1
|
Neubert S, Puff C, Kleinschmidt S, Kammeyer P, von Altrock A, Wendt M, Wagener MG. Pathological findings in South American camelids presented at a farm animal clinic in Northern Germany (2005-2021). Vet Res Commun 2024; 48:2121-2134. [PMID: 38630427 PMCID: PMC11315760 DOI: 10.1007/s11259-024-10369-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 03/26/2024] [Indexed: 08/10/2024]
Abstract
To expand the knowledge about common diseases in llamas and alpacas in Germany, a screening of the cases of South American camelids presented at the Clinic for Swine and Small Ruminants of the University of Veterinary Medicine Hannover, Germany from 2005 to the end of November 2021 was performed. A retrospective evaluation of necropsy reports from this period was conducted. Overall, necropsy reports were evaluated from 187 alpacas, 35 llamas and one vicuña (n = 223). A total of 50.2% of the dissected animals were thin or cachectic. Pathological alterations of the gastrointestinal tract were the most common findings (44.8%). In addition, liver changes were recorded, most frequently in adult animals. In contrast, diseases of the respiratory tract and the nervous system were found more frequently in juvenile animals. This study provides an overview of common pathologies in South American camelids in Germany and thus may help to recognise different disease symptoms at an early stage.
Collapse
Affiliation(s)
- Saskia Neubert
- Clinic for Swine and Small Ruminants, Forensic Medicine and Ambulatory Service, University of Veterinary Medicine Hannover, Foundation, 30173, Hannover, Germany.
| | - Christina Puff
- Department of Pathology, University of Veterinary Medicine Hannover, Foundation, 30559, Hannover, Germany
| | - Sven Kleinschmidt
- Lower Saxony State Office for Consumer Protection and Food Safety, Food and Veterinary Institute Braunschweig/Hannover, 30173, Hannover, Germany
| | - Patricia Kammeyer
- Lower Saxony State Office for Consumer Protection and Food Safety, Food and Veterinary Institute Braunschweig/Hannover, 30173, Hannover, Germany
| | - Alexandra von Altrock
- Clinic for Swine and Small Ruminants, Forensic Medicine and Ambulatory Service, University of Veterinary Medicine Hannover, Foundation, 30173, Hannover, Germany
| | - Michael Wendt
- Clinic for Swine and Small Ruminants, Forensic Medicine and Ambulatory Service, University of Veterinary Medicine Hannover, Foundation, 30173, Hannover, Germany
| | - Matthias Gerhard Wagener
- Clinic for Swine and Small Ruminants, Forensic Medicine and Ambulatory Service, University of Veterinary Medicine Hannover, Foundation, 30173, Hannover, Germany
| |
Collapse
|
2
|
Böhmer MM, Haring VC, Schmidt B, Saller FS, Coyer L, Chitimia-Dobler L, Dobler G, Tappe D, Bonakdar A, Ebinger A, Knoll G, Eidenschink L, Rohrhofer A, Niller HH, Katz K, Starcky P, Beer M, Ulrich RG, Rubbenstroth D, Bauswein M. One Health in action: Investigation of the first detected local cluster of fatal borna disease virus 1 (BoDV-1) encephalitis, Germany 2022. J Clin Virol 2024; 171:105658. [PMID: 38447459 DOI: 10.1016/j.jcv.2024.105658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 02/08/2024] [Accepted: 02/19/2024] [Indexed: 03/08/2024]
Abstract
BACKGROUND Zoonotic Borna disease virus 1 (BoDV-1) causes fatal encephalitis in humans and animals. Subsequent to the detection of two paediatric cases in a Bavarian municipality in Germany within three years, we conducted an interdisciplinary One Health investigation. We aimed to explore seroprevalence in a local human population with a risk for BoDV-1 exposure as well as viral presence in environmental samples from local sites and BoDV-1 prevalence within the local small mammal population and its natural reservoir, the bicoloured white-toothed shrew (Crocidura leucodon). METHODS The municipality's adult residents participated in an anonymised sero-epidemiological study. Potential risk factors and clinical symptoms were assessed by an electronic questionnaire. Small mammals, environmental samples and ticks from the municipality were tested for BoDV-1-RNA. Shrew-derived BoDV-1-sequences together with sequences of the two human cases were phylogenetically analysed. RESULTS In total, 679 citizens participated (response: 41 %), of whom 38 % reported shrews in their living environment and 19 % direct shrew contact. No anti-BoDV-1 antibodies were detected in human samples. BoDV-1-RNA was also undetectable in 38 environmental samples and 336 ticks. Of 220 collected shrews, twelve of 40 C. leucodon (30%) tested BoDV-1-RNA-positive. BoDV-1-sequences from the previously diagnosed two paediatric patients belonged to two different subclades, that were also present in shrews from the municipality. INTERPRETATION Our data support the interpretation that human BoDV-1 infections are rare even in endemic areas and primarily manifest as severe encephalitis. Sequence analysis linked both previous paediatric human infections to the local shrew population, but indicated independent infection sources. FUNDING The project was partly financed by funds of the German Federal Ministry of Education and Research (grant numbers: 01KI2005A, 01KI2005C, 01KI1722A, 01KI1722C, 01KI2002 to MaBe, DR, RGU, DT, BS) as well as by the ReForM-A programme of the University Hospital Regensburg (to MaBa) and by funds of the Bavarian State Ministry of Health, Care and Prevention, project "Zoonotic Bornavirus Focal Point Bavaria - ZooBoFo" (to MaBa, MaBe, BS, MMB, DR, PS, RGU).
