1
|
Moens C, Bogaerts B, Lorente-Leal V, Vanneste K, De Keersmaecker SCJ, Roosens NHC, Mostin L, Fretin D, Marché S. Genomic comparison between Mycobacterium bovis and Mycobacterium microti and in silico analysis of peptide-based biomarkers for serodiagnosis. Front Vet Sci 2024; 11:1446930. [PMID: 39372902 PMCID: PMC11449866 DOI: 10.3389/fvets.2024.1446930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 08/28/2024] [Indexed: 10/08/2024] Open
Abstract
In recent years, there has been an increase in the number of reported cases of Mycobacterium microti infection in various animals, which can interfere with the ante-mortem diagnosis of animal tuberculosis caused by Mycobacterium bovis. In this study, whole genome sequencing (WGS) was used to search for protein-coding genes to distinguish M. microti from M. bovis. In addition, the population structure of the available M. microti genomic WGS datasets is described, including three novel Belgian isolates from infections in alpacas. Candidate genes were identified by examining the presence of the regions of difference and by a pan-genome analysis of the available WGS data. A total of 80 genes showed presence-absence variation between the two species, including genes encoding Proline-Glutamate (PE), Proline-Proline-Glutamate (PPE), and Polymorphic GC-Rich Sequence (PE-PGRS) proteins involved in virulence and host interaction. Filtering based on predicted subcellular localization, sequence homology and predicted antigenicity resulted in 28 proteins out of 80 that were predicted to be potential antigens. As synthetic peptides are less costly and variable than recombinant proteins, an in silico approach was performed to identify linear and discontinuous B-cell epitopes in the selected proteins. From the 28 proteins, 157 B-cell epitope-based peptides were identified that discriminated between M. bovis and M. microti species. Although confirmation by in vitro testing is still required, these candidate synthetic peptides containing B-cell epitopes could potentially be used in serological tests to differentiate cases of M. bovis from M. microti infection, thus reducing misdiagnosis in animal tuberculosis surveillance.
Collapse
Affiliation(s)
- Charlotte Moens
- Laboratory of Veterinary Bacteriology, Department of Animal Infectious Diseases, Sciensano, Brussels, Belgium
- Laboratory of Biochemistry and Genetics of Microorganisms, Louvain Institute of Biomolecular Science and Technology, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Bert Bogaerts
- Transversal Activities in Applied Genomics, Sciensano, Brussels, Belgium
| | - Victor Lorente-Leal
- VISAVET Health Surveillance Centre, Complutense University of Madrid, Madrid, Spain
| | - Kevin Vanneste
- Transversal Activities in Applied Genomics, Sciensano, Brussels, Belgium
| | | | | | - Laurent Mostin
- Experimental Center Machelen, Sciensano, Machelen, Belgium
| | - David Fretin
- Laboratory of Veterinary Bacteriology, Department of Animal Infectious Diseases, Sciensano, Brussels, Belgium
| | - Sylvie Marché
- Laboratory of Veterinary Bacteriology, Department of Animal Infectious Diseases, Sciensano, Brussels, Belgium
| |
Collapse
|
2
|
Konieczny K, Pomorska-Mól M. A Literature Review of Selected Bacterial Diseases in Alpacas and Llamas-Epidemiology, Clinical Signs and Diagnostics. Animals (Basel) 2023; 14:45. [PMID: 38200776 PMCID: PMC10778254 DOI: 10.3390/ani14010045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/17/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024] Open
Abstract
The breeding of South American Camelids (SACs), particularly llamas and alpacas, is becoming increasingly popular in regions that are not their natural habitat, including Europe. These animals are considered to be relatively disease resistant. However, due to their growing popularity, special attention should be given to infections in llamas and alpacas. Knowledge of bacterial infections is very important to veterinarians and breeders. Many of these diseases also have zoonotic potential, so these animals must be considered as sources of potential zoonotic infections. Due to the limited information on many diseases occurring in llamas and alpacas, veterinarians often rely on data collected in other animal species, focusing on cattle, sheep and horses. This work aims to summarise the knowledge of diseases caused by Clostridium spp., Mycobacterium tuberculosis complex, Mycobacterium avium subsp. paratuberculosis, Streptococcus spp., Escherichia coli, Pasteurella multocida, Manheimia haemolytica and Corynebacterium pseudotuberculosis in llamas and alpacas, with particular attention to epidemiology, clinical signs and diagnostics.
