1
|
Zhuang X, Chen L, Yang S, Xia S, Xu Z, Zhang T, Zeng B, Yu T, Yu N, Wang W, Lu H, Tian M, Jin N. R848 Adjuvant Laden With Self-Assembled Nanoparticle-Based mRNA Vaccine Elicits Protective Immunity Against H5N1 in Mice. Front Immunol 2022; 13:836274. [PMID: 35711431 PMCID: PMC9197463 DOI: 10.3389/fimmu.2022.836274] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 05/03/2022] [Indexed: 11/13/2022] Open
Abstract
In order to perfect the design strategy of messenger RNA (mRNA) vaccines against the H5N1 influenza virus, we investigated whether different antigen designs and the use of adjuvants could improve the immune effect of mRNA vaccines. We designed three different forms of antigen genes, including Flu [H1/H3/H5/B-HA2(aa90~105)-M2e(24aa)], Flu-Fe (Fe, ferritin), and CD5-Flu-Fe (CD5, a secretion signal peptide). Meanwhile, R848 (Requimod) was selected as the adjuvant of the mRNA vaccine. We prepared cationic lipid nanoparticles for mRNA delivery, named LNP-Man (mannose-modified lipid nanoparticles). Cell transfection results showed that Flu-Fe/CD5-Flu-Fe containing ferritin could express the target antigens HA2 and M2e more efficiently than Flu. In the mice immune experiment, five immune groups (LNP-Man/Flu, LNP-Man/Flu-Fe, LNP-Man/CD5-Flu-Fe, LNP-Man/Flu-Fe+R848, and LNP-Man/CD5-Flu-Fe+R848) and two control groups (LNP-Man, PBS) were set up. After being infected with the 1×LD50 H5N1 avian influenza virus, the survival rate of the mice in the LNP-Man/CD5-Flu-Fe, LNP-Man/Flu-Fe+R848, and LNP-Man/CD5-Flu-Fe+R848 were 100%. More importantly, in LNP-Man/Flu-Fe+R848 and LNP-Man/CD5-Flu-Fe+R848 groups, there was no residual virus detected in the mice lung tissue on the 5th day postchallenge. Overall, this study provides a new idea for the design of H5N1 avian influenza virus mRNA vaccines in terms of antigen designs and adjuvant selection.
Collapse
Affiliation(s)
- Xinyu Zhuang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Luer Chen
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Songhui Yang
- College of Agriculture, Yanbian University, Agricultural College of Yanbian University, Yanji, China
| | - Shengnan Xia
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Zhiqiang Xu
- College of Agriculture, Yanbian University, Agricultural College of Yanbian University, Yanji, China
| | - Tong Zhang
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Boyu Zeng
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Tong Yu
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
| | - Ning Yu
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Wei Wang
- College of Animal Science and Technology, Guangxi University, Nanning, China
- Institute of Virology, Wenzhou University, Wenzhou, China
| | - Huijun Lu
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
- Institute of Virology, Wenzhou University, Wenzhou, China
| | - Mingyao Tian
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Ningyi Jin
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
- College of Veterinary Medicine, Jilin University, Changchun, China
| |
Collapse
|
2
|
Development and application of reverse genetic technology for the influenza virus. Virus Genes 2021; 57:151-163. [PMID: 33528730 PMCID: PMC7851324 DOI: 10.1007/s11262-020-01822-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 12/28/2020] [Indexed: 12/28/2022]
Abstract
Influenza virus is a common virus in people's daily lives, and it has certain infectivity in humans and animals. Influenza viruses have the characteristics of a high mutation rate and wide distribution. Reverse genetic technology is primarily used to modify viruses at the DNA level through targeted modification of the virus cDNA. Genetically modified influenza viruses have a unique advantage when researching the transmission and pathogenicity of influenza. With the continuous development of oncolytic viruses in recent years, studies have found that influenza viruses also have certain oncolytic activity. Influenza viruses can specifically recognize tumor cells; activate cytotoxic T cells, NK cells, dendritic cells, etc.; and stimulate the body to produce an immune response, thereby killing tumor cells. This article will review the development and application of influenza virus reverse genetic technology.
Collapse
|
3
|
Chen X, Wang W, Wang Y, Lai S, Yang J, Cowling BJ, Horby PW, Uyeki TM, Yu H. Serological evidence of human infections with highly pathogenic avian influenza A(H5N1) virus: a systematic review and meta-analysis. BMC Med 2020; 18:377. [PMID: 33261599 PMCID: PMC7709391 DOI: 10.1186/s12916-020-01836-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 11/02/2020] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Highly pathogenic avian influenza A(H5N1) virus poses a global public health threat given severe and fatal zoonotic infections since 1997 and ongoing A(H5N1) virus circulation among poultry in several countries. A comprehensive assessment of the seroprevalence of A(H5N1) virus antibodies remains a gap and limits understanding of the true risk of A(H5N1) virus infection. METHODS We conducted a systematic review and meta-analysis of published serosurveys to assess the risk of subclinical and clinically mild A(H5N1) virus infections. We assessed A(H5N1) virus antibody titers and changes in titers among populations with variable exposures to different A(H5N1) viruses. RESULTS Across studies using the World Health Organization-recommended seropositive definition, the point estimates of the seroprevalence of A(H5N1) virus-specific antibodies were higher in poultry-exposed populations (range 0-0.6%) and persons exposed to both human A(H5N1) cases and infected birds (range 0.4-1.8%) than in close contacts of A(H5N1) cases or the general population (none to very low frequencies). Seroprevalence was higher in persons exposed to A(H5N1) clade 0 virus (1.9%, range 0.7-3.2%) than in participants exposed to other clades of A(H5N1) virus (range 0-0.5%) (p < 0.05). Seroprevalence was higher in poultry-exposed populations (range 0-1.9%) if such studies utilized antigenically similar A(H5N1) virus antigens in assays to A(H5N1) viruses circulating among poultry. CONCLUSIONS These low seroprevalences suggest that subclinical and clinically mild human A(H5N1) virus infections are uncommon. Standardized serological survey and laboratory methods are needed to fully understand the extent and risk of human A(H5N1) virus infections.
Collapse
Affiliation(s)
- Xinhua Chen
- School of Public Health, Fudan University, Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, 200032, China
| | - Wei Wang
- School of Public Health, Fudan University, Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, 200032, China
| | - Yan Wang
- School of Public Health, Fudan University, Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, 200032, China
| | - Shengjie Lai
- School of Public Health, Fudan University, Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, 200032, China
- WorldPop, School of Geography and Environmental Science, University of Southampton, Southampton, SO17 1BJ, UK
| | - Juan Yang
- School of Public Health, Fudan University, Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, 200032, China
| | - Benjamin J Cowling
- WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Special Administrative Region, China
| | - Peter W Horby
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Timothy M Uyeki
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, USA
| | - Hongjie Yu
- School of Public Health, Fudan University, Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, 200032, China.
| |
Collapse
|