1
|
Duan Z, Wang S, Xie N, Zhao J, Dong J, Li J. Development and evaluation of a duplex real-time multienzyme isothermal rapid amplification assay for the detection of hypervirulent Klebsiella pneumoniae in clinical spiked blood specimens. Heliyon 2024; 10:e37050. [PMID: 39286224 PMCID: PMC11402988 DOI: 10.1016/j.heliyon.2024.e37050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 08/25/2024] [Accepted: 08/27/2024] [Indexed: 09/19/2024] Open
Abstract
Objectives Our objective was to establish a rapid and precise method for detecting hypervirulent Klebsiella pneumoniae (hvKP) by utilizing a duplex real-time multienzyme isothermal rapid amplification (real-time MIRA) and to evaluate its performance in clinical spiked blood specimens. Methods The research comprised two phases: an initial pilot study to establish the methodology and a clinical validation study to assess its effectiveness. In the pilot phase, we designed specific primers and probes targeting the hvKP pg344 and incA genes and subsequently developed a duplex real-time MIRA assay to evaluate its detection limits, specificity, and efficiency. In the clinical validation phase, we analyzed thirty-three spiked blood specimens using the duplex real-time MIRA assay. Results The duplex real-time MIRA assay demonstrated no cross-reactivity with other strains. Sensitivity experiments confirmed that the assay had a detection limit as low as 8 × 102 CFU per reaction for hvKP. The analysis of clinical spiked blood specimens indicated that the sensitivity and specificity of the duplex real-time MIRA assay were on par with those of duplex real-time PCR. Conclusions These findings confirm that the duplex real-time MIRA assay is a fast, straightforward, and dependable method for detecting hvKP.
Collapse
Affiliation(s)
- Zhixiong Duan
- Department of Laboratory Medicine, The Affiliated Dazu's Hospital of Chongqing Medical University, Chongqing, China
- Department of Laboratory Medicine, The Chen Jia qiao Hospital of Sha Ping Ba District, Chongqing, China
| | - Shan Wang
- Department of Laboratory Medicine, The Affiliated Dazu's Hospital of Chongqing Medical University, Chongqing, China
| | - Niqi Xie
- Department of Laboratory Medicine, The Affiliated Dazu's Hospital of Chongqing Medical University, Chongqing, China
| | - Junying Zhao
- Department of Laboratory Medicine, The Affiliated Dazu's Hospital of Chongqing Medical University, Chongqing, China
| | - Jian Dong
- Department of Laboratory Medicine, The Affiliated Dazu's Hospital of Chongqing Medical University, Chongqing, China
| | - Jin Li
- Department of Laboratory Medicine, The Affiliated Dazu's Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
2
|
Liang R, Fan A, Wang F, Niu Y. Optical lateral flow assays in early diagnosis of SARS-CoV-2 infection. ANAL SCI 2024; 40:1571-1591. [PMID: 38758251 DOI: 10.1007/s44211-024-00596-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 05/08/2024] [Indexed: 05/18/2024]
Abstract
So far, the 2019 novel coronavirus (COVID-19) is spreading widely worldwide. The early diagnosis of infection by the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is essential to provide timely treatment and prevent its further spread. Lateral flow assays (LFAs) have the advantages of rapid detection, simple operation, low cost, ease of mass production, and no need for special devices and professional operators, which make them suitable for self-testing at home. This review focuses on the early diagnosis of SARS-CoV-2 infection based on optical LFAs including colorimetric, fluorescent (FL), chemiluminescent (CL), and surface-enhanced Raman scattering (SERS) LFAs for the detection of SARS-CoV-2 antigens and nucleic acids. The types of recognition components, detection modes used for antigen detection, labels employed in different optical LFAs, and strategies to improve the detection sensitivity of LFAs were reviewed. Meanwhile, LFAs coupled with different nucleic acid amplification techniques and CRISPR-Cas systems for the detection of SARS-CoV-2 nucleic acids were summarized. We hope this review provides research mentalities for developing highly sensitive LFAs that can be used in home self-testing for the early diagnosis of SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Rushi Liang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, People's Republic of China
| | - Aiping Fan
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, People's Republic of China.
| | - Feiqian Wang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, People's Republic of China
| | - Yajing Niu
- Beijing Pharma and Biotech Center, Beijing, 100035, People's Republic of China.
| |
Collapse
|
3
|
Zhang T, Tang J, Zhang Y, Jin Y, Lin Z, Chen J, Huang J, Mo M. Establishment of a rapid real-time fluorescence-based recombinase-aided amplification method for detection of avian infectious bronchitis virus. J Virol Methods 2024; 328:114955. [PMID: 38768869 DOI: 10.1016/j.jviromet.2024.114955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 05/15/2024] [Accepted: 05/16/2024] [Indexed: 05/22/2024]
Abstract
Infectious bronchitis (IB) is an acute, highly contagious contact respiratory disease of chickens caused by infectious bronchitis virus (IBV). IBV is very prone to mutation, which brings great difficulties to the prevention and control of the disease. Therefore, there is a pressing need for a method that is fast, sensitive, specific, and convenient for detecting IBV. In this study, a real-time fluorescence-based recombinase-aided amplification (RF-RAA) method was established. Primers and probe were designed based on the conserved regions of the IBV M gene and the reaction concentrations were optimized, then the specificity, sensitivity, and reproducibility of this assay were tested. The results showed that the RF-RAA method could be completed at 39℃ within 20 min, during which the results could be interpreted visually in real-time. The RF-RAA method had good specificity, no cross-reaction with common poultry pathogens, and it detected a minimum concentration of template of 2 copies/μL for IBV. Besides, its reproducibility was stable. A total of 144 clinical samples were tested by RF-RAA and real-time quantitative PCR (qPCR), 132 samples of which were positive and 12 samples were negative, and the coincidence rate of the two methods was 100 %. In conclusion, the developed RF-RAA detection method is rapid, specific, sensitive, reproducible, and convenient, which can be utilized for laboratory detection and clinical diagnosis of IBV.