Collapse
Affiliation(s)
- Kacper Konieczny
- Department of Internal Diseases and Diagnostics, Poznan University of Life Sciences, Wolynska 35, 60-637 Poznan, Poland;
| | - Małgorzata Pomorska-Mól
- Department of Preclinical Sciences and Infectious Diseases, Poznan University of Life Sciences, Wolynska 35, 60-637 Poznan, Poland
| |
Collapse
|
3
|
Moens C, Filée P, Boes A, Alie C, Dufrasne F, André E, Marché S, Fretin D. Identification of New Mycobacterium bovis antigens and development of a multiplexed serological bead-immunoassay for the diagnosis of bovine tuberculosis in cattle. PLoS One 2023; 18:e0292590. [PMID: 37812634 PMCID: PMC10561873 DOI: 10.1371/journal.pone.0292590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 09/25/2023] [Indexed: 10/11/2023] Open
Abstract
Serological assays for bovine tuberculosis diagnosis require the use of multiple Mycobacterium bovis specific antigens to ensure the detection of infected animals. In the present study, identification and selection process of antigens, based on data from published proteomic studies and involving the use of bioinformatics tools and an immuno-screening step, was firstly performed for identifying novel antigens that elicit an antibody response in M. bovis infection. Based on this approach, a panel of 10 M. bovis antigens [with known relevance (MPB70, MPB83, MPB70/83, and ESAT6/CFP10) and novel (Mb1961c, Mb1301c, Mb3871, Mb1403, Mb0592, and PE25/PPE41)] were constructed and thenused to develop a new multiplexed serological assay based on Luminex technology. The performance of the Luminex-bTB immunoassay was evaluated using sera from cattle with known tuberculosis status. Among the proteins whose ability to detect bovine tuberculosis was evaluated for the first time, PE25/PPE41 and Mb1403, but not Mb3871, showed good detection capacity. Following multiple antigen combination, the final Luminex-bTB immunoassay included seven antigens (MPB70, MPB83, MPB70/83, ESAT6/CFP10, PE25/PPE41, Mb1403, and Mb0592) and showed better global performance than the immunoassay using the four usual antigens (MPB70, MPB70/83, MPB83 and ESAT6/CFP10). The specificity and sensitivity values were, respectively, of 97.6% and 42.8% when the cut-off of two-positive antigens was used to classify samples as positive. With the use of the more-restrictive criterion of three-positive antigens, the specificity increased to 99.2% but the sensitivity decreased to 23.9%. The analysis of antigen profiles generated with the Luminex-bTB immunoassay showed that mainly serodominant proteins were recognized in samples from infected cattle. The detection of Mb1961c and Mb1301c appeared to be associated with presumed false-positive results. Moreover, sera from cattle originating from bTB-outbreaks but having inconclusive or negative skin test results were identified as positive by the Luminex-bTB immunoassay and showed an antigen pattern associated with M. bovis infection. The Luminex-bTB immunoassay including seven antigens may be useful as adjunct test for the detection of M. bovis-infected herds, and different cut-offs could be applied according to the bovine tuberculosis epidemiological context.
Collapse
Affiliation(s)
- Charlotte Moens
- Department of Animal Infectious Diseases, Laboratory of Veterinary Bacteriology, National Institute for Public Health (Sciensano), Brussels, Belgium
- Laboratory of Biochemistry and Genetics of Microorganisms, Louvain Institute of Biomolecular Science and Technology, UCLouvain, Louvain-la-Neuve, Belgium
| | - Patrice Filée
- Laboratory of Immuno-Biology, CER Groupe, Aye, Belgium
| | - Adrien Boes
- Laboratory of Immuno-Biology, CER Groupe, Aye, Belgium
| | | | - François Dufrasne
- Department of Human Infectious Diseases, Laboratory of Viral Diseases, National Institute for Public Health (Sciensano), Brussels, Belgium
| | - Emmanuel André
- Department of Microbiology, Immunology and Transplantation, Laboratory of Clinical Microbiology, KU Leuven, Leuven, Belgium
| | - Sylvie Marché
- Department of Animal Infectious Diseases, Laboratory of Veterinary Bacteriology, National Institute for Public Health (Sciensano), Brussels, Belgium
| | - David Fretin
- Department of Animal Infectious Diseases, Laboratory of Veterinary Bacteriology, National Institute for Public Health (Sciensano), Brussels, Belgium
| |
Collapse
|
4
|
Pławińska-Czarnak J, Wódz K, Strzałkowska Z, Żychska M, Nowak T, Kwieciński A, Kwieciński P, Bielecki W, Rodo A, Rzewuska M, Kłosińska D, Anusz K, Orłowska B. Comparison of automatic methods MALDI-TOF, VITEK2 and manual methods for the identification of intestinal microbial communities on the example of samples from alpacas ( Vicugna pacos). J Vet Res 2023; 67:361-372. [PMID: 37786852 PMCID: PMC10541665 DOI: 10.2478/jvetres-2023-0051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 08/22/2023] [Indexed: 10/04/2023] Open
Abstract
Introduction Universally, in microbiological diagnostics the detection of live bacteria is essential. Rapid identification of pathogens enables appropriate remedial measures to be taken. The identification of many bacteria simultaneously facilitates the determination of the characteristics of the accompanying microbiota and/or the microbiological complexity of a given environment. Material and Methods The effectiveness of the VITEK2 Compact automated microbial identification system and matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry (MALDI-TOF MS), analytical profile index (API) and Remel RapID tests were compared in identification of bacteria isolated from the alpaca gastrointestinal tract. Results Most isolates were Gram-positive, such as Bacillus cereus, Bacillus flexus, Bacillus licheniformis, Bacillus pumilus and Bacillus subtilis; Enterococcus faecium, Enterococcus gallinarum, Enterococcus hirae and Enterococcus casseliflavus; Staphylococcus aureus, Staphylococcus equorum, Staphylococcus lentus, Staphylococcus pseudintermedius and Staphylococcus sciuri; Paenibacillus amylolyticus; Cellulosimicrobium cellulans; Leuconostoc mesenteroides; Clostridium perfringens; Corynebacterium stationis, Corynebacterium xerosis, and Corynebacterium diphtheriae (the last only isolated manually by API Coryne and the VITEK2 system and Corynebacteria (CBC) card). Corynebacterium diphtheriae was misidentified by MALDI-TOF MS as Candida lipolytica (currently Yarrowia lipolytica). Gram-positive and Gram-variable Micrococcus luteus were also isolated. Gram-negative Enterobacter cloacae, Enterobacter gergoviae, Enterobacter hormaechei and Enterobacter ludwigii; E. coli; Klebsiella pneumoniae subsp. pneumoniae; Citrobacter braakii and Citrobacter freundii; Serratia liquefaciens, Serratia odorifera and Serratia marcescens; Morganella morganii subsp. morganii; Providencia alcalifaciens; Pseudomonas aeruginosa; Stenotrophomonas maltophilia; Moraxella osloensis; and Ochrobactrum intermedium were also found. The yeasts Candida albicans, Candida haemulonii and Candida ciferrii were also present. Conclusion MALDI-TOF MS enabled the identification of pathogens and opportunistic pathogens from the alpaca gut which may represent a high risk to human and animal health.
