1
|
Styś-Fijoł N, Kozdruń W, Piekarska K, Niczyporuk JS. Molecular analysis Polish isolates of goose hemorrhagic polyomavirus from geese and free-living birds. Heliyon 2023; 9:e17083. [PMID: 37484428 PMCID: PMC10361228 DOI: 10.1016/j.heliyon.2023.e17083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 05/18/2023] [Accepted: 06/07/2023] [Indexed: 07/25/2023] Open
Abstract
Goose haemorrhagic polyomavirus (GHPV) is the viral agent of hemorrhagic nephritis and enteritis of geese (HNEG), a lethal disease of goose. The study describes the results of a molecular analysis Polish isolates of GHPV from geese and free-living birds based on complete VP1 gene and VP2 gene sequences. The sequences were analyzed and aligned with different GHPV isolates sequences accessible in the GenBank database. This study indicates affiliation GHPV isolates from fee-living birds and GHPV isolates circulating in Polish goose flocks and around the world to the same genetic groups, which proves their evolutionary relationship and indicates the potential role of free-living birds as a source of infections for poultry.
Collapse
|
2
|
Wang CW, Chen YL, Mao SJT, Lin TC, Wu CW, Thongchan D, Wang CY, Wu HY. Pathogenicity of Avian Polyomaviruses and Prospect of Vaccine Development. Viruses 2022; 14:v14092079. [PMID: 36146885 PMCID: PMC9505546 DOI: 10.3390/v14092079] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 09/12/2022] [Accepted: 09/13/2022] [Indexed: 11/23/2022] Open
Abstract
Polyomaviruses are nonenveloped icosahedral viruses with a double-stranded circular DNA containing approximately 5000 bp and 5–6 open reading frames. In contrast to mammalian polyomaviruses (MPVs), avian polyomaviruses (APVs) exhibit high lethality and multipathogenicity, causing severe infections in birds without oncogenicity. APVs are classified into 10 major species: Adélie penguin polyomavirus, budgerigar fledgling disease virus, butcherbird polyomavirus, canary polyomavirus, cormorant polyomavirus, crow polyomavirus, Erythrura gouldiae polyomavirus, finch polyomavirus, goose hemorrhagic polyomavirus, and Hungarian finch polyomavirus under the genus Gammapolyomavirus. This paper briefly reviews the genomic structure and pathogenicity of the 10 species of APV and some of their differences in terms of virulence from MPVs. Each gene’s genomic size, number of amino acid residues encoding each gene, and key biologic functions are discussed. The rationale for APV classification from the Polyomavirdae family and phylogenetic analyses among the 10 APVs are also discussed. The clinical symptoms in birds caused by APV infection are summarized. Finally, the strategies for developing an effective vaccine containing essential epitopes for preventing virus infection in birds are discussed. We hope that more effective and safe vaccines with diverse protection will be developed in the future to solve or alleviate the problems of viral infection.
Collapse
Affiliation(s)
- Chen-Wei Wang
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 912, Taiwan
- International Degree Program in Animal Vaccine Technology, National Pingtung University of Science and Technology, Pingtung 912, Taiwan
| | - Yung-Liang Chen
- Department of Medical Laboratory Science and Biotechnology, Yuan Pei University of Medical Technology, Yuanpei Street, Hsinchu 300, Taiwan
| | - Simon J. T. Mao
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu 300, Taiwan
| | - Tzu-Chieh Lin
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 912, Taiwan
- International Degree Program in Animal Vaccine Technology, National Pingtung University of Science and Technology, Pingtung 912, Taiwan
| | - Ching-Wen Wu
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 912, Taiwan
- Department of Tropical Agriculture and International Cooperation, National Pingtung University of Science and Technology, Pingtung 912, Taiwan
| | - Duangsuda Thongchan
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 912, Taiwan
- Faculty of Agriculture and Technology, Rajamangala University of Technology Isan, Surin Campus, Nakhon Ratchasima 30000, Thailand
| | - Chi-Young Wang
- Department of Veterinary Medicine, College of Veterinary Medicine, National Chung Hsing University, Taichung 402, Taiwan
- The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung 402, Taiwan
- Correspondence: (C.-Y.W.); (H.-Y.W.); Tel.: +886-4-22840369 (ext. 48) (C.-Y.W.); +886-8-7703202 (ext. 5072) (H.-Y.W.)
| | - Hung-Yi Wu
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 912, Taiwan
- Correspondence: (C.-Y.W.); (H.-Y.W.); Tel.: +886-4-22840369 (ext. 48) (C.-Y.W.); +886-8-7703202 (ext. 5072) (H.-Y.W.)