Collapse
Affiliation(s)
- Merle M Böhmer
- Bavarian Health and Food Safety Authority, Munich, Germany; Institute of Social Medicine and Health Systems Research, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany; Bornavirus-Focal Point Bavaria, Germany.
| | - Viola C Haring
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald - Insel Riems, Germany
| | - Barbara Schmidt
- Bornavirus-Focal Point Bavaria, Germany; Institute of Clinical Microbiology and Hygiene, Regensburg University Hospital, Regensburg, Germany; Institute of Medical Microbiology and Hygiene, University of Regensburg, Regensburg, Germany
| | | | - Liza Coyer
- Bavarian Health and Food Safety Authority, Munich, Germany; ECDC Fellowship Programme, Field Epidemiology Path (EPIET), European Centre for Disease Prevention and Control (ECDC), Solna, Sweden
| | | | | | - Dennis Tappe
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany; Consiliary Laboratory for Bornaviruses, Germany
| | - Andrea Bonakdar
- Local Health Authority, county Mühldorf am Inn, Mühldorf am Inn, Germany
| | - Arnt Ebinger
- University Medicine Greifswald, Greifswald, Germany
| | - Gertrud Knoll
- Institute of Clinical Microbiology and Hygiene, Regensburg University Hospital, Regensburg, Germany
| | - Lisa Eidenschink
- Institute of Clinical Microbiology and Hygiene, Regensburg University Hospital, Regensburg, Germany
| | - Anette Rohrhofer
- Institute of Clinical Microbiology and Hygiene, Regensburg University Hospital, Regensburg, Germany
| | - Hans Helmut Niller
- Institute of Medical Microbiology and Hygiene, University of Regensburg, Regensburg, Germany
| | - Katharina Katz
- Bavarian Health and Food Safety Authority, Munich, Germany
| | - Philip Starcky
- Bavarian Health and Food Safety Authority, Munich, Germany; Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald - Insel Riems, Germany
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald - Insel Riems, Germany
| | - Rainer G Ulrich
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald - Insel Riems, Germany
| | - Dennis Rubbenstroth
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald - Insel Riems, Germany
| | - Markus Bauswein
- Bornavirus-Focal Point Bavaria, Germany; Institute of Clinical Microbiology and Hygiene, Regensburg University Hospital, Regensburg, Germany
| |
Collapse
|
3
|
Allartz P, Hotop SK, Muntau B, Schlaphof A, Thomé-Bolduan C, Gabriel M, Petersen N, Lintzel M, Behrens C, Eggert P, Pörtner K, Steiner J, Brönstrup M, Tappe D. Detection of bornavirus-reactive antibodies and BoDV-1 RNA only in encephalitis patients from virus endemic areas: a comparative serological and molecular sensitivity, specificity, predictive value, and disease duration correlation study. Infection 2024; 52:59-71. [PMID: 37253816 PMCID: PMC10228883 DOI: 10.1007/s15010-023-02048-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 05/04/2023] [Indexed: 06/01/2023]
Abstract
PURPOSE Human Borna disease virus (BoDV-1) encephalitis is an emerging disease in Germany. This study investigates the spectrum of human BoDV-1 infection, characterizes anti-BoDV-1-antibodies and kinetics, and compares laboratory test performances. METHODS Three hundred four encephalitis cases, 308 nation-wide neuropsychiatric conditions, 127 well-defined psychiatric cases from Borna disease-endemic areas, and 20 persons with contact to BoDV-1 encephalitis patients or animals were tested for BoDV-1 infections by serology and PCR. RESULTS BoDV-1 infections were only found in encephalitis patients with residence in, or recent travel to, virus-endemic areas. Antibodies were detected as early as 12 days after symptom onset. Serum antibody levels correlated with disease duration. Serology was ordered after 50% of the disease duration had elapsed, reflecting low awareness. BoDV-1-antibodies were of IgG1 subclass, and the epitope on BoDV-1 antigens was determined. Specificity of the indirect immunofluorescence antibody test (IFAT) and lineblot (LB) from serum and cerebrospinal fluid (CSF), as well as PCR testing from CSF, was 100%. Sensitivity, depending on first or all samples, reached 75-86% in serum and 92-94% in CSF for the IFAT, and 33-57% in serum and 18-24% in CSF for the LB. Sensitivity for PCR in CSF was 25-67%. Positive predictive values were 100% each, while negative predictive values were 99% (IFAT), 91-97% (LB), and 90% (PCR). CONCLUSIONS There is no hint that BoDV-1 causes other diseases than encephalitis in humans. Awareness has to be increased in virus-endemic areas. Tests are robust but lack sensitivity. Detection of IgG1 against specific peptides may facilitate diagnosis. Screening of healthy individuals is likely not beneficial.