Collapse
Affiliation(s)
- Taoni Zhang
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Jinwen Tang
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Yu Zhang
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Yinghao Jin
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Zixue Lin
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Jiming Chen
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Jianni Huang
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Meilan Mo
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China; Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning 530004, China; Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning 530004, China; Guangxi Colleges and Universities Key Laboratory of Prevention and Control for Animal Disease, Nanning 530004, China.
| |
Collapse
|
4
|
Dong Y, Zhou D, Zhang B, Xu X, Zhang J. Development of a real-time recombinase-aided amplification assay for rapid and sensitive detection of Edwardsiella piscicida. Front Cell Infect Microbiol 2024; 14:1355056. [PMID: 38606294 PMCID: PMC11007066 DOI: 10.3389/fcimb.2024.1355056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 03/14/2024] [Indexed: 04/13/2024] Open
Abstract
Edwardsiella piscicida, a significant intracellular pathogen, is widely distributed in aquatic environments and causes systemic infection in various species. Therefore, it's essential to develop a rapid, uncomplicated and sensitive method for detection of E. piscicida in order to control the transmission of this pathogen effectively. The recombinase-aided amplification (RAA) assay is a newly developed, rapid detection method that has been utilized for various pathogens. In the present study, a real-time RAA (RT-RAA) assay, targeting the conserved positions of the EvpP gene, was successfully established for the detection of E. piscicida. This assay can be performed in a one-step single tube reaction at a temperature of 39°C within 20 min. The RT-RAA assay exhibited a sensitivity of 42 copies per reaction at a 95% probability, which was comparable to the sensitivity of real-time quantitative PCR (qPCR) assay. The specificity assay confirmed that the RT-RAA assay specifically targeted E. piscicida without any cross-reactivity with other important marine bacterial pathogens. Moreover, when clinical specimens were utilized, a perfect agreement of 100% was achieved between the RT-RAA and qPCR assays, resulting a kappa value of 1. These findings indicated that the established RT-RAA assay provided a viable alternative for the rapid, sensitive, and specific detection of E. piscicida.
Collapse
Affiliation(s)
- Yuchen Dong
- School of Ocean, Yantai University, Yantai, China
| | - Dandan Zhou
- School of Ocean, Yantai University, Yantai, China
| | - Binzhe Zhang
- School of Ocean, Yantai University, Yantai, China
| | - Xiaoying Xu
- Yantai Marine Economic Research Institute, Yantai, China
| | - Jian Zhang
- School of Ocean, Yantai University, Yantai, China
| |
Collapse
|
5
|
Mao X, Xu M, Luo S, Yang Y, Zhong J, Zhou J, Fan H, Li X, Chen Z. Advancements in the synergy of isothermal amplification and CRISPR-cas technologies for pathogen detection. Front Bioeng Biotechnol 2023; 11:1273988. [PMID: 37885449 PMCID: PMC10598474 DOI: 10.3389/fbioe.2023.1273988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 09/29/2023] [Indexed: 10/28/2023] Open
Abstract
In the realm of pathogen detection, isothermal amplification technology has emerged as a swift, precise, and sensitive alternative to conventional PCR. This paper explores the fundamental principles of recombinase polymerase amplification (RPA) and recombinase-aid amplification (RAA) and reviews the current status of integrating the CRISPR-Cas system with RPA/RAA techniques. Furthermore, this paper explores the confluence of isothermal amplification and CRISPR-Cas technology, providing a comprehensive review and enhancements of existing combined methodologies such as SHERLOCK and DETECTR. We investigate the practical applications of RPA/RAA in conjunction with CRISPR-Cas for pathogen detection, highlighting how this integrated approach significantly advances both research and clinical implementation in the field. This paper aims to provide readers with a concise understanding of the fusion of RPA/RAA and CRISPR-Cas technology, offering insights into their clinical utility, ongoing enhancements, and the promising prospects of this integrated approach in pathogen detection.
Collapse
Affiliation(s)
- Xiaolei Mao
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Minghui Xu
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Shuyin Luo
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Yi Yang
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Jiaye Zhong
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Jiawei Zhou
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Huayan Fan
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Xiaoping Li
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
- Faculty of Medicine, Macau University of Science and Technology, Macau, China
| | - Zhi Chen
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| |
Collapse
|
6
|
Liu Y, Xiang J, Gao Y, Wang J, Liu L, Li R, Wang J. Rapid detection of Cryptosporidium spp. in diarrheic cattle feces by isothermal recombinase polymerase amplification assays. Heliyon 2023; 9:e20794. [PMID: 37860527 PMCID: PMC10582492 DOI: 10.1016/j.heliyon.2023.e20794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 09/10/2023] [Accepted: 10/06/2023] [Indexed: 10/21/2023] Open
Abstract
As a zoonotic parasite, Cryptosporidium spp. could cause severe diarrhea mainly in calves and children globally. Monitoring and prevention of Cryptosporidium spp.'s prevalence is of great significance in both economy and public health aspects. In this study, specific primers and probes were designed within the conserved region of 18S rRNA gene for Cryptosporidium spp. and recombinase polymerase amplification assays based on the fluorescence monitoring (real-time RPA) as well as combined with a lateral flow strip (LFS RPA) were developed. Both of the two RPA assays allowed the exponential amplification of the target fragment within 20 min. After incubation on a metal bath at 42 °C, the LFS RPA results were displayed on the lateral flow strip within 5 min while real-time RPA allowed the real-time observation of the results in Genie III at 39 °C. The RPA assays showed high specificity for Cryptosporidium spp. without any cross-reaction with other tested pathogens causing diarrhea in cattle. With the recombinant plasmid DNA containing the 18S rRNA gene of Cryptosporidium spp. serving as a template, the limit of detection for real-time RPA and LFS RPA assays were 14.6 and 12.7 copies/reaction, respectively. Moreover, the RPA assays were validated by testing diarrheic cattle fecal samples and compared with a real-time PCR. The positive ratio of Cryptosporidium spp. was 24.04 % (44/183) and 26.23 % (48/183) in both RPA assays and real-time PCR assay, respectively, and the kappa coefficient value was 0.942. The diagnostic specificity and diagnostic sensitivity of both RPA assays were 100 % and 91.67 %, respectively. Forty-one of 48 positive samples were successfully sequenced and four Cryptosporidium species were detected, including C. parvum (n = 20), C. andersoni (n = 17), C. bovis (n = 3) and C. ryanae (n = 1). The developed RPA assays are easy to operate and faster to obtain the detection results, and they are suiting for the point-of-care detection and facilitating the prevention and control of Cryptosporidium spp. infections.