Collapse
Affiliation(s)
| | - Karolina Wódz
- Laboratory of Molecular Biology, Vet-Lab Brudzew, 62-720Brudzew, Poland
| | | | - Monika Żychska
- Laboratory of Veterinary Epidemiology and Economic, Institute of Veterinary Medicine, Warsaw University of Life Sciences, 02-786Warsaw, Poland
| | - Tomasz Nowak
- Laboratory of Molecular Biology, Vet-Lab Brudzew, 62-720Brudzew, Poland
| | - Adam Kwieciński
- Laboratory of Molecular Biology, Vet-Lab Brudzew, 62-720Brudzew, Poland
| | - Piotr Kwieciński
- Laboratory of Molecular Biology, Vet-Lab Brudzew, 62-720Brudzew, Poland
| | - Wojciech Bielecki
- Department of Pathology and Veterinary Diagnostics, Institute of Veterinary Medicine, Warsaw University of Life Sciences, 02-776Warsaw, Poland
| | - Anna Rodo
- Department of Pathology and Veterinary Diagnostics, Institute of Veterinary Medicine, Warsaw University of Life Sciences, 02-776Warsaw, Poland
| | - Magdalena Rzewuska
- Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, 02-787Warsaw, Poland
| | - Daria Kłosińska
- Division of Histology and Embryology, Department of Morphological Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences, 02-776Warsaw, Poland
| | - Krzysztof Anusz
- Department of Food Hygiene and Public Health Protection, Warsaw, Poland
| | - Blanka Orłowska
- Department of Food Hygiene and Public Health Protection, Warsaw, Poland
| |
Collapse
|
5
|
First Insight into Diversity of Minisatellite Loci in Mycobacterium bovis/ M. caprae in Bulgaria. Diagnostics (Basel) 2023; 13:diagnostics13040771. [PMID: 36832259 PMCID: PMC9955489 DOI: 10.3390/diagnostics13040771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/13/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
The aim of this study was to assess the diversity of minisatellite VNTR loci in Mycobacterium bovis/M. caprae isolates in Bulgaria and view their position within global M. bovis diversity. Forty-three M. bovis/M. caprae isolates from cattle in different farms in Bulgaria were collected in 2015-2021 and typed in 13 VNTR loci. The M. bovis and M. caprae branches were clearly separated on the VNTR phylogenetic tree. The larger and more geographically dispersed M. caprae group was more diverse than M. bovis group was (HGI 0.67 vs. 0.60). Overall, six clusters were identified (from 2 to 19 isolates) and nine orphans (all loci-based HGI 0.79). Locus QUB3232 was the most discriminatory one (HGI 0.64). MIRU4 and MIRU40 were monomorphic, and MIRU26 was almost monomorphic. Four loci (ETRA, ETRB, Mtub21, and MIRU16) discriminated only between M. bovis and M. caprae. The comparison with published VNTR datasets from 11 countries showed both overall heterogeneity between the settings and predominantly local evolution of the clonal complexes. To conclude, six loci may be recommended for primary genotyping of M. bovis/M. caprae isolates in Bulgaria: ETRC, QUB11b, QUB11a, QUB26, QUB3232, and MIRU10 (HGI 0.77). VNTR typing based on a limited number of loci appears to be useful for primary bTB surveillance.
Collapse
|
6
|
Borham M, Oreiby A, El-Gedawy A, Hegazy Y, Khalifa HO, Al-Gaabary M, Matsumoto T. Review on Bovine Tuberculosis: An Emerging Disease Associated with Multidrug-Resistant Mycobacterium Species. Pathogens 2022; 11:pathogens11070715. [PMID: 35889961 PMCID: PMC9320398 DOI: 10.3390/pathogens11070715] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 06/16/2022] [Accepted: 06/18/2022] [Indexed: 12/26/2022] Open
Abstract
Bovine tuberculosis is a serious infectious disease affecting a wide range of domesticated and wild animals, representing a worldwide economic and public health burden. The disease is caused by Mycobacteriumbovis and infrequently by other pathogenic mycobacteria. The problem of bovine tuberculosis is complicated when the infection is associated with multidrug and extensively drug resistant M. bovis. Many techniques are used for early diagnosis of bovine tuberculosis, either being antemortem or postmortem, each with its diagnostic merits as well as limitations. Antemortem techniques depend either on cellular or on humoral immune responses, while postmortem diagnosis depends on adequate visual inspection, palpation, and subsequent diagnostic procedures such as bacterial isolation, characteristic histopathology, and PCR to reach the final diagnosis. Recently, sequencing and bioinformatics tools have gained increasing importance for the diagnosis of bovine tuberculosis, including, but not limited to typing, detection of mutations, phylogenetic analysis, molecular epidemiology, and interactions occurring within the causative mycobacteria. Consequently, the current review includes consideration of bovine tuberculosis as a disease, conventional and recent diagnostic methods, and the emergence of MDR-Mycobacterium species.
Collapse
Affiliation(s)
- Mohamed Borham
- Bacteriology Department, Animal Health Research Institute Matrouh Lab, Matrouh 51511, Egypt;
| | - Atef Oreiby
- Department of Animal Medicine (Infectious Diseases), Faculty of Veterinary Medicine, Kafrelsheikh University, Kafr El-Sheik 33516, Egypt; (A.O.); (Y.H.); (M.A.-G.)
| | - Attia El-Gedawy
- Bacteriology Department, Animal Health Research Institute, Giza 12618, Egypt;
| | - Yamen Hegazy
- Department of Animal Medicine (Infectious Diseases), Faculty of Veterinary Medicine, Kafrelsheikh University, Kafr El-Sheik 33516, Egypt; (A.O.); (Y.H.); (M.A.-G.)