Collapse
Affiliation(s)
- Petra Allartz
- Bernhard Nocht Institute for Tropical Medicine, Bernhard-Nocht-Str. 74, 20359, Hamburg, Germany
| | | | - Birgit Muntau
- Bernhard Nocht Institute for Tropical Medicine, Bernhard-Nocht-Str. 74, 20359, Hamburg, Germany
| | - Alexander Schlaphof
- Bernhard Nocht Institute for Tropical Medicine, Bernhard-Nocht-Str. 74, 20359, Hamburg, Germany
| | - Corinna Thomé-Bolduan
- Bernhard Nocht Institute for Tropical Medicine, Bernhard-Nocht-Str. 74, 20359, Hamburg, Germany
| | - Martin Gabriel
- Bernhard Nocht Institute for Tropical Medicine, Bernhard-Nocht-Str. 74, 20359, Hamburg, Germany
| | - Nadine Petersen
- Bernhard Nocht Institute for Tropical Medicine, Bernhard-Nocht-Str. 74, 20359, Hamburg, Germany
| | - Maren Lintzel
- Bernhard Nocht Institute for Tropical Medicine, Bernhard-Nocht-Str. 74, 20359, Hamburg, Germany
| | - Christoph Behrens
- Bernhard Nocht Institute for Tropical Medicine, Bernhard-Nocht-Str. 74, 20359, Hamburg, Germany
| | - Petra Eggert
- Bernhard Nocht Institute for Tropical Medicine, Bernhard-Nocht-Str. 74, 20359, Hamburg, Germany
| | - Kirsten Pörtner
- Department of Infectious Disease Epidemiology, Robert Koch Institute, Berlin, Germany
| | - Johann Steiner
- Department of Psychiatry and Psychotherapy, University Hospital Magdeburg, Magdeburg, Germany
| | - Mark Brönstrup
- Helmholtz Centre for Infection Research, Braunschweig, Germany
- German Center for Infection Research (DZIF), Site Hannover-Braunschweig, Braunschweig, Germany
| | - Dennis Tappe
- Bernhard Nocht Institute for Tropical Medicine, Bernhard-Nocht-Str. 74, 20359, Hamburg, Germany.
| |
Collapse
|
4
|
Lourbopoulos A, Schnurbus L, Guenther R, Steinlein S, Ruf V, Herms J, Jahn K, Huge V. Case report: Fatal Borna virus encephalitis manifesting with basal brain and brainstem symptoms. Front Neurol 2024; 14:1305748. [PMID: 38333183 PMCID: PMC10850352 DOI: 10.3389/fneur.2023.1305748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 12/26/2023] [Indexed: 02/10/2024] Open
Abstract
Background Since the first report of fatal Borna virus-1 (BoDV-1) encephalitis in 2018, cases gradually increased. There is a lack of diagnostic algorithm, and there is no effective treatment so far. Case presentation We report an acute BoDV-1 encephalitis in a 77-year-old female with flu-like onset, rapid progression to word-finding difficulties, personality changes, global disorientation, diffuse cognitive slowness, and gait ataxia and further deterioration with fever, meningism, severe hyponatremia, epileptic seizures, cognitive decline, and focal cortical and cerebellar symptoms/signs. The extensive diagnostic workup (cerebrovascular fluid, serum, and MRI) for (meningo-)encephalitis was negative for known causes. Our empirical common antiviral, antimicrobial, and immunosuppressive treatment efforts failed. The patient fell into coma 5 days after admission, lost all brainstem reflexes on day 18, remained fully dependent on invasive mechanical ventilation thereafter and died on day 42. Brain and spinal cord autopsy confirmed an extensive, diffuse, and severe non-purulent, lymphocytic sclerosing panencephalomyelitis due to BoDV-1, affecting neocortical, subcortical, cerebellar, neurohypophysis, and spinal cord areas. Along with our case, we critically reviewed all reported BoDV-1 encephalitis cases. Conclusion The diagnosis of acute BoDV-1 encephalitis is challenging and delayed, while it progresses to fatal. In this study, we list all tried and failed treatments so far for future reference and propose a diagnostic algorithm for prompt suspicion and diagnosis.