Collapse
Affiliation(s)
- Yuelin Liu
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, China
| | - Jialin Xiang
- Food Microbiology and Animal Quarantine Laboratory, Technology Center of Shijiazhuang Customs District, Shijiazhuang, China
| | - Yaxin Gao
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, China
| | - Jinfeng Wang
- Food Microbiology and Animal Quarantine Laboratory, Technology Center of Shijiazhuang Customs District, Shijiazhuang, China
| | - Libing Liu
- Food Microbiology and Animal Quarantine Laboratory, Technology Center of Shijiazhuang Customs District, Shijiazhuang, China
| | - Ruiwen Li
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, China
| | - Jianchang Wang
- Food Microbiology and Animal Quarantine Laboratory, Technology Center of Shijiazhuang Customs District, Shijiazhuang, China
| |
Collapse
|
7
|
Liu Y, Ren W, Xue Z, Miao Y, Wang W, Zhang X, Yao C, Shang Y, Li S, Mi F, Pang Y. Real-time recombinase-aided amplification assay for rapid amplification of the IS1081 gene of Mycobacterium tuberculosis. Eur J Clin Microbiol Infect Dis 2023:10.1007/s10096-023-04626-5. [PMID: 37256455 DOI: 10.1007/s10096-023-04626-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 05/23/2023] [Indexed: 06/01/2023]
Abstract
Mycobacterium tuberculosis (MTB), the etiological agent of tuberculosis (TB), is the leading cause of death due to a single infectious agent worldwide. Rapid and accurate diagnosis of MTB is critical for controlling TB especially in resource-limited countries, since any diagnosis delay increases the chances of transmission. Here, a real-time recombinase-aided amplification (RAA) assay targeting conserved positions in IS1081 gene of MTB, is successfully established to detect MTB. The intact workflow was completed within 30 min at 42 °C with no cross-reactivity observed for non-tuberculous mycobacteria and other clinical bacteria, and the detection limit for recombinant plasmid of MTB IS1081 was 163 copies/reaction at 95% probability, which was approximately 1.5-fold increase in analytical sensitivity for the detection of MTB, compared to conventional quantitative real-time PCR (qPCR; 244 copies/reaction). Furthermore, the result of clinical performance evaluation revealed an increased sensitivity of RAA assay relative to qPCR was majorly noted in the specimens with low bacteria loads. Our results demonstrate that the developed real-time RAA assay is a convenient, sensitive, and low-cost diagnostic tool for the rapid detection of MTB.
Collapse
Affiliation(s)
- Yuanyuan Liu
- Department of Bacteriology and Immunology, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Weicong Ren
- Department of Bacteriology and Immunology, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Zhongtan Xue
- Department of Bacteriology and Immunology, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Yuedong Miao
- Department of Research, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Wei Wang
- Department of Bacteriology and Immunology, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Xuxia Zhang
- Department of Bacteriology and Immunology, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Cong Yao
- Department of Bacteriology and Immunology, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Yuanyuan Shang
- Department of Bacteriology and Immunology, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Shanshan Li
- Department of Bacteriology and Immunology, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Fengling Mi
- Department of Research, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China.
| | - Yu Pang
- Department of Bacteriology and Immunology, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China.
| |
Collapse
|
8
|
Zhao L, Wen XH, Jia CL, Zhou XR, Luo SJ, Lv DH, Zhai Q. Development of a multiplex qRT-PCR assay for detection of classical swine fever virus, African swine fever virus, and Erysipelothrix rhusiopathiae. Front Vet Sci 2023; 10:1183360. [PMID: 37303728 PMCID: PMC10248016 DOI: 10.3389/fvets.2023.1183360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 05/03/2023] [Indexed: 06/13/2023] Open
Abstract
Classical swine fever virus (CSFV), African swine fever virus (ASFV), and Erysipelothrix rhusiopathiae (E. rhusiopathiae) remain endemic in many parts of China. Co-infections make distinguishing their clinical symptoms and pathological changes difficult. This study developed a multiplex real-time quantitative reverse transcription polymerase chain reaction (multiplex qRT-PCR) that can simultaneously detect CSFV, ASFV, and E. rhusiopathiae. Three sets of primers and probes were designed to target the CSFV 5΄ untranslated region, ASFV p72 gene, and E. rhusiopathiae 16sRNA gene. Multiplex qRT-PCR for simultaneous differential detection of these three pathogens was developed after optimizing reaction parameters such as annealing temperature, primer and probe concentrations, amplification cycles, etc. The multiplex qRT-PCR could detect CSFV, ASFV, and E. rhusiopathiae simultaneously but could not amplify other porcine pathogens. The assay's limit of detection (LOD) was 2.89 × 102 copies/μL for CSFV, ASFV, and E. rhusiopathiae. All correlation coefficients (R2) at higher than 0.99, and the amplification efficiency was 98, 90, and 84%, respectively. All correlation coefficients (R2) were higher than 0.99, and the efficacy of amplification was 84%. In a repeatability test utilizing standard recombinant plasmids, the intra- and inter-assay coefficients of variation (CVs) were less than 2.27 and 3.79 percent, respectively. Lastly, 150 clinical samples were used to evaluate the assay's applicability in the field. The positive rates of CSFV, ASFV, and E. rhusiopathiae were 1.33%, 0, and 3.33%, respectively. And no co-infection among the three pathogens was found. The concordance rate between the multiplex qRT-PCR and single-plex commercial PCR kits reached 100%. This study's multiplex qRT-PCR could provide a rapid, sensitive, and specific method for the simultaneous and differential detection of CSFV, ASFV, and E. rhusiopathiae.
Collapse
Affiliation(s)
- Liang Zhao
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- College of Animal Science, Tibet Agriculture and Animal Husbandry University, Linzhi, China
| | - Xiao-Hui Wen
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Chun-Ling Jia
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Xiu-Rong Zhou
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Sheng-Jun Luo
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Dian-Hong Lv
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Qi Zhai
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| |
Collapse
|
9
|
Cui H, Guan J, Lu H, Liu J, Tu F, Zhang C, Su K, Guo Z, Zhao K. Rapid Onsite Visual Detection of Orf Virus Using a Recombinase-Aided Amplification Assay. Life (Basel) 2023; 13:life13020494. [PMID: 36836851 PMCID: PMC9968157 DOI: 10.3390/life13020494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023] Open
Abstract
Orf is an important zoonotic disease caused by the Orf virus (ORFV) which can cause contagious pustular dermatitis in goats and sheep. Orf is widespread in most sheep-raising countries in the world, causing huge economic losses. Although diagnostic methods for ORFV infection already exist, it is still necessary to develop a time-saving, labor-saving, specific, low-cost and visual diagnostic method for rapid detection of ORFV in the field and application in grassroots laboratories. This study establishes a DNA extraction-free, real-time, visual recombinase-aided amplification (RAA) method for the rapid detection of ORFV. This method is specific to ORFV and does not cross-react with other common DNA viruses. The detection limits of the real-time RAA and visual judgment of the RAA assay at 95% probability were 13 and 21 copies per reaction for ORFV, respectively. Compared with qPCR, the sensitivity and specificity of the real-time RAA assay were 100%, and those of the visual RAA assay were 92.31% and 100.0%, respectively. The DNA extraction-free visual detection method of RAA established in this study can meet the needs of rapid onsite detection and grassroots laboratories and has important reference value and significance for the early diagnosis of diseased animals.