| | - Hazim O. Khalifa
- Department of Infectious Diseases, Graduate School of Medicine, International University of Health and Welfare, Narita 286-0048, Japan
- Department of Pharmacology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Higashimurayama, Tokyo 189-0002, Japan
- Correspondence: (H.O.K.); (T.M.)
| | - Magdy Al-Gaabary
- Department of Animal Medicine (Infectious Diseases), Faculty of Veterinary Medicine, Kafrelsheikh University, Kafr El-Sheik 33516, Egypt; (A.O.); (Y.H.); (M.A.-G.)
| | - Tetsuya Matsumoto
- Department of Infectious Diseases, Graduate School of Medicine, International University of Health and Welfare, Narita 286-0048, Japan
- Correspondence: (H.O.K.); (T.M.)
| |
Collapse
|
7
|
Fatal Infection in an Alpaca (Vicugna pacos) Caused by Pathogenic Rhodococcus equi. Animals (Basel) 2022; 12:ani12101303. [PMID: 35625149 PMCID: PMC9137691 DOI: 10.3390/ani12101303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 05/05/2022] [Accepted: 05/13/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary Serious consequences of septicemic bacterial infections include the formation of purulent and pyogranulomatous inflammation resulting in abscesses in inner organs. Different bacteria are known to cause these infections in livestock. In this study, we report in detail on a case of a fatal Rhodococcus (R.) equi infection in an alpaca (Vicugna pacos), to our knowledge, for the first time. R. equi is a member of the actinomycetes, a bacterial group known to contain several pathogenic bacteria. R. equi primarily affects equine foals and other domestic animals, but also humans, which renders this bacterium a zoonotic agent. The rhodococcal infection of the alpaca reported herein caused septicemia, resulting in emaciation and severe lesions in the lungs and heart. The onset of infection was presumably caused by aspiration pneumonia, resulting in abscesses exclusively in the lungs. The R. equi isolate proved to be pathogenic, based on the virulence gene vapA encoding the virulence-associated protein A. Antibiotic susceptibility testing revealed a susceptibility to doxycycline, erythromycin, gentamycin, neomycin, rifampicin, trimethoprim/sulfamethoxazole, tetracycline and vancomycin. This report of an R. equi infection in an alpaca makes clear that we still have knowledge gaps about bacterial infectious diseases in alpacas and potential zoonotic impacts. Therefore, the determination of pathogenic, zoonotic bacteria in alpacas is essential for treatment and preventive measures with respect to sustaining the health, welfare and productivity of this camelid species. Abstract Rhodococcus (R.) equi is a pathogen primarily known for infections in equine foals, but is also present in numerous livestock species including New World camelids. Moreover, R. equi is considered an emerging zoonotic pathogen. In this report, we describe in detail a fatal rhodococcal infection in an alpaca (Vicugna pacos), to our best knowledge, for the first time. The alpaca died due to a septicemic course of an R. equi infection resulting in emaciation and severe lesions including pyogranulomas in the lungs and pericardial effusion. The onset of the infection was presumably caused by aspiration pneumonia. R. equi could be isolated from the pyogranulomas in the lung and unequivocally identified by MALDI-TOF MS analysis and partial sequencing of the 16S rRNA gene, the 16S-23S internal transcribed spacer (ITS) region and the rpoB gene. The isolate proved to possess the vapA gene in accordance with tested isolates originating from the lungs of infected horses. The R. equi isolates revealed low minimal inhibitory concentrations (MIC values) for doxycycline, erythromycin, gentamycin, neomycin, rifampicin, trimethoprim/sulfamethoxazole, tetracycline and vancomycin in antibiotic susceptibility testing. Investigations on the cause of bacterial, especially fatal, septicemic infections in alpacas are essential for adequately addressing the requirements for health and welfare issues of this New World camelid species. Furthermore, the zoonotic potential of R. equi has to be considered with regard to the One Health approach.
Collapse
|
8
|
The potential risk of international spread of Mycobacterium bovis associated with movement of alpacas. J Vet Res 2022; 66:53-59. [PMID: 35434415 PMCID: PMC8959691 DOI: 10.2478/jvetres-2022-0012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 03/01/2022] [Indexed: 02/02/2023] Open
Abstract
Introduction The study highlights the transboundary nature of tuberculosis (TB) in alpacas and the failure of current ante-mortem testing protocols (the tuberculin skin and Enferplex Camelid TB tests) to identify TB-free alpaca herds and individuals for export. Our research and the available literature indicate that the alpaca (Vicugna pacos) is extremely susceptible to Mycobacterium bovis infection, and that testing periodicity fails to take into account that animals do not manifest disease symptoms for a long time. The skin test failed to identify Mycobacterium bovis infection in two alpacas prior to their movement from the UK to Poland. The animals were purchased by a breeding centre in Poland, and were then shown at an international animal exhibition. The last owner of the alpacas before their deaths from TB bought the infected animals unwittingly in order to run rehabilitation activities with disabled children on his farm. Material and Methods Thoracic lymph node, lung and liver tissue samples obtained at necropsy were examined histopathologically after Ziehl–Neelsen staining. Tissue samples were homogenised and mycobacteria present there were cultured on Stonebrink’s medium during a 6-week incubation. A commercial test using polymorphism of the chromosomal direct repeat region provided species identification and additional identification was by spacer oligonucleotide typing and mycobacteria interspersed repetitive unit–variable number tandem repeat analysis with a gel electrophoresis protocol. Results The microbiological examination confirmed multiorgan TB caused by the SB0666 spoligotype of Mycobacterium bovis. Conclusion Due to the suboptimal performance of current diagnostic tests for TB in alpacas, there is a risk that infected animals may be moved unwittingly. A risk of TB spread associated with the international movement of alpacas is implied by this study.