Collapse
Affiliation(s)
- Athanasios Lourbopoulos
- Department of Neurology and Neurointensive Care, Schoen Clinic Bad Aibling, Bad Aibling, Germany
- Institute for Stroke and Dementia Research (ISD), LMU Munich University Hospital, Munich, Germany
| | - Lea Schnurbus
- Department of Neurology and Neurointensive Care, Schoen Clinic Bad Aibling, Bad Aibling, Germany
| | - Ricarda Guenther
- Department of Neurology and Neurointensive Care, Schoen Clinic Bad Aibling, Bad Aibling, Germany
| | - Susanne Steinlein
- Department of Neurology and Neurointensive Care, Schoen Clinic Bad Aibling, Bad Aibling, Germany
| | - Viktoria Ruf
- Center for Neuropathology and Prion Research, LMU, Munich, Germany
| | - Jochen Herms
- Center for Neuropathology and Prion Research, LMU, Munich, Germany
| | - Klaus Jahn
- Department of Neurology and Neurointensive Care, Schoen Clinic Bad Aibling, Bad Aibling, Germany
- German Center of Vertigo and Balance Disorders (DSGZ), University of Munich (LMU), Munich, Germany
| | - Volker Huge
- Department of Neurology and Neurointensive Care, Schoen Clinic Bad Aibling, Bad Aibling, Germany
- Department of Anaesthesiology, LMU Munich University Hospital, Munich, Germany
| |
Collapse
|
5
|
Grosse L, Lieftüchter V, Vollmuth Y, Hoffmann F, Olivieri M, Reiter K, Tacke M, Heinen F, Borggraefe I, Osterman A, Forstner M, Hübner J, von Both U, Birzele L, Rohlfs M, Schomburg A, Böhmer MM, Ruf V, Cadar D, Muntau B, Pörtner K, Tappe D. First detected geographical cluster of BoDV-1 encephalitis from same small village in two children: therapeutic considerations and epidemiological implications. Infection 2023; 51:1383-1398. [PMID: 36821024 PMCID: PMC9947883 DOI: 10.1007/s15010-023-01998-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 02/05/2023] [Indexed: 02/24/2023]
Abstract
BACKGROUND The Borna disease virus (BoDV-1) is an emerging zoonotic virus causing severe and mostly fatal encephalitis in humans. METHODS AND RESULTS A local cluster of fatal BoDV-1 encephalitis cases was detected in the same village three years apart affecting two children. While the first case was diagnosed late in the course of disease, a very early diagnosis and treatment attempt facilitated by heightened awareness was achieved in the second case. Therapy started as early as day 12 of disease. Antiviral therapy encompassed favipiravir and ribavirin, and, after bioinformatic modelling, also remdesivir. As the disease is immunopathogenetically mediated, an intensified anti-inflammatory therapy was administered. Following initial impressive clinical improvement, the course was also fatal, although clearly prolonged. Viral RNA was detected by qPCR in tear fluid and saliva, constituting a possible transmission risk for health care professionals. Highest viral loads were found post mortem in the olfactory nerve and the limbic system, possibly reflecting the portal of entry for BoDV-1. Whole exome sequencing in both patients yielded no hint for underlying immunodeficiency. Full virus genomes belonging to the same cluster were obtained in both cases by next-generation sequencing. Sequences were not identical, indicating viral diversity in natural reservoirs. Specific transmission events or a common source of infection were not found by structured interviews. Patients lived 750m apart from each other and on the fringe of the settlement, a recently shown relevant risk factor. CONCLUSION Our report highlights the urgent necessity of effective treatment strategies, heightened awareness and early diagnosis. Gaps of knowledge regarding risk factors, transmission events, and tailored prevention methods become apparent. Whether this case cluster reflects endemicity or a geographical hot spot needs further investigation.
Collapse
Affiliation(s)
- Leonie Grosse
- Department of Pediatrics, Dr. Von Hauner Children's Hospital, Ludwig-Maximilians-University, Lindwurmstr. 4, 80377, Munich, Germany.
| | - Victoria Lieftüchter
- Department of Pediatrics, Dr. Von Hauner Children's Hospital, Ludwig-Maximilians-University, Lindwurmstr. 4, 80377, Munich, Germany.
- Center for Children with Medical Complexity - iSPZ Hauner, Ludwig-Maximilians-University, Munich, Germany.