Collapse
Affiliation(s)
- Huan Cui
- College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Jiyu Guan
- College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Huijun Lu
- Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis, Jilin University, Changchun 130062, China
| | - Jun Liu
- Changchun Veterinary Research Institute, Chinese Academy of Agriculture Sciences, Changchun 130122, China
| | - Fei Tu
- Changchun Veterinary Research Institute, Chinese Academy of Agriculture Sciences, Changchun 130122, China
| | - Cheng Zhang
- College of Veterinary Medicine, Hebei Agricultural University, 2596 Lucky South Street, Baoding 071000, China
| | - Kai Su
- College of Veterinary Medicine, Hebei Agricultural University, 2596 Lucky South Street, Baoding 071000, China
| | - Zhendong Guo
- Changchun Veterinary Research Institute, Chinese Academy of Agriculture Sciences, Changchun 130122, China
- Correspondence: (Z.G.); (K.Z.)
| | - Kui Zhao
- College of Veterinary Medicine, Jilin University, Changchun 130062, China
- Correspondence: (Z.G.); (K.Z.)
| |
Collapse
|
10
|
Chen Y, Luo S, Tan J, Zhang L, Qiu S, Hao Z, Wang N, Deng Z, Wang A, Yang Q, Yang Y, Wang C, Zhan Y. Establishment and application of multiplex real-time PCR for simultaneous detection of four viruses associated with porcine reproductive failure. Front Microbiol 2023; 14:1092273. [PMID: 36846754 PMCID: PMC9949525 DOI: 10.3389/fmicb.2023.1092273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 01/18/2023] [Indexed: 02/11/2023] Open
Abstract
Many pathogens cause reproductive failure in sows suffering a broad spectrum of sequelae, including abortions, stillbirth, mummification, embryonic death, and infertility. Although various detection methods, such as polymerase chain reaction (PCR) and real-time PCR, have been widely used for molecular diagnosis, mainly for a single pathogen. In this study, we developed a multiplex real-time PCR method for the simultaneous detection of porcine circovirus type 2 (PCV2), porcine circovirus type 3 (PCV3), porcine parvovirus (PPV) and pseudorabies virus (PRV) associated with porcine reproductive failure. The R 2 values for the standard curve of multiplex real-time PCR of PCV2, PCV3, PPV, and PRV reached to 0.996, 0.997, 0.996, and 0.998, respectively. Importantly, the limit of detection (LoD) of PCV2, PCV3, PPV, and PRV, were 1, 10, 10, 10 copies/reaction, respectively. Meanwhile, specificity test results indicated that multiplex real-time PCR for simultaneous detection is specific for these four target pathogens and does not react with other pathogens, such as classical swine fever virus, porcine reproductive and respiratory syndrome virus, and porcine epidemic diarrhea virus. Besides, this method had good repeatability with coefficients of variation of intra- and inter-assay less than 2%. Finally, this approach was further evaluated by 315 clinical samples for its practicality in the field. The positive rates of PCV2, PCV3, PPV, and PRV were 66.67% (210/315), 8.57% (27/315), 8.89% (28/315), and 4.13% (13/315), respectively. The overall co-infection rates of two or more pathogens were 13.65% (43/315). Therefore, this multiplex real-time PCR provides an accurate and sensitive method for the identification of those four underlying DNA viruses among potential pathogenic agents, allowing it to be applied in diagnostics, surveillance, and epidemiology.
Collapse
Affiliation(s)
- Yuan Chen
- Provincial Key Laboratory of Protein Engineering in Animal Vaccines, Research Center of Reverse Vaccinology (RCRV), and Laboratory of Functional Proteomics (LFP), College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan, China
| | - Shile Luo
- Provincial Key Laboratory of Protein Engineering in Animal Vaccines, Research Center of Reverse Vaccinology (RCRV), and Laboratory of Functional Proteomics (LFP), College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan, China
| | - Jianmei Tan
- Provincial Key Laboratory of Protein Engineering in Animal Vaccines, Research Center of Reverse Vaccinology (RCRV), and Laboratory of Functional Proteomics (LFP), College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan, China
| | - Luhua Zhang
- Provincial Key Laboratory of Protein Engineering in Animal Vaccines, Research Center of Reverse Vaccinology (RCRV), and Laboratory of Functional Proteomics (LFP), College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan, China
| | - Shengwu Qiu
- Provincial Key Laboratory of Protein Engineering in Animal Vaccines, Research Center of Reverse Vaccinology (RCRV), and Laboratory of Functional Proteomics (LFP), College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan, China
| | - Zhiyou Hao
- Animal Disease Prevention and Control Center of Yongzhou, Yongzhou, Hunan, China
| | - Naidong Wang
- Provincial Key Laboratory of Protein Engineering in Animal Vaccines, Research Center of Reverse Vaccinology (RCRV), and Laboratory of Functional Proteomics (LFP), College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan, China
| | - Zhibang Deng
- Provincial Key Laboratory of Protein Engineering in Animal Vaccines, Research Center of Reverse Vaccinology (RCRV), and Laboratory of Functional Proteomics (LFP), College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan, China
| | - Aibing Wang
- Provincial Key Laboratory of Protein Engineering in Animal Vaccines, Research Center of Reverse Vaccinology (RCRV), and Laboratory of Functional Proteomics (LFP), College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan, China
| | - Qing Yang
- Provincial Key Laboratory of Protein Engineering in Animal Vaccines, Research Center of Reverse Vaccinology (RCRV), and Laboratory of Functional Proteomics (LFP), College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan, China
| | - Yi Yang
- Provincial Key Laboratory of Protein Engineering in Animal Vaccines, Research Center of Reverse Vaccinology (RCRV), and Laboratory of Functional Proteomics (LFP), College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan, China
| | - Changjian Wang
- Animal Disease Prevention and Control Center of Hunan Province, Changsha, Hunan, China
| | - Yang Zhan
- Provincial Key Laboratory of Protein Engineering in Animal Vaccines, Research Center of Reverse Vaccinology (RCRV), and Laboratory of Functional Proteomics (LFP), College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan, China
| |
Collapse
|
11
|
Cui H, Zhang C, Tu F, Zhao K, Kong Y, Pu J, Zhang L, Chen Z, Sun Y, Wei Y, Liang C, Liu J, Liu J, Guo Z. Rapid detection of influenza A viruses using a real-time reverse transcription recombinase-aided amplification assay. Front Cell Infect Microbiol 2023; 12:1071288. [PMID: 36683681 PMCID: PMC9849684 DOI: 10.3389/fcimb.2022.1071288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 12/16/2022] [Indexed: 01/06/2023] Open
Abstract
Introduction Influenza A viruses (IAVs) are important pathogens of respiratory infections, causing not only seasonal influenza but also influenza pandemics and posing a global threat to public health. IAVs infection spreads rapidly, widely, and across species, causing huge losses, especially zoonotic IAVs infections that are more harmful. Fast and sensitive detection of IAVs is critical for controlling the spread of this disease. Methods Here, a real-time reverse transcription recombinase-aided amplification (real-time RT-RAA) assay targeting conserved positions in the matrix protein gene (M gene) of IAVs, is successfully established to detect IAVs. The assay can be completed within 20 min at 42°C. Results The sensitivity of the real-time RT-RAA assay was 142 copies per reaction at 95% probability, which was comparable to the sensitivity of the RT-qPCR assay. The specificity assay showed that the real-time RT-RAA assay was specific to IAVs, and there was no cross-reactivity with other important viruses. In addition, 100%concordance between the real-time RT-RAA and RT-qPCR assays was achieved after testing 120 clinical specimens. Discussion The results suggested that the real-time RT-RAA assay we developed was a specific, sensitive and reliable diagnostic tool for the rapid detection of IAVs.