| |
Collapse
|
3
|
Kaszab E, Szabadi L, Kepner A, Bajnóczi P, Lengyel G, Bányai K, Fehér E. Viral gene expression profile of goose haemorrhagic polyomavirus in susceptible primary cells. Avian Pathol 2021; 50:447-452. [PMID: 34545745 DOI: 10.1080/03079457.2021.1969005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Routine culturing of goose haemorrhagic polyomavirus (GHPV) is cumbersome, and limited data are available about its replication and gene expression profile. In this study, goose embryo fibroblast cells were infected with GHPV for temporal measurement of the viral genome copy number and mRNA levels with quantitative PCR. Accumulation of small and large tumour antigen-encoding mRNAs was detected as early as 9 hours post-infection (hpi), while high level expression of the capsid protein encoding VP1-VP3, and ORF-X mRNAs was first detected at 24 hpi. Elevation of GHPV genome copy number was noted at 48 hpi. The results indicate that the gene expression profile of GHPV is similar to that described for mammalian polyomaviruses.RESEARCH HIGHLIGHTS GHPV was propagated in culture of primary goose embryo fibroblast cells.The transcription commenced before the onset of viral DNA replication.The transcription patterns of GHPV and mammalian polyomaviruses were comparable.
Collapse
Affiliation(s)
- Eszter Kaszab
- Veterinary Medical Research Institute, Budapest, Hungary
| | | | | | | | - György Lengyel
- Hungarian Defence Forces Military Medical Centre, Budapest, Hungary
| | - Krisztián Bányai
- Veterinary Medical Research Institute, Budapest, Hungary.,University of Veterinary Medicine, Budapest, Hungary
| | - Enikő Fehér
- Veterinary Medical Research Institute, Budapest, Hungary
| |
Collapse
|
4
|
Fehér E, Jakab S, Bali K, Kaszab E, Nagy B, Ihász K, Bálint Á, Palya V, Bányai K. Genomic Epidemiology and Evolution of Duck Hepatitis A Virus. Viruses 2021; 13:v13081592. [PMID: 34452457 PMCID: PMC8402860 DOI: 10.3390/v13081592] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 08/03/2021] [Accepted: 08/06/2021] [Indexed: 01/09/2023] Open
Abstract
Duck hepatitis A virus (DHAV), an avian picornavirus, causes high-mortality acute disease in ducklings. Among the three serotypes, DHAV-1 is globally distributed, whereas DHAV-2 and DHAV-3 serotypes are chiefly restricted to Southeast Asia. In this study, we analyzed the genomic evolution of DHAV-1 strains using extant GenBank records and genomic sequences of 10 DHAV-1 strains originating from a large disease outbreak in 2004-2005, in Hungary. Recombination analysis revealed intragenotype recombination within DHAV-1 as well as intergenotype recombination events involving DHAV-1 and DHAV-3 strains. The intergenotype recombination occurred in the VP0 region. Diversifying selection seems to act at sites of certain genomic regions. Calculations estimated slightly lower rates of evolution of DHAV-1 (mean rates for individual protein coding regions, 5.6286 × 10-4 to 1.1147 × 10-3 substitutions per site per year) compared to other picornaviruses. The observed evolutionary mechanisms indicate that whole-genome-based analysis of DHAV strains is needed to better understand the emergence of novel strains and their geographical dispersal.
Collapse
Affiliation(s)
- Enikő Fehér
- Veterinary Medical Research Institute, Hungária krt 21, H-1143 Budapest, Hungary; (E.F.); (S.J.); (K.B.); (E.K.); (B.N.); (K.I.)
| | - Szilvia Jakab
- Veterinary Medical Research Institute, Hungária krt 21, H-1143 Budapest, Hungary; (E.F.); (S.J.); (K.B.); (E.K.); (B.N.); (K.I.)
| | - Krisztina Bali
- Veterinary Medical Research Institute, Hungária krt 21, H-1143 Budapest, Hungary; (E.F.); (S.J.); (K.B.); (E.K.); (B.N.); (K.I.)
| | - Eszter Kaszab
- Veterinary Medical Research Institute, Hungária krt 21, H-1143 Budapest, Hungary; (E.F.); (S.J.); (K.B.); (E.K.); (B.N.); (K.I.)
| | - Borbála Nagy
- Veterinary Medical Research Institute, Hungária krt 21, H-1143 Budapest, Hungary; (E.F.); (S.J.); (K.B.); (E.K.); (B.N.); (K.I.)
| | - Katalin Ihász
- Veterinary Medical Research Institute, Hungária krt 21, H-1143 Budapest, Hungary; (E.F.); (S.J.); (K.B.); (E.K.); (B.N.); (K.I.)
| | - Ádám Bálint
- Veterinary Diagnostic Directorate, National Food Chain Safety Office, Tábornok utca 2, H-1143 Budapest, Hungary;
| | - Vilmos Palya
- Ceva-Phylaxia Veterinary Biologicals Co., Ltd., H-1107 Budapest, Hungary;
| | - Krisztián Bányai
- Veterinary Medical Research Institute, Hungária krt 21, H-1143 Budapest, Hungary; (E.F.); (S.J.); (K.B.); (E.K.); (B.N.); (K.I.)