| | - Yannik Vollmuth
- Department of Pediatrics, Dr. Von Hauner Children's Hospital, Ludwig-Maximilians-University, Lindwurmstr. 4, 80377, Munich, Germany
| | - Florian Hoffmann
- Department of Pediatrics, Dr. Von Hauner Children's Hospital, Ludwig-Maximilians-University, Lindwurmstr. 4, 80377, Munich, Germany
| | - Martin Olivieri
- Department of Pediatrics, Dr. Von Hauner Children's Hospital, Ludwig-Maximilians-University, Lindwurmstr. 4, 80377, Munich, Germany
| | - Karl Reiter
- Department of Pediatrics, Dr. Von Hauner Children's Hospital, Ludwig-Maximilians-University, Lindwurmstr. 4, 80377, Munich, Germany
| | - Moritz Tacke
- Department of Pediatrics, Dr. Von Hauner Children's Hospital, Ludwig-Maximilians-University, Lindwurmstr. 4, 80377, Munich, Germany
| | - Florian Heinen
- Department of Pediatrics, Dr. Von Hauner Children's Hospital, Ludwig-Maximilians-University, Lindwurmstr. 4, 80377, Munich, Germany
- Center for Children with Medical Complexity - iSPZ Hauner, Ludwig-Maximilians-University, Munich, Germany
| | - Ingo Borggraefe
- Department of Pediatrics, Dr. Von Hauner Children's Hospital, Ludwig-Maximilians-University, Lindwurmstr. 4, 80377, Munich, Germany
- Center for Children with Medical Complexity - iSPZ Hauner, Ludwig-Maximilians-University, Munich, Germany
| | - Andreas Osterman
- Max-Von-Pettenkofer Institute, Ludwig-Maximilians-University, Munich, Germany
| | - Maria Forstner
- Department of Pediatrics, Dr. Von Hauner Children's Hospital, Ludwig-Maximilians-University, Lindwurmstr. 4, 80377, Munich, Germany
| | - Johannes Hübner
- Department of Pediatrics, Dr. Von Hauner Children's Hospital, Ludwig-Maximilians-University, Lindwurmstr. 4, 80377, Munich, Germany
| | - Ulrich von Both
- Department of Pediatrics, Dr. Von Hauner Children's Hospital, Ludwig-Maximilians-University, Lindwurmstr. 4, 80377, Munich, Germany
- German Center for Infection Research (DZIF), Partner Site Munich, Munich, Germany
| | - Lena Birzele
- Department of Pediatrics, Dr. Von Hauner Children's Hospital, Ludwig-Maximilians-University, Lindwurmstr. 4, 80377, Munich, Germany
| | - Meino Rohlfs
- Department of Pediatrics, Dr. Von Hauner Children's Hospital, Ludwig-Maximilians-University, Lindwurmstr. 4, 80377, Munich, Germany
| | - Adrian Schomburg
- Department of Physiological Chemistry, LMU Biomedical Center Munich, Ludwig-Maximilians-University, Munich, Germany
| | - Merle M Böhmer
- Department of Infectious Disease Epidemiology, Bavarian Health and Food Safety Authority, Munich, Germany
- Institute of Social Medicine and Health Systems Research, Otto-Von-Guericke-University, Magdeburg, Germany
| | - Viktoria Ruf
- Center for Neuropathology and Prion Research, Ludwig-Maximilians-University, Munich, Germany
| | - Dániel Cadar
- Bernhard Nocht Institute for Tropical Medicine, Bernhard-Nocht-Str. 74, 20359, Hamburg, Germany
| | - Birgit Muntau
- Bernhard Nocht Institute for Tropical Medicine, Bernhard-Nocht-Str. 74, 20359, Hamburg, Germany
| | - Kirsten Pörtner
- Department of Infectious Disease Epidemiology, Robert Koch Institute, Berlin, Germany
| | - Dennis Tappe
- Bernhard Nocht Institute for Tropical Medicine, Bernhard-Nocht-Str. 74, 20359, Hamburg, Germany.
| |
Collapse
|
6
|
Ulrich RG, Drewes S, Haring V, Panajotov J, Pfeffer M, Rubbenstroth D, Dreesman J, Beer M, Dobler G, Knauf S, Johne R, Böhmer MM. [Viral zoonoses in Germany: a One Health perspective]. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 2023; 66:599-616. [PMID: 37261460 PMCID: PMC10233563 DOI: 10.1007/s00103-023-03709-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 04/26/2023] [Indexed: 06/02/2023]
Abstract
The COVID-19 pandemic and the increasing occurrence of monkeypox (mpox) diseases outside Africa have illustrated the vulnerability of populations to zoonotic pathogens. In addition, other viral zoonotic pathogens have gained importance in recent years.This review article addresses six notifiable viral zoonotic pathogens as examples to highlight the need for the One Health approach in order to understand the epidemiology of the diseases and to derive recommendations for action by the public health service. The importance of environmental factors, reservoirs, and vectors is emphasized, the diseases in livestock and wildlife are analyzed, and the occurrence and frequency of diseases in the population are described. The pathogens selected here differ in their reservoirs and the role of vectors for transmission, the impact of infections on farm animals, and the disease patterns observed in humans. In addition to zoonotic pathogens that have been known in Germany for a long time or were introduced recently, pathogens whose zoonotic potential has only lately been shown are also considered.For the pathogens discussed here, there are still large knowledge gaps regarding the transmission routes. Future One Health-based studies must contribute to the further elucidation of their transmission routes and the development of prevention measures. The holistic approach does not necessarily include a focus on viral pathogens/diseases, but also includes the question of the interaction of viral, bacterial, and other pathogens, including antibiotic resistance and host microbiomes.