Collapse
|
9
|
Intra-Palpebral Tuberculin Skin Test and Interferon Gamma Release Assay in Diagnosing Tuberculosis due to Mycobacterium caprae in European Bison (Bison bonasus). Pathogens 2022; 11:pathogens11020260. [PMID: 35215202 PMCID: PMC8875822 DOI: 10.3390/pathogens11020260] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 02/15/2022] [Accepted: 02/16/2022] [Indexed: 12/03/2022] Open
Abstract
Despite the threat posed by tuberculosis (TB) to the protected European bison (Bison bonasus), no validated TB tests exist for this species. This pilot study evaluates two tests based on detecting cellular immunity for this purpose: interferon gamma release assay (IGRA) and tuberculin skin test (TST). Ten animals were subjected to ante-mortem and post-mortem examinations. IGRA was performed using a commercial test, and the comparative TST was performed in the eyelids. The lesions were assessed post-mortem and material was collected for mycobacterial culture. The isolated strains were subjected to genotyping. At post-mortem examination, five out of ten individuals demonstrated both tuberculous lesions and positive culture results (Mycobacterium caprae). Compared to the palpebral TST, the findings of the IGRA are easier to interpret when diagnosing tuberculosis in European bison.
Collapse
|
10
|
Didkowska A, Krajewska-Wędzina M, Klich D, Prolejko K, Orłowska B, Anusz K. The Risk of False-Positive Serological Results for Paratuberculosis in Mycobacterium bovis-Infected Cattle. Pathogens 2021; 10:pathogens10081054. [PMID: 34451518 PMCID: PMC8399313 DOI: 10.3390/pathogens10081054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/11/2021] [Accepted: 08/18/2021] [Indexed: 11/19/2022] Open
Abstract
Both bovine tuberculosis (BTB) and paratuberculosis (paraTB) continue to cause significant economic losses in cattle breeding; in addition, their etiological agents have zoonotic potential. Although the diagnostics of both diseases are still being improved, problems still remain, such as the potential for cross-reactivity to the antigens used in tests. The aim of the present study was to confirm whether animals known to harbor Mycobacterium bovis antibodies are at increased risk of yielding positive results in paraTB serotesting and, additionally, to verify the accuracy of three commonly used methods for confirming M. bovis infection: ELISA, the tuberculin skin test (TST), and the presence of gross lesions. Material was collected from 98 dairy cattle suspected of BTB due to TST-positive results. During postmortem examination, gross lesions were assessed visually. Blood, lymph nodes, and TB-suspected organs were collected. Serum was obtained from the collected blood and tested serologically for TB and paraTB. The tissues underwent standard microbiological testing for M. tuberculosis complex. Among the 98 TST-positive individuals, tuberculous gross lesions were detected in 57 (58.1%), MTBC were isolated in 83 (84.7%), and the ELISA test was positive for 21 (21.4%). None of the lesions characteristic for paraTB were detected. The chance of obtaining a positive TB result by ELISA was seven times higher using the ELISA-paraTB method; hence, there is a significant risk of obtaining false-positive serological results for paraTB in M. bovis-infected cattle. However, the hypothesis that infection of M. bovis or prior TST performance may have boosted the host immune response and therefore increased the sensitivity of the paraTB-ELISA cannot be excluded.
Collapse
Affiliation(s)
- Anna Didkowska
- Department of Food Hygiene and Public Health Protection, Institute of Veterinary Medicine, Warsaw University of Life Sciences (SGGW), 02-776 Warsaw, Poland; (K.P.); (B.O.); (K.A.)
- Correspondence:
| | | | - Daniel Klich
- Department of Animal Genetics and Conservation, Institute of Animal Sciences, Warsaw University of Life Sciences (SGGW), 02-786 Warsaw, Poland;
| | - Kinga Prolejko
- Department of Food Hygiene and Public Health Protection, Institute of Veterinary Medicine, Warsaw University of Life Sciences (SGGW), 02-776 Warsaw, Poland; (K.P.); (B.O.); (K.A.)
| | - Blanka Orłowska
- Department of Food Hygiene and Public Health Protection, Institute of Veterinary Medicine, Warsaw University of Life Sciences (SGGW), 02-776 Warsaw, Poland; (K.P.); (B.O.); (K.A.)
| | - Krzysztof Anusz
- Department of Food Hygiene and Public Health Protection, Institute of Veterinary Medicine, Warsaw University of Life Sciences (SGGW), 02-776 Warsaw, Poland; (K.P.); (B.O.); (K.A.)
| |
Collapse
|
11
|
Tazerart F, Saad J, Sahraoui N, Yala D, Niar A, Drancourt M. Whole Genome Sequence Analysis of Mycobacterium bovis Cattle Isolates, Algeria. Pathogens 2021; 10:pathogens10070802. [PMID: 34202816 PMCID: PMC8308521 DOI: 10.3390/pathogens10070802] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/11/2021] [Accepted: 06/18/2021] [Indexed: 11/16/2022] Open
Abstract
Mycobacterium bovis (M. bovis), a Mycobacterium tuberculosis complex species responsible for tuberculosis in cattle and zoonotic tuberculosis in humans, is present in Algeria. In Algeria however, the M. bovis population structure is unknown, limiting understanding of the sources and transmission of bovine tuberculosis. In this study, we identified the whole genome sequence (WGS) of 13 M. bovis strains isolated from animals exhibiting lesions compatible with tuberculosis, which were slaughtered and inspected in five slaughterhouses in Algeria. We found that six isolates were grouped together with reference clinical strains of M. bovis genotype-Unknown2. One isolate was related to M. bovis genotype-Unknown7, one isolate was related to M. bovis genotype-Unknown4, three isolates belonged to M. bovis genotype-Europe 2 and there was one new clone for two M. bovis isolates. Two isolates from Blida exhibited no pairwise differences in single nucleotide polymorphisms. None of these 13 isolates were closely related to four zoonotic M. bovis isolates previously characterized in Algeria. In Algeria, the epidemiology of bovine tuberculosis in cattle is partly driven by cross border movements of animals and animal products.