Collapse
Affiliation(s)
- Huan Cui
- Changchun Veterinary Research Institute, Chinese Academy of Agriculture Sciences, Changchun, China
- College of Animal Medicine, Jilin University, Changchun, China
| | - Cheng Zhang
- Changchun Veterinary Research Institute, Chinese Academy of Agriculture Sciences, Changchun, China
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, China
| | - Fei Tu
- Changchun Veterinary Research Institute, Chinese Academy of Agriculture Sciences, Changchun, China
| | - Kui Zhao
- College of Animal Medicine, Jilin University, Changchun, China
| | - Yunyi Kong
- Changchun Veterinary Research Institute, Chinese Academy of Agriculture Sciences, Changchun, China
| | - Jie Pu
- Changchun Veterinary Research Institute, Chinese Academy of Agriculture Sciences, Changchun, China
| | - Lei Zhang
- Changchun Veterinary Research Institute, Chinese Academy of Agriculture Sciences, Changchun, China
| | - Zhaoliang Chen
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, China
| | - Yuanyuan Sun
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, China
| | - Yujie Wei
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, China
| | - Chuncai Liang
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, China
| | - Juxiang Liu
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, China
| | - Jun Liu
- Changchun Veterinary Research Institute, Chinese Academy of Agriculture Sciences, Changchun, China
| | - Zhendong Guo
- Changchun Veterinary Research Institute, Chinese Academy of Agriculture Sciences, Changchun, China
| |
Collapse
|
12
|
Cui H, Tu F, Zhang C, Zhang C, Zhao K, Liu J, Dong S, Chen L, Liu J, Guo Z. Real-Time Reverse Transcription Recombinase-Aided Amplification Assay for Rapid Amplification of the N Gene of SARS-CoV-2. Int J Mol Sci 2022; 23:ijms232315269. [PMID: 36499594 PMCID: PMC9736922 DOI: 10.3390/ijms232315269] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 11/29/2022] [Accepted: 12/02/2022] [Indexed: 12/08/2022] Open
Abstract
COVID-19 was officially declared a global pandemic disease on 11 March 2020, with severe implications for healthcare systems, economic activity, and human life worldwide. Fast and sensitive amplification of the severe acute respiratory syndrome virus 2 (SARS-CoV-2) nucleic acids is critical for controlling the spread of this disease. Here, a real-time reverse transcription recombinase-aided amplification (RT-RAA) assay, targeting conserved positions in the nucleocapsid protein gene (N gene) of SARS-CoV-2, was successfully established for SARS-CoV-2. The assay was specific to SARS-CoV-2, and there was no cross-reaction with other important viruses. The sensitivity of the real-time RT-RAA assay was 142 copies per reaction at 95% probability. Furthermore, 100% concordance between the real-time RT-RAA and RT-qPCR assays was achieved after testing 72 clinical specimens. Further linear regression analysis indicated a significant correlation between the real-time RT-RAA and RT-qPCR assays with an R2 value of 0.8149 (p < 0.0001). In addition, the amplicons of the real-time RT-RAA assay could be directly visualized by a portable blue light instrument, making it suitable for the rapid amplification of SARS-CoV-2 in resource-limited settings. Therefore, the real-time RT-RAA method allows the specific, sensitive, simple, rapid, and reliable detection of SARS-CoV-2.
Collapse
Affiliation(s)
- Huan Cui
- Changchun Veterinary Research Institute, Chinese Academy of Agriculture Sciences, Changchun 130122, China
- College of Animal Medicine, Jilin University, Changchun 130062, China
| | - Fei Tu
- Changchun Veterinary Research Institute, Chinese Academy of Agriculture Sciences, Changchun 130122, China
| | - Cheng Zhang
- College of Veterinary Medicine, Hebei Agricultural University, Baoding 071000, China
| | - Chunmao Zhang
- Changchun Veterinary Research Institute, Chinese Academy of Agriculture Sciences, Changchun 130122, China
| | - Kui Zhao
- College of Animal Medicine, Jilin University, Changchun 130062, China
| | - Juxiang Liu
- College of Veterinary Medicine, Hebei Agricultural University, Baoding 071000, China
| | - Shishan Dong
- College of Veterinary Medicine, Hebei Agricultural University, Baoding 071000, China
| | - Ligong Chen
- College of Veterinary Medicine, Hebei Agricultural University, Baoding 071000, China
| | - Jun Liu
- Changchun Veterinary Research Institute, Chinese Academy of Agriculture Sciences, Changchun 130122, China
- Correspondence: (J.L.); (Z.G.); Tel.: +86-431-86985932 (J.L.); +86-431-86985975 (Z.G.)
| | - Zhendong Guo
- Changchun Veterinary Research Institute, Chinese Academy of Agriculture Sciences, Changchun 130122, China
- Correspondence: (J.L.); (Z.G.); Tel.: +86-431-86985932 (J.L.); +86-431-86985975 (Z.G.)
| |
Collapse
|
13
|
Xia W, Chen Y, Ding X, Liu X, Lu H, Guo C, Zhang H, Wu Z, Huang J, Fan Z, Yu S, Sun H, Zhu S, Wu Z. Rapid and Visual Detection of Type 2 Porcine Reproductive and Respiratory Syndrome Virus by Real-Time Fluorescence-Based Reverse Transcription Recombinase-Aided Amplification. Viruses 2022; 14:v14112526. [PMID: 36423135 PMCID: PMC9699348 DOI: 10.3390/v14112526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 11/09/2022] [Accepted: 11/11/2022] [Indexed: 11/18/2022] Open
Abstract
Porcine reproductive and respiratory syndrome (PRRS) is one of the most important diseases that has brought significant economic losses to the swine industry worldwide. Rapid and accurate PRRS virus (PRRSV) detection is one of the key factors for PRRS prevention and control. This study developed a real-time fluorescence-based reverse transcription recombinase-aided amplification (RF-RT-RAA) method for type 2 PRRSV (PRRSV-2) detection. The RF-RT-RAA assay could be performed at 42 °C for 20 min with the optimal primers and a probe. RF-RT-RAA results could be monitored using real-time fluorescence read-out or visually observed with the naked eye using a portable blue light transilluminator. The method had a strong specificity; no cross-reaction was identified with the detected common swine viruses. Moreover, the technique yielded high sensitivity with the lowest detection limit of 101 copies/μL and exhibited good repeatability and reproductively with the coefficients of variation (CV) less than 10%. Eighty-seven clinical samples were tested using RF-RT-RAA and a commercial PRRSV-2 RT-qPCR detection kit. The coincidence rate was 100% between RF-RT-RAA (real-time fluorescence read-out) and RT-qPCR, and 97.7% between RF-RT-RAA (visually observed) and RT-qPCR. The RF-RT-RAA assay provides a new method for rapid and visual detection of PRRSV-2.