Collapse
Affiliation(s)
- Rainer G Ulrich
- Institut für neue und neuartige Tierseuchenerreger, Friedrich-Loeffler-Institut, Bundesforschungsinstitut für Tiergesundheit, Südufer 10, 17493, Greifswald-Insel Riems, Deutschland.
| | - Stephan Drewes
- Institut für neue und neuartige Tierseuchenerreger, Friedrich-Loeffler-Institut, Bundesforschungsinstitut für Tiergesundheit, Südufer 10, 17493, Greifswald-Insel Riems, Deutschland
| | - Viola Haring
- Institut für neue und neuartige Tierseuchenerreger, Friedrich-Loeffler-Institut, Bundesforschungsinstitut für Tiergesundheit, Südufer 10, 17493, Greifswald-Insel Riems, Deutschland
| | - Jessica Panajotov
- Fachgruppe Viren in Lebensmitteln, Bundesinstitut für Risikobewertung, Berlin, Deutschland
| | - Martin Pfeffer
- Institut für Tierhygiene und Öffentliches Veterinärwesen, Universität Leipzig, Leipzig, Deutschland
| | - Dennis Rubbenstroth
- Institut für Virusdiagnostik, Friedrich-Loeffler-Institut, Bundesforschungsinstitut für Tiergesundheit, Greifswald-Insel Riems, Deutschland
| | | | - Martin Beer
- Institut für Virusdiagnostik, Friedrich-Loeffler-Institut, Bundesforschungsinstitut für Tiergesundheit, Greifswald-Insel Riems, Deutschland
| | - Gerhard Dobler
- Abteilung Virologie und Rickettsiologie, Institut für Mikrobiologie der Bundeswehr, München, Deutschland
| | - Sascha Knauf
- Institut für Internationale Tiergesundheit/One Health, Friedrich-Loeffler-Institut, Bundesforschungsinstitut für Tiergesundheit, Greifswald-Insel Riems, Deutschland
| | - Reimar Johne
- Fachgruppe Viren in Lebensmitteln, Bundesinstitut für Risikobewertung, Berlin, Deutschland
| | - Merle M Böhmer
- Landesinstitut Gesundheit II - Task Force Infektiologie, Bayerisches Landesamt für Gesundheit und Lebensmittelsicherheit (LGL), München, Deutschland
- Institut für Sozialmedizin und Gesundheitssystemforschung, Otto-von-Guericke Universität, Magdeburg, Deutschland
| |
Collapse
|
7
|
Voss A, Schlieben P, Gerst S, Wylezich C, Pfaff F, Langner C, Niesler M, Schad P, Beer M, Rubbenstroth D, Breithaupt A, Mundhenk L. Rustrela virus infection - An emerging neuropathogen of red-necked wallabies (Macropus rufogriseus). Transbound Emerg Dis 2022; 69:4016-4021. [PMID: 36135593 DOI: 10.1111/tbed.14708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 09/06/2022] [Accepted: 09/15/2022] [Indexed: 02/07/2023]
Abstract
The rustrela virus (RusV) was recently described as a novel pathogen in a circumscribed area of northern Germany close to the Baltic Sea. Up to now, the virus has been detected in cases of fatal non-suppurative meningoencephalitis in zoo animals of different species and a single wild carnivore as well as in apparently healthy yellow-necked field mice (Apodemus flavicollis). Data regarding the background of this previously undiscovered pathogen, including clinical presentation of the disease, host range and distribution of the virus, are still limited. Here, three euthanized red-necked wallabies (Macropus rufogriseus) from zoos of different areas in northeastern Germany were submitted for necropsy after presenting with apathy and therapeutically unresponsive neurological signs. A moderate to severe, non-suppurative meningoencephalitis was diagnosed in all three cases. RusV was consistently detected via RT-qPCR and RNA in situ hybridization in the brains of all wallabies. Other commonly known neuropathogens could not be detected.
Collapse
Affiliation(s)
- Anne Voss
- Institute, of Veterinary Pathology, Freie Universität Berlin, Berlin, Germany
| | - Patricia Schlieben
- Berlin-Brandenburg State Laboratory, Frankfurt (Oder), Frankfurt, Germany
| | - Sascha Gerst
- Department for Diagnostic Investigation of Epizootics, State Office for Agriculture, Food Safety and Fishery Mecklenburg-Vorpommern, Rostock, Germany
| | - Claudia Wylezich
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald - Isle of Riems, Greifswald, Germany
| | - Florian Pfaff
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald - Isle of Riems, Greifswald, Germany
| | | | | | - Petra Schad
- Veterinary Practice Pausin, Schönwalde im Glien, Germany
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald - Isle of Riems, Greifswald, Germany
| | - Dennis Rubbenstroth
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald - Isle of Riems, Greifswald, Germany
| | - Angele Breithaupt
- Department of Experimental Animal Facilities and Biorisk Management, Friedrich-Loeffler-Institut, Greifswald - Isle of Riems, Greifswald, Germany
| | - Lars Mundhenk
- Institute, of Veterinary Pathology, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
8
|
Toribio RE. Nonarboviral Equine Encephalitides. Vet Clin North Am Equine Pract 2022; 38:323-338. [PMID: 35811198 DOI: 10.1016/j.cveq.2022.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
Abstract
Several viruses transmitted by biological vectors or through direct contact, air, or ingestion cause neurologic disease in equids. Of interest are viruses of the Togaviridae, Flaviviridae, Rhabdoviridae, Herpesviridae, Bornaviridae, and Bunyaviridae families. Variable degree of inflammation is present with these viruses but lack of an inflammatory response does not rule out their presence. The goal of this article is to provide an overview on pathophysiologic and clinical aspects of nonarboviral equine encephalitides, specifically on lyssaviruses (rabies) and bornaviruses (Borna disease).