Collapse
Affiliation(s)
- Fatah Tazerart
- Laboratoire d’Agro Biotechnologie et de Nutrition des Zones Semi Arides, Université Ibn Khaldoun, Tiaret 14000, Algeria;
- Institut des Sciences Vétérinaires, Université de Blida 1, Blida 09000, Algeria;
- Institut Hospitalo-Universitaire Méditerranée Infection, 13005 Marseille, France;
| | - Jamal Saad
- Institut Hospitalo-Universitaire Méditerranée Infection, 13005 Marseille, France;
- Faculté de Médecine, Aix-Marseille-Université, IHU Méditerranée Infection, 13005 Marseille, France
| | - Naima Sahraoui
- Institut des Sciences Vétérinaires, Université de Blida 1, Blida 09000, Algeria;
| | - Djamel Yala
- Laboratoire National de Référence pour la Tuberculose et Mycobactéries, Institut Pasteur d’Algérie, Alger 16015, Algeria;
| | - Abdellatif Niar
- Laboratoire de Reproduction des Animaux de la Ferme, Université Ibn Khaldoun, Tiaret 14000, Algeria;
| | - Michel Drancourt
- Institut Hospitalo-Universitaire Méditerranée Infection, 13005 Marseille, France;
- Faculté de Médecine, Aix-Marseille-Université, IHU Méditerranée Infection, 13005 Marseille, France
- Correspondence:
| |
Collapse
|
12
|
Didkowska A, Dziekan P, Czujkowska A, Bereznowski A, Witkowski L, Orłowska B, Wiśniewski J, Krzysiak M, Krajewska-Wędzina M, Bruczyńska M, Żychska M, Olech W, Anusz K. The first visually-guided bronchoscopy in European bison (Bison bonasus) - An additional tool in the diagnosis of bovine tuberculosis? Vet Anim Sci 2021; 12:100174. [PMID: 33817406 PMCID: PMC8010204 DOI: 10.1016/j.vas.2021.100174] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 02/02/2021] [Accepted: 03/15/2021] [Indexed: 11/25/2022] Open
Abstract
The European bison (Bison bonasus, EB) is an endangered species, and as about 1/3 of its global population is found in Poland, it is particularly important that Polish herds should be monitored. One particular concern is tuberculosis, which is not a marginal problem in wildlife in Poland, and has been microbiologically confirmed in EB, wolves (Canis lupus) and wild boar (Sus scrofa). However, ante mortem diagnosis of tuberculosis in EB is troublesome. Therefore, the present paper evaluates the potential of bronchoscopy as a diagnostic tool. Seven EB were studied, four of which were found to be naturally infected with M. caprae; in two of these, endoscopy identified abnormalities in the respiratory tract ante mortem. Therefore, despite some limitations, endoscopy can be an additional tool for diagnosing tuberculosis in EB, especially in highly valuable animals, and to assess the stage of the disease.
Collapse
Affiliation(s)
- Anna Didkowska
- Department of Food Hygiene and Public Health Protection, Institute of Veterinary Medicine, Warsaw University of Life Sciences (SGGW), Nowoursynowska 159, 02-776 Warsaw, Poland
| | | | | | - Andrzej Bereznowski
- Laboratory of Veterinary Epidemiology and Economic, Institute of Veterinary Medicine, Warsaw University of Life Sciences - SGGW, Nowoursynowska 159c, 02-776 Warsaw, Poland
| | - Lucjan Witkowski
- Laboratory of Veterinary Epidemiology and Economic, Institute of Veterinary Medicine, Warsaw University of Life Sciences - SGGW, Nowoursynowska 159c, 02-776 Warsaw, Poland
| | - Blanka Orłowska
- Department of Food Hygiene and Public Health Protection, Institute of Veterinary Medicine, Warsaw University of Life Sciences (SGGW), Nowoursynowska 159, 02-776 Warsaw, Poland
| | - Jan Wiśniewski
- Department of Food Hygiene and Public Health Protection, Institute of Veterinary Medicine, Warsaw University of Life Sciences (SGGW), Nowoursynowska 159, 02-776 Warsaw, Poland
| | - Michał Krzysiak
- Institute of Forest Sciences, Faculty of Civil Engineering and Environmental Sciences, Bialystok University of Technology, Wiejska 45 E, 15-351 Białystok, Poland; Białowieża National Park, Park Pałacowy 11, 17-230 Białowieża, Poland
| | - Monika Krajewska-Wędzina
- Department of Microbiology, National Veterinary Research Institute, Partyzantów 57, 24-100 Puławy, Poland
| | | | - Monika Żychska
- Laboratory of Veterinary Epidemiology and Economic, Institute of Veterinary Medicine, Warsaw University of Life Sciences - SGGW, Nowoursynowska 159c, 02-776 Warsaw, Poland
| | - Wanda Olech
- Department of Animal Genetics and Conservation, Institute of Animal Sciences, Warsaw University of Life Sciences (SGGW), Ciszewskiego 8, 02-786 Warsaw, Poland
| | - Krzysztof Anusz
- Department of Food Hygiene and Public Health Protection, Institute of Veterinary Medicine, Warsaw University of Life Sciences (SGGW), Nowoursynowska 159, 02-776 Warsaw, Poland
| |
Collapse
|
13
|
Smith K, Kleynhans L, Warren RM, Goosen WJ, Miller MA. Cell-Mediated Immunological Biomarkers and Their Diagnostic Application in Livestock and Wildlife Infected With Mycobacterium bovis. Front Immunol 2021; 12:639605. [PMID: 33746980 PMCID: PMC7969648 DOI: 10.3389/fimmu.2021.639605] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 02/08/2021] [Indexed: 01/06/2023] Open
Abstract
Mycobacterium bovis has the largest host range of the Mycobacterium tuberculosis complex and infects domestic animal species, wildlife, and humans. The presence of global wildlife maintenance hosts complicates bovine tuberculosis (bTB) control efforts and further threatens livestock and wildlife-related industries. Thus, it is imperative that early and accurate detection of M. bovis in all affected animal species is achieved. Further, an improved understanding of the complex species-specific host immune responses to M. bovis could enable the development of diagnostic tests that not only identify infected animals but distinguish between infection and active disease. The primary bTB screening standard worldwide remains the tuberculin skin test (TST) that presents several test performance and logistical limitations. Hence additional tests are used, most commonly an interferon-gamma (IFN-γ) release assay (IGRA) that, similar to the TST, measures a cell-mediated immune (CMI) response to M. bovis. There are various cytokines and chemokines, in addition to IFN-γ, involved in the CMI component of host adaptive immunity. Due to the dominance of CMI-based responses to mycobacterial infection, cytokine and chemokine biomarkers have become a focus for diagnostic tests in livestock and wildlife. Therefore, this review describes the current understanding of host immune responses to M. bovis as it pertains to the development of diagnostic tools using CMI-based biomarkers in both gene expression and protein release assays, and their limitations. Although the study of CMI biomarkers has advanced fundamental understanding of the complex host-M. bovis interplay and bTB progression, resulting in development of several promising diagnostic assays, most of this research remains limited to cattle. Considering differences in host susceptibility, transmission and immune responses, and the wide variety of M. bovis-affected animal species, knowledge gaps continue to pose some of the biggest challenges to the improvement of M. bovis and bTB diagnosis.
