Animal Disease Research Unit, United States Department of Agriculture, Plum Island Animal Disease Center, P.O. Box 848, Greenport, NY, 11948, USA
| | - Zaheer Ahmed
- Animal and Plant Health Inspection Services (APHIS), National Veterinary Services Laboratories, Foreign Animal Disease Diagnostic Lab, United States Department of Agriculture, Plum Island Animal Disease Center, P.O. Box 848, Greenport, NY, 11948, USA
| | - Francois Maree
- Onderstepoort Veterinary Institute, 100 Soutpan Road, Pretoria, 0002, South Africa
| | - Luis L Rodriguez
- Agricultural Research Service (ARS), Foreign Animal Disease Research Unit, United States Department of Agriculture, Plum Island Animal Disease Center, P.O. Box 848, Greenport, NY, 11948, USA
| | - Elizabeth Rieder
- Agricultural Research Service (ARS), Foreign Animal Disease Research Unit, United States Department of Agriculture, Plum Island Animal Disease Center, P.O. Box 848, Greenport, NY, 11948, USA
| | - Andres Perez
- University of Minnesota College of Veterinary Medicine, 222 Veterinary Medical Center, 1365 Gortner Avenue, St. Paul, Minnesota, 55418, USA
| | - Kimberly VanderWaal
- University of Minnesota College of Veterinary Medicine, 222 Veterinary Medical Center, 1365 Gortner Avenue, St. Paul, Minnesota, 55418, USA.
| |
Collapse
|