Collapse
Affiliation(s)
- Wenlong Xia
- Jiangsu Key Laboratory for Bioresources of Saline Soils, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng 224007, China
- Correspondence: (W.X.); (Z.W.)
| | - Yao Chen
- Jiangsu Key Laboratory for Bioresources of Saline Soils, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng 224007, China
| | - Xue Ding
- Jiangsu Key Laboratory for Bioresources of Saline Soils, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng 224007, China
| | - Xiaoming Liu
- College of Veterinary Medicine, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Huipeng Lu
- Jiangsu Key Laboratory for High-Tech Research and Development of Veterinary Biopharmaceuticals, Jiangsu Agri-Animal Husbandry Vocational College, Taizhou 225300, China
| | - Changming Guo
- Jiangsu Key Laboratory for High-Tech Research and Development of Veterinary Biopharmaceuticals, Jiangsu Agri-Animal Husbandry Vocational College, Taizhou 225300, China
| | - Hua Zhang
- School of Pharmacy, Yancheng Teachers University, Yancheng 224007, China
- Jiangsu Province Engineering Research Center of Tumor Targeted Nano Diagnostic and Therapeutic Materials, Yancheng Teachers University, Yancheng 224007, China
| | - Zhijun Wu
- School of Pharmacy, Yancheng Teachers University, Yancheng 224007, China
- Jiangsu Province Engineering Research Center of Tumor Targeted Nano Diagnostic and Therapeutic Materials, Yancheng Teachers University, Yancheng 224007, China
| | - Jing Huang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng 224007, China
| | - Zhongjun Fan
- Jiangsu Key Laboratory for Bioresources of Saline Soils, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng 224007, China
| | - Shupei Yu
- Yancheng Animal Husbandry and Veterinary Station, Yancheng 224001, China
| | - Huaichang Sun
- College of Veterinary Medicine, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Shanyuan Zhu
- Jiangsu Key Laboratory for High-Tech Research and Development of Veterinary Biopharmaceuticals, Jiangsu Agri-Animal Husbandry Vocational College, Taizhou 225300, China
| | - Zhi Wu
- Jiangsu Key Laboratory for High-Tech Research and Development of Veterinary Biopharmaceuticals, Jiangsu Agri-Animal Husbandry Vocational College, Taizhou 225300, China
- Correspondence: (W.X.); (Z.W.)
| |
Collapse
|
14
|
Cheng P, Wu Y, Guo S, Ma X, Fei C, Xue F, Zhu C, Wang M, Gu F. RPA assay coupled with CRISPR/Cas12a system for the detection of seven Eimeria species in chicken fecal samples. Vet Parasitol 2022; 311:109810. [PMID: 36183557 DOI: 10.1016/j.vetpar.2022.109810] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 09/18/2022] [Accepted: 09/20/2022] [Indexed: 11/28/2022]
Abstract
Chicken coccidiosis is one of the most common and economically important diseases in the global poultry industry, and it is caused by at least one of the seven Eimeria species. A simple and reliable way to distinguish Eimeria species in infected chicken is critical for the surveillance, control, and eradication of chicken coccidiosis. In this study, a recombinase polymerase amplification (RPA) assay coupled with the clustered regularly interspaced short palindromic repeats (CRISPR)/Cas12a system (RPA-CRISPR/Cas12a) was developed for the detection of Eimeria species in chicken fecal samples. This assay is highly specific to the seven Eimeria species and it does not cross react between species. Assessment of analytical sensitivity revealed that a single copy of plasmid DNA could be detected. Comparative analysis revealed strong agreement between RPA-CRISPR/Cas12a assays and real-time qPCR to reliably detect all seven Eimeria species in fecal chicken samples. Importantly, the cleavage products could be visualized under a blue light instrument, making it possible for the rapid detection of Eimeria species for on-site testing. Collectively, our study demonstrated that RPA-CRISPR/Cas12a assays offer a simple and reliable diagnostic method for Eimeria species.
Collapse
Affiliation(s)
- Peipei Cheng
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs/Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China.
| | - Yuting Wu
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs/Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China.
| | - Shuangshuang Guo
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs/Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China.
| | - Xiaoyu Ma
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs/Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China.
| | - Chenzhong Fei
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs/Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China.
| | - Feiqun Xue
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs/Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China.
| | - Chuangang Zhu
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs/Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China.
| | - Mi Wang
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs/Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China.
| | - Feng Gu
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs/Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China.
| |
Collapse
|
15
|
Wang Y, Nie M, Deng H, Lai S, Zhou Y, Sun X, Zhu L, Xu Z. Establishment of a reverse transcription recombinase-aided amplification detection method for porcine group a rotavirus. Front Vet Sci 2022; 9:954657. [PMID: 36187816 PMCID: PMC9519424 DOI: 10.3389/fvets.2022.954657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 08/17/2022] [Indexed: 11/13/2022] Open
Abstract
Porcine rotavirus type A (PoRVA) is the main cause of dehydration and diarrhea in piglets, which has a great impact on the development of the pig industry worldwide. A rapid, accurate and sensitive detection method is conducive to the monitoring, control, and removal of PoRVA. In this study, a PoRVA real-time fluorescent reverse transcription recombinase-aided amplification (RT-RAA) assay was developed. Based on the PoRVA VP6 gene, specific primers and probes were designed and synthesized. The sensitivity of RT-RAA and TaqMan probe-based RT-qPCR was 7 copies per reaction and 5 copies per reaction, respectively. The sensitivity of the RT-RAA method was close to TaqMan probe-based RT-qPCR. The detection results of RT-RAA and TaqMan probe-based quantitative real-time RT-PCR methods were completely consistent in 241 clinical samples. Therefore, we successfully established a rapid and specific RT-RAA diagnostic method for PoRVA.