Collapse
Affiliation(s)
- Katrin Smith
- Division of Molecular Biology and Human Genetics, Department of Science and Innovation-National Research Foundation Centre of Excellence for Biomedical Tuberculosis Research, Faculty of Medicine and Health Sciences, South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
| | - Léanie Kleynhans
- Division of Molecular Biology and Human Genetics, Department of Science and Innovation-National Research Foundation Centre of Excellence for Biomedical Tuberculosis Research, Faculty of Medicine and Health Sciences, South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
| | - Robin M Warren
- Division of Molecular Biology and Human Genetics, Department of Science and Innovation-National Research Foundation Centre of Excellence for Biomedical Tuberculosis Research, Faculty of Medicine and Health Sciences, South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
| | - Wynand J Goosen
- Division of Molecular Biology and Human Genetics, Department of Science and Innovation-National Research Foundation Centre of Excellence for Biomedical Tuberculosis Research, Faculty of Medicine and Health Sciences, South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
| | - Michele A Miller
- Division of Molecular Biology and Human Genetics, Department of Science and Innovation-National Research Foundation Centre of Excellence for Biomedical Tuberculosis Research, Faculty of Medicine and Health Sciences, South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
| |
Collapse
|
14
|
Bernitz N, Kerr TJ, Goosen WJ, Chileshe J, Higgitt RL, Roos EO, Meiring C, Gumbo R, de Waal C, Clarke C, Smith K, Goldswain S, Sylvester TT, Kleynhans L, Dippenaar A, Buss PE, Cooper DV, Lyashchenko KP, Warren RM, van Helden PD, Parsons SDC, Miller MA. Review of Diagnostic Tests for Detection of Mycobacterium bovis Infection in South African Wildlife. Front Vet Sci 2021; 8:588697. [PMID: 33585615 PMCID: PMC7876456 DOI: 10.3389/fvets.2021.588697] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 01/06/2021] [Indexed: 11/13/2022] Open
Abstract
Wildlife tuberculosis is a major economic and conservation concern globally. Bovine tuberculosis (bTB), caused by Mycobacterium bovis (M. bovis), is the most common form of wildlife tuberculosis. In South Africa, to date, M. bovis infection has been detected in 24 mammalian wildlife species. The identification of M. bovis infection in wildlife species is essential to limit the spread and to control the disease in these populations, sympatric wildlife species and neighboring livestock. The detection of M. bovis-infected individuals is challenging as only severely diseased animals show clinical disease manifestations and diagnostic tools to identify infection are limited. The emergence of novel reagents and technologies to identify M. bovis infection in wildlife species are instrumental in improving the diagnosis and control of bTB. This review provides an update on the diagnostic tools to detect M. bovis infection in South African wildlife but may be a useful guide for other wildlife species.
Collapse
Affiliation(s)
- Netanya Bernitz
- Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
| | - Tanya J. Kerr
- Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
| | - Wynand J. Goosen
- Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
| | - Josephine Chileshe
- Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
| | - Roxanne L. Higgitt
- Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
| | - Eduard O. Roos
- Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
| | - Christina Meiring
- Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
| | - Rachiel Gumbo
- Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
| | - Candice de Waal
- Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
| | - Charlene Clarke
- Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
| | - Katrin Smith
- Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
| | - Samantha Goldswain
- Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
| | - Taschnica T. Sylvester
- Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
| | - Léanie Kleynhans
- Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
| | - Anzaan Dippenaar
- Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
| | - Peter E. Buss
- Veterinary Wildlife Services, South African National Parks, Kruger National Park, Skukuza, South Africa
| | | | | | - Robin M. Warren
- Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
| | - Paul D. van Helden
- Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
| | - Sven D. C. Parsons
- Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
| | - Michele A. Miller
- Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
| |
Collapse
|
15
|
Didkowska A, Krajewska-Wędzina M, Bielecki W, Brzezińska S, Augustynowicz-Kopeć E, Olech W, Anusz K, Sridhara AA, Johnathan-Lee A, Elahi R, Miller MA, Ray Waters W, Lyashchenko KP. Antibody responses in European bison (Bison bonasus) naturally infected with Mycobacterium caprae. Vet Microbiol 2020; 253:108952. [PMID: 33370619 DOI: 10.1016/j.vetmic.2020.108952] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 12/07/2020] [Indexed: 12/12/2022]
Abstract
Mycobacterium caprae, a member of the Mycobacterium tuberculosis complex, infects humans and animals causing lesions and disease like that of Mycobacterium bovis. The aim of this study was to evaluate antibody responses in European Bison (EB, Bison bonasus; a vulnerable species) naturally infected with M. caprae using dual path platform (DPP) BovidTB test and multi-antigen print immunoassay (MAPIA). Study cohorts consisted of naturally M. caprae-infected EB (n = 4), M. caprae-exposed but uninfected (n = 3), EB infected with non-tuberculous mycobacteria or other respiratory pathogens (n = 3), and negative controls (n = 19). M. caprae-infected EB were seropositive by both DPP and MAPIA; 3/4 were seropositive by DPP; and 4/4 were seropositive by MAPIA. One M. caprae-infected animal that developed generalized disease with most advanced gross lesions in the group produced the most robust antibody response. All 25 EB with no culture-confirmed M. caprae infection, including three animals exposed to M. caprae and three other animals infected with non-tuberculous pathogens, were seronegative on both tests. Antibody responses to M. caprae infection included IgM antibodies against MPB70/MPB83 and IgG antibodies to both MPB70/MPB83 and CFP10/ESAT-6. This study demonstrates the potential for use of serological assays in the ante-mortem diagnosis of M. caprae infection in EB.