Collapse
Affiliation(s)
- Ramiro E Toribio
- College of Veterinary Medicine, The Ohio State University, 601 Vernon Tharp Street, Columbus, OH 43210, USA.
| |
Collapse
|
9
|
Tappe D, Pörtner K, Frank C, Wilking H, Ebinger A, Herden C, Schulze C, Muntau B, Eggert P, Allartz P, Schuldt G, Schmidt-Chanasit J, Beer M, Rubbenstroth D. Investigation of fatal human Borna disease virus 1 encephalitis outside the previously known area for human cases, Brandenburg, Germany - a case report. BMC Infect Dis 2021; 21:787. [PMID: 34376142 PMCID: PMC8353434 DOI: 10.1186/s12879-021-06439-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 07/15/2021] [Indexed: 11/12/2022] Open
Abstract
Background The true burden and geographical distribution of human Borna disease virus 1 (BoDV-1) encephalitis is unknown. All detected cases so far have been recorded in Bavaria, southern Germany. Case presentation A retrospective laboratory and epidemiological investigation of a 2017 case of fatal encephalitis in a farmer in Brandenburg, northeast Germany, demonstrated BoDV-1 as causative agent by polymerase chain reaction, immunohistochemistry and in situ hybridization. Next-generation sequencing showed that the virus belonged to a cluster not known to be endemic in Brandenburg. The investigation was triggered by a recent outbreak of animal Borna disease in the region. Multiple possible exposures were identified. The next-of-kin were seronegative. Conclusions The investigation highlights clinical awareness for human BoDV-1 encephalitis which should be extended to all areas endemic for animal Borna disease. All previously diagnosed human cases had occurred > 350 km further south. Further testing of shrews and livestock with Borna disease may show whether this BoDV-1 cluster is additionally endemic in the northwest of Brandenburg.
Collapse
Affiliation(s)
- Dennis Tappe
- Bernhard Nocht Institute for Tropical Medicine, Bernhard-Nocht-Str. 74, 20359, Hamburg, Germany.
| | - Kirsten Pörtner
- Department for Infectious Disease Epidemiology, Robert Koch Institute, Berlin, Germany.,Postgraduate Training for Applied Epidemiology (PAE) affiliated with the European Programme for Intervention Epidemiology Training (EPIET), European Centre for Disease Prevention and Control (ECDC), Stockholm, Sweden
| | - Christina Frank
- Department for Infectious Disease Epidemiology, Robert Koch Institute, Berlin, Germany
| | - Hendrik Wilking
- Department for Infectious Disease Epidemiology, Robert Koch Institute, Berlin, Germany
| | - Arnt Ebinger
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Riems, Germany
| | - Christiane Herden
- Institute for Veterinary Pathology, Justus-Liebig-University Gießen, Gießen, Germany
| | | | - Birgit Muntau
- Bernhard Nocht Institute for Tropical Medicine, Bernhard-Nocht-Str. 74, 20359, Hamburg, Germany
| | - Petra Eggert
- Bernhard Nocht Institute for Tropical Medicine, Bernhard-Nocht-Str. 74, 20359, Hamburg, Germany
| | - Petra Allartz
- Bernhard Nocht Institute for Tropical Medicine, Bernhard-Nocht-Str. 74, 20359, Hamburg, Germany
| | - Gerlind Schuldt
- Bernhard Nocht Institute for Tropical Medicine, Bernhard-Nocht-Str. 74, 20359, Hamburg, Germany
| | - Jonas Schmidt-Chanasit
- Bernhard Nocht Institute for Tropical Medicine, Bernhard-Nocht-Str. 74, 20359, Hamburg, Germany
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Riems, Germany
| | - Dennis Rubbenstroth
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Riems, Germany
| |
Collapse
|
10
|
Eisermann P, Rubbenstroth D, Cadar D, Thomé-Bolduan C, Eggert P, Schlaphof A, Leypoldt F, Stangel M, Fortwängler T, Hoffmann F, Osterman A, Zange S, Niller HH, Angstwurm K, Pörtner K, Frank C, Wilking H, Beer M, Schmidt-Chanasit J, Tappe D. Active Case Finding of Current Bornavirus Infections in Human Encephalitis Cases of Unknown Etiology, Germany, 2018-2020. Emerg Infect Dis 2021; 27:1371-1379. [PMID: 33900167 PMCID: PMC8084505 DOI: 10.3201/eid2705.204490] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Human bornavirus encephalitis is a severe and often fatal infection caused by variegated squirrel bornavirus 1 (VSBV-1) and Borna disease virus 1 (BoDV-1). We conducted a prospective study of bornavirus etiology of encephalitis cases in Germany during 2018-2020 by using a serologic testing scheme applied along proposed graded case definitions for VSBV-1, BoDV-1, and unspecified bornavirus encephalitis. Of 103 encephalitis cases of unknown etiology, 4 bornavirus infections were detected serologically. One chronic case was caused by VSBV-1 after occupational-related contact of a person with exotic squirrels, and 3 acute cases were caused by BoDV-1 in virus-endemic areas. All 4 case-patients died. Bornavirus etiology could be confirmed by molecular methods. Serologic testing for these cases was virus specific, discriminatory, and a practical diagnostic option for living patients if no brain tissue samples are available. This testing should be guided by clinical and epidemiologic suspicions, such as residence in virus-endemic areas and animal exposure.