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, István utca 2, H-1078 Budapest, Hungary
- Correspondence:
| |
Collapse
|
5
|
Kaszab E, Marton S, Erdélyi K, Bányai K, Fehér E. Genomic evolution of avian polyomaviruses with a focus on budgerigar fledgling disease virus. INFECTION GENETICS AND EVOLUTION 2021; 90:104762. [PMID: 33571686 DOI: 10.1016/j.meegid.2021.104762] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/04/2021] [Accepted: 02/05/2021] [Indexed: 11/19/2022]
Abstract
Gammapolyomaviruses may cause serious inflammatory diseases in a broad range of avian hosts. In this study we investigated genomic evolution of and selection constraint acting on avian polyomaviruses (APyVs). Our analyses suggested that goose haemorrhagic polyomavirus (GHPV) evolves more slowly (3.03 × 10-5 s/s/y mean evolutionary rate) than budgerigar fledgling disease virus (BFDV), finch polyomavirus (FPyV) and canary polyomavirus (CaPyV) (1.39 × 10-4 s/s/y, 2.63 × 10-4 s/s/y and 1.41 × 10-4 s/s/y mean evolutionary rate, respectively). In general, purifying selection seems to act on the protein coding regions of APyV genomes, although positive Darwinian selection was also predicted in a few positions (e.g., in the large tumor antigen coding region of BFDV and GHPV and in the capsid protein sequences of BFDV). The importance of these aa changes remains elusive. Overall, a better understanding of adaptive changes in the genome of APyVs requires additional data from various incidental hosts and reservoir species.
Collapse
Affiliation(s)
- Eszter Kaszab
- Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungária krt. 21, Budapest H-1143, Hungary
| | - Szilvia Marton
- Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungária krt. 21, Budapest H-1143, Hungary
| | - Károly Erdélyi
- National Food Chain Safety Office, Tábornok utca 2, Budapest H-1143, Hungary
| | - Krisztián Bányai
- Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungária krt. 21, Budapest H-1143, Hungary
| | - Enikő Fehér
- Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungária krt. 21, Budapest H-1143, Hungary.
| |
Collapse
|
6
|
Tu YC, Li WT, Lee F, Huang CW, Chang JC, Hsu WC, Hu SC, Chiou CJ, Chen YP. Localization of goose haemorrhagic polyomavirus in naturally infected geese using in situ hybridization. Avian Pathol 2020; 50:41-51. [PMID: 33021105 DOI: 10.1080/03079457.2020.1832199] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Goose haemorrhagic polyomavirus (GHPV) is the aetiological agent of haemorrhagic nephritis enteritis of geese (HNEG), a fatal disease that impacts geese and has been recorded only in Europe. The present study describes the first clinical cases of HNEG in Taiwan and the phylogenesis of Taiwanese GHPV, and it elucidates the pathogenesis of GHPV infection using in situ hybridization (ISH). The genomes of Taiwanese GHPV were highly similar to the previously reported strains. The diseased geese showed various degrees of vascular damage, especially in the digestive tract. The affected geese in the early stage showed transmural haemorrhagic enteritis in the intestine. In the middle to late stages, the most obvious lesion was hypoxic necrosis of renal tubules around intralobular central veins. Mineralization deposited in the kidney and systemic gout were also found. ISH revealed GHPV DNA in the vascular endothelial cells throughout the body, but not in the parenchymal cells of organs. Accordingly, the pathogenesis of GHPV infection was consistent with viral tropism in the endothelial cells. Specific attack of vascular endothelium by GHPV resulted in endothelial cell necrosis and subsequent increases of blood vessel permeability, as well as secondary circulation disorders, such as oedema, haemorrhage, and ischaemic necrosis in the adjacent parenchyma. RESEARCH HIGHLIGHTS Cell tropism of GHPV is determined by in situ hybridization. The tropism results in vascular dysfunction and subsequent pathobiology. Haemorrhagic nephritis and enteritis of geese described outside Europe for the first time.
Collapse
Affiliation(s)
- Yang-Chang Tu
- Epidemiology Division, Animal Health Research Institute, New Taipei City, Taiwan
| | | | - Fan Lee
- Epidemiology Division, Animal Health Research Institute, New Taipei City, Taiwan
| | - Chih-Wei Huang
- Epidemiology Division, Animal Health Research Institute, New Taipei City, Taiwan
| | - Jen-Chieh Chang
- Epidemiology Division, Animal Health Research Institute, New Taipei City, Taiwan
| | - Wei-Cheng Hsu
- Epidemiology Division, Animal Health Research Institute, New Taipei City, Taiwan
| | - Shu-Chia Hu
- Epidemiology Division, Animal Health Research Institute, New Taipei City, Taiwan
| | - Chwei-Jang Chiou
- Epidemiology Division, Animal Health Research Institute, New Taipei City, Taiwan
| | - Yen-Ping Chen
- Epidemiology Division, Animal Health Research Institute, New Taipei City, Taiwan
| |
Collapse
|