Collapse
Affiliation(s)
- Anna Didkowska
- Department of Food Hygiene and Public Health Protection, Institute of Veterinary Medicine, Warsaw University of Life Sciences (SGGW), Nowoursynowska 166, 02-787, Warsaw, Poland.
| | - Monika Krajewska-Wędzina
- Department of Microbiology, National Veterinary Research Institute, Partyzantów 57, 24-100, Puławy, Poland
| | - Wojciech Bielecki
- Department of Pathology and Veterinary Diagnostics, Institute of Veterinary Medicine, Warsaw University of Life Sciences (SGGW), Nowoursynowska 166, 02-787, Warsaw, Poland
| | - Sylwia Brzezińska
- Department of Microbiology, National Tuberculosis Reference Laboratory, National Tuberculosis and Lung Diseases Research Institute, Płocka 26, 01-138, Warsaw, Poland
| | - Ewa Augustynowicz-Kopeć
- Department of Microbiology, National Tuberculosis Reference Laboratory, National Tuberculosis and Lung Diseases Research Institute, Płocka 26, 01-138, Warsaw, Poland
| | - Wanda Olech
- Institute of Animal Sciences, Warsaw University of Life Sciences - SGGW, Ciszewskiego 8, 02-786, Warsaw, Poland
| | - Krzysztof Anusz
- Department of Food Hygiene and Public Health Protection, Institute of Veterinary Medicine, Warsaw University of Life Sciences (SGGW), Nowoursynowska 166, 02-787, Warsaw, Poland
| | - Archana A Sridhara
- Chembio Diagnostic Systems, Inc., 3661 Horseblock Road, Medford, New York, 11763, USA
| | - Ashley Johnathan-Lee
- Chembio Diagnostic Systems, Inc., 3661 Horseblock Road, Medford, New York, 11763, USA
| | - Rubyat Elahi
- Chembio Diagnostic Systems, Inc., 3661 Horseblock Road, Medford, New York, 11763, USA
| | - Michele A Miller
- Department of Science and Technology-National Research Foundation Centre of Excellence for Biomedical TB Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, PO Box 241, Cape Town, 8000, South Africa
| | - W Ray Waters
- National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, 1920 Dayton Avenue, Ames, Iowa, 50010, USA
| | | |
Collapse
|
16
|
Biopsy and Tracheobronchial Aspirates as Additional Tools for the Diagnosis of Bovine Tuberculosis in Living European Bison ( Bison bonasus). Animals (Basel) 2020; 10:ani10112017. [PMID: 33147754 PMCID: PMC7692047 DOI: 10.3390/ani10112017] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/22/2020] [Accepted: 10/28/2020] [Indexed: 01/09/2023] Open
Abstract
Simple Summary In this study, additional methods of collecting material for bovine tuberculosis diagnosis in living European bison were introduced. We showed a potential usage of tracheobronchial aspirates and ultrasound-guided biopsies from lateral retropharyngeal lymph nodes in living animals for diagnostics. We confirmed that the isolation of Mycobacterium caprae in living European bison is possible, as is the respiratory shedding of viable M. caprae in this host. This study is important as tuberculosis is a real threat for European bison which is an endangered species and the improvement of diagnostics can help with better health monitoring and further restitution. Abstract The diagnosis of bovine tuberculosis (BTB) in living wildlife remains a complex problem, and one of particular importance in endangered species like European bison (Bison bonasus). To identify infection and avoid the unnecessary culling of such valuable individuals, current best practice requires the collection and culture of material from living animals, as mycobacteria isolation remains the gold standard in BTB diagnosis. However, such isolation is challenging due to the need for the immobilization and collection of appropriate clinical material, and because of the sporadic shedding of mycobacteria. In the present study, we evaluated the potential of sampling for the detection of BTB in a group of seven living European bison suspected of being infected with Mycobacterium caprae. The specimens were collected both as swabs from the nasal and pharyngeal cavities, tracheobronchial aspirates (TBA), ultrasound-guided biopsies from lateral retropharyngeal lymph nodes, and post mortem, from mandibular, retropharyngeal and mediastinal lymph nodes. Clinical samples were tested for mycobacterial species via mycobacteriological culture and PCR. M. caprae was isolated from collected material in two out of four living infected individuals (TBA, biopsy) and mycobacterial DNA was detected in three out of four (TBA, pharyngeal swab) bison. This is the first report of isolation of M. caprae in living European bison. Our findings demonstrate the value of diagnostic tests based on both molecular testing and culture in European bison and confirm the respiratory shedding of viable M. caprae in this host species.
Collapse
|