Collapse
|
11
|
Küchler L, Rüfli I, Koch MC, Hierweger MM, Kauer RV, Boujon CL, Hilbe M, Oevermann A, Zanolari P, Seuberlich T, Gurtner C. Astrovirus-Associated Polioencephalomyelitis in an Alpaca. Viruses 2020; 13:v13010050. [PMID: 33396858 PMCID: PMC7824642 DOI: 10.3390/v13010050] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 12/23/2020] [Accepted: 12/25/2020] [Indexed: 12/13/2022] Open
Abstract
An 8-year-old alpaca was admitted to the emergency service of the Clinic for Ruminants in Bern due to a reduced general condition and progressive neurological signs. Despite supportive treatment, its condition deteriorated and the animal had to be euthanized. Histopathological analysis revealed a severe non-suppurative polioencephalomyelitis with neuronal necrosis, most likely of viral origin. We detected abundant neuronal labelling with antibodies directed against two different epitopes of Bovine Astrovirus CH13/NeuroS1 (BoAstV-CH13/NeuroS1), which is a common viral agent associated with non-suppurative encephalitis in Swiss cattle. These findings were further verified by detection of viral RNA by use of in-situ hybridization and real-time RT-PCR. Next generation sequencing revealed that the detected virus genome had a pairwise identity of 98.9% to the genome of BoAstV-CH13/NeuroS1. To our knowledge, this is the first report of an astrovirus-associated polioencephalomyelitis in an alpaca. These results point to the possibility of an interspecies transmission of BoAstV-CH13/NeuroS1.
Collapse
Affiliation(s)
- Leonore Küchler
- Institute of Veterinary Pathology, Vetsuisse-Faculty, Universitiy of Bern, 3012 Bern, Switzerland;
- Correspondence:
| | - Isabelle Rüfli
- Clinic for Ruminants, Vetsuisse-Faculty, University of Bern, 3012 Bern, Switzerland; (I.R.); (P.Z.)
| | - Michel C. Koch
- Division of Experimental Clinical Research, Vetsuisse-Faculty, University of Bern, 3012 Bern, Switzerland; (M.C.K.); (M.M.H.); (R.V.K.); (C.L.B.); (A.O.); (T.S.)
| | - Melanie M. Hierweger
- Division of Experimental Clinical Research, Vetsuisse-Faculty, University of Bern, 3012 Bern, Switzerland; (M.C.K.); (M.M.H.); (R.V.K.); (C.L.B.); (A.O.); (T.S.)
| | - Ronja V. Kauer
- Division of Experimental Clinical Research, Vetsuisse-Faculty, University of Bern, 3012 Bern, Switzerland; (M.C.K.); (M.M.H.); (R.V.K.); (C.L.B.); (A.O.); (T.S.)
| | - Céline L. Boujon
- Division of Experimental Clinical Research, Vetsuisse-Faculty, University of Bern, 3012 Bern, Switzerland; (M.C.K.); (M.M.H.); (R.V.K.); (C.L.B.); (A.O.); (T.S.)
| | - Monika Hilbe
- Institute for Veterinary Pathology, Vetsuisse-Faculty, University of Zurich, 8006 Zurich, Switzerland;
| | - Anna Oevermann
- Division of Experimental Clinical Research, Vetsuisse-Faculty, University of Bern, 3012 Bern, Switzerland; (M.C.K.); (M.M.H.); (R.V.K.); (C.L.B.); (A.O.); (T.S.)
| | - Patrik Zanolari
- Clinic for Ruminants, Vetsuisse-Faculty, University of Bern, 3012 Bern, Switzerland; (I.R.); (P.Z.)
| | - Torsten Seuberlich
- Division of Experimental Clinical Research, Vetsuisse-Faculty, University of Bern, 3012 Bern, Switzerland; (M.C.K.); (M.M.H.); (R.V.K.); (C.L.B.); (A.O.); (T.S.)
| | - Corinne Gurtner
- Institute of Veterinary Pathology, Vetsuisse-Faculty, Universitiy of Bern, 3012 Bern, Switzerland;
| |
Collapse
|