Collapse
Affiliation(s)
- Yushun Wang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Mincai Nie
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Huidan Deng
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Siyuan Lai
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yuancheng Zhou
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, China
- Livestock and Poultry Biological Products Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, China
| | - Xiangan Sun
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ling Zhu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- College of Veterinary Medicine Sichuan Key Laboratory of Animal Epidemic Disease and Human Health, Sichuan Agricultural University, Chengdu, China
| | - Zhiwen Xu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- College of Veterinary Medicine Sichuan Key Laboratory of Animal Epidemic Disease and Human Health, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
16
|
Liu Y, Liu L, Wang J, Sun X, Gao Y, Yuan W, Wang J, Li R. Rapid detection of bovine rotavirus a by isothermal reverse transcription recombinase polymerase amplification assays. BMC Vet Res 2022; 18:339. [PMID: 36076203 PMCID: PMC9453720 DOI: 10.1186/s12917-022-03437-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 09/02/2022] [Indexed: 12/04/2022] Open
Abstract
Background Bovine rotavirus A (BRVA) is considered to be the most common pathogen of severe diarrhea in cattle worldwide, which could lead to the death of newborn calves and cause the significant economic losses to the cattle industry. As a novel isothermal nucleic acid amplification technique, recombinase polymerase amplification (RPA) has been applied widely for the rapid detection of different important pathogens in human and animals. Results An RT-RPA assay based on the real time fluorescence monitoring (real-time RT-RPA) and an RT-RPA assay combined with a lateral flow strip (LFS RT-RPA) were successfully developed by targeting the VP6 gene of BRVA. The RT-RPA assays allowed the exponential amplification of the target fragment in 20 min. After incubation of the LFS RT-RPA on a metal bath at 40 °C, the results were displayed on the lateral flow strip within 5 min, while real-time RT-RPA allowed the real-time observation of the results in Genie III at 42 °C. Both of the two assays showed high specificity for BRVA without any cross-reaction with the other tested pathogens causing diarrhea in cattle. With the standard RNA of BRVA serving as a template, the limit of detection for real-time RT-RPA and LFS RT-RPA were 1.4 × 102 copies per reaction and 1.4 × 101 copies per reaction, respectively. In the 134 fecal samples collected from cattle with diarrhea, the BRVA positive rate were 45.52% (61/134) and 46.27% (62/134) in real-time RT-RPA and LFS RT-RPA, respectively. Compared to a previously published real-time PCR, the real-time RT-RPA and LFS RT-RPA showed a diagnostic specificity of 100%, diagnostic sensitivity of 98.39% and 100%, and a kappa coefficient of 0.985 and 1.0, respectively. Conclusions In this study, BRVA was successfully detected in cattle fecal samples by the developed real-time RT-RPA and LFS RT-RPA assays. The developed RT-RPA assays had great potential for the rapid detection of BRVA in under-equipped diagnostic laboratory and the point-of-need diagnosis at quarantine stations and farms, which is of great importance to control BRVA-associated diarrhea in cattle herds.
Collapse
Affiliation(s)
- Yuelin Liu
- College of Veterinary Medicine, Hebei Agricultural University, No.2596 Lekai South Street, Baoding, Hebei, 071001, People's Republic of China
| | - Libing Liu
- Technology Center of Shijiazhuang Customs District, No.318 Heping Xi Lu, Shijiazhuang, 050051, People's Republic of China
| | - Jinfeng Wang
- Technology Center of Shijiazhuang Customs District, No.318 Heping Xi Lu, Shijiazhuang, 050051, People's Republic of China
| | - Xiaoxia Sun
- Technology Center of Shijiazhuang Customs District, No.318 Heping Xi Lu, Shijiazhuang, 050051, People's Republic of China
| | - Yaxin Gao
- College of Veterinary Medicine, Hebei Agricultural University, No.2596 Lekai South Street, Baoding, Hebei, 071001, People's Republic of China
| | - Wanzhe Yuan
- College of Veterinary Medicine, Hebei Agricultural University, No.2596 Lekai South Street, Baoding, Hebei, 071001, People's Republic of China
| | - Jianchang Wang
- Technology Center of Shijiazhuang Customs District, No.318 Heping Xi Lu, Shijiazhuang, 050051, People's Republic of China.
| | - Ruiwen Li
- College of Veterinary Medicine, Hebei Agricultural University, No.2596 Lekai South Street, Baoding, Hebei, 071001, People's Republic of China.
| |
Collapse
|
17
|
Zeng J, Wang W, Zhou L, Ge X, Han J, Guo X, Chen Y, Zhang Y, Yang H. A nucleic acid detection assay combining reverse transcription recombinase-aided amplification with a lateral flow dipstick for the rapid visual detection of porcine deltacoronavirus. Virulence 2022; 13:1471-1485. [PMID: 36005235 PMCID: PMC9450908 DOI: 10.1080/21505594.2022.2116157] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Porcine deltacoronavirus (PDCoV) is an emerging enteropathogen causing severe diarrhoea, dehydration, and death in nursing piglets and enormous economic losses for the global swine industry. Furthermore, it can infect multiple animal species including humans. Therefore, a rapid, definitive diagnostic assay is required for the effective control of this zoonotic pathogen. To identify PDCoV, we developed a nucleic acid detection assay combining reverse transcription recombinase-aided amplification (RT-RAA) with a lateral flow dipstick (LFD) targeting the highly conserved genomic region in the ORF1b gene. The RT-RAA-LFD assay exhibited good PDCoV detection reproducibility and repeatability and could be completed within 11 min. Ten minutes at 40 °C was required for nucleic acid amplification and 1 min at room temperature was needed for the visual LFD readout. The assay specifically detected PDCoV and did not cross-react with any other major swine pathogens. The 95% limit of detection (LOD) was 3.97 median tissue culture infectious dose PDCoV RNA per reaction. This performance was comparable to that of a reference TaqMan-based real-time RT-PCR (trRT-PCR) assay for PDCoV. Of 149 swine small intestine, rectal swab, and serum samples, 71 and 75 tested positive for PDCoV according to RT-RAA-LFD and trRT-PCR, respectively. The diagnostic coincidence rate for both assays was 97.32% (145/149) and the kappa value was 0.946 (p < 0.001). Overall, the RT-RAA-LFD assay is a user-friendly diagnostic tool that can rapidly and visually detect PDCoV.
Collapse
Affiliation(s)
- Jianyu Zeng
- Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing,P.R. China
| | - Wenlong Wang
- Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing,P.R. China
| | - Lei Zhou
- Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing,P.R. China
| | - Xinna Ge
- Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing,P.R. China
| | - Jun Han
- Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing,P.R. China
| | - Xin Guo
- Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing,P.R. China
| | - Yanhong Chen
- Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing,P.R. China
| | - Yongning Zhang
- Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing,P.R. China
| | - Hanchun Yang
- Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing,P.R. China
| |
Collapse
|
18
|
Wu X, Liu Y, Gao L, Yan Z, Zhao Q, Chen F, Xie Q, Zhang X. Development and Application of a Reverse-Transcription Recombinase-Aided Amplification Assay for Porcine Epidemic Diarrhea Virus. Viruses 2022; 14:591. [PMID: 35336998 PMCID: PMC8948910 DOI: 10.3390/v14030591] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 02/25/2022] [Accepted: 03/08/2022] [Indexed: 12/29/2022] Open
Abstract
Porcine epidemic diarrhea virus (PEDV) is a coronavirus currently widespread worldwide in the swine industry. Since PEDV was discovered in China in 1984, it has caused huge economic losses in the swine industry. PEDV can infect pigs of all ages, but piglets have the highest infection with a death rate as high as 100%, and the clinical symptoms are watery diarrhea, vomiting, and dehydration. At present, there is not any report on PEDV detection by RT-RAA. In this study, we developed an isothermal amplification technology by using reverse-transcription recombinase-aided amplification assay (RT-RAA) combined with portable instruments to achieve a molecular diagnosis of PEDV in clinical samples from China. By designing a pair of RT-RAA primers and probes based on the PEDV N gene, this method breaks the limitations of existing detection methods. The assay time was within 30 min at 41 °C and can detect as few as 10 copies of PEDV DNA molecules per reaction. Sixty-two clinical tissue samples were detected by RT-qPCR and RT-RAA. The positive and negative rates for the two methods were 24.19% and 75.81%, respectively. Specificity assay showed that the RT-RAA had specifically detected PEDV and was not reactive for porcine parvovirus (PPV), transmissible gastroenteritis virus (TGEV), porcine circovirus type 2 (PCV2), porcine pseudorabies virus (PRV), porcine reproductive and respiratory syndrome virus (PRRSV), classical swine fever virus (CSFV), swine flu virus (SIV), or porcine Japanese encephalitis virus (JEV). The results suggested that RT-RAA had a strong specificity and high detection sensitivity when combined with a portable instrument to complete the detection under a constant temperature of 30 min, which are more suitable for preventing and controlling PEDV onsite in China.
Collapse
Affiliation(s)
- Xiuhong Wu
- Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (X.W.); (L.G.); (Q.Z.); (F.C.)
- Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou 510642, China
- South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou 510642, China
| | - Yuanjia Liu
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China;
| | - Liguo Gao
- Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (X.W.); (L.G.); (Q.Z.); (F.C.)
- Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou 510642, China
- South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou 510642, China
| | - Zhuanqiang Yan
- Guangdong Enterprise Key Laboratory for Animal Health and Environmental Control, Wen’s Foodstuff Group Co., Ltd., Yunfu 527439, China;
| | - Qiqi Zhao
- Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (X.W.); (L.G.); (Q.Z.); (F.C.)
- Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou 510642, China
- South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou 510642, China
| | - Feng Chen
- Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (X.W.); (L.G.); (Q.Z.); (F.C.)
- Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou 510642, China
- South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou 510642, China
| | - Qingmei Xie
- Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (X.W.); (L.G.); (Q.Z.); (F.C.)
- Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou 510642, China
- South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou 510642, China
| | - Xinheng Zhang
- Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (X.W.); (L.G.); (Q.Z.); (F.C.)
- Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou 510642, China
- South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou 510642, China
| |
Collapse
|
19
|
Xia W, Chen K, Liu W, Yin Y, Yao Q, Ban Y, Pu Y, Zhan X, Bian H, Yu S, Han K, Yang L, Wang H, Fan Z. Rapid and visual detection of Mycoplasma synoviae by recombinase-aided amplification assay combined with a lateral flow dipstick. Poult Sci 2022; 101:101860. [PMID: 35537343 PMCID: PMC9118145 DOI: 10.1016/j.psj.2022.101860] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/05/2022] [Accepted: 03/08/2022] [Indexed: 02/04/2023] Open
Abstract
Mycoplasma synoviae (MS) is an important avian pathogen that has brought substantial economic losses to the global poultry industry. Fast and accurate diagnosis is one of the critical factors for the control of MS infection. This study established a simple, rapid and visual detection method for MS using a recombinase-aided amplification (RAA) combined with a lateral flow dipstick (LFD). The reaction temperature and time of the RAA-LFD assay were optimized after selecting the primers and probe, and the specificity and sensitivity rates were analyzed. The results showed that RAA could amplify the target gene in 20 min at a constant temperature of 38°C, and the amplification products could be visualized by LFD within 5 min. There was no cross-reaction with Mycoplasma gallisepticum (MG), Pasteurella multocida (P. multocida), Escherichia coli (E. coli), Newcastle disease virus (NDV), infectious bursal disease virus (IBDV), infectious bronchitis virus (IBV), and avian reovirus (ARV). Furthermore, the RAA-LFD assay exhibited high sensitivity with a detection limit of 10 copies/μL. A total of 128 clinical samples with suspected infection of MS were tested by RAA-LFD, PCR, and real-time fluorescence quantitative PCR (RFQ-PCR). The coincidence rate of the detection results was 95.3% between RAA-LFD and PCR, and 98.4% between RAA-LFD and RFQ-PCR. These results suggested that the RAA-LFD method established in the present study was easy to use and was associated with strong specificity and high sensitivity. This method was very suitable for the rapid detection of MS in clinical practice.
Collapse
Affiliation(s)
- Wenlong Xia
- Yancheng Engineering Research Center of Animal Biologics, College of Marine and Biological Engineering, Yancheng Teachers University, Yancheng 224002, China
| | - Ke Chen
- Yancheng Engineering Research Center of Animal Biologics, College of Marine and Biological Engineering, Yancheng Teachers University, Yancheng 224002, China
| | - Wensong Liu
- Yancheng Engineering Research Center of Animal Biologics, College of Marine and Biological Engineering, Yancheng Teachers University, Yancheng 224002, China
| | - Yan Yin
- Yancheng Engineering Research Center of Animal Biologics, College of Marine and Biological Engineering, Yancheng Teachers University, Yancheng 224002, China
| | - Qian Yao
- Yancheng Engineering Research Center of Animal Biologics, College of Marine and Biological Engineering, Yancheng Teachers University, Yancheng 224002, China
| | - Yu Ban
- Yancheng Engineering Research Center of Animal Biologics, College of Marine and Biological Engineering, Yancheng Teachers University, Yancheng 224002, China
| | - Yiwen Pu
- Yancheng Engineering Research Center of Animal Biologics, College of Marine and Biological Engineering, Yancheng Teachers University, Yancheng 224002, China
| | - Xingmin Zhan
- Yancheng Engineering Research Center of Animal Biologics, College of Marine and Biological Engineering, Yancheng Teachers University, Yancheng 224002, China
| | - Hongchun Bian
- Yancheng Animal Husbandry and Veterinary Station, Yancheng 224001, China
| | - Shupei Yu
- Yancheng Animal Husbandry and Veterinary Station, Yancheng 224001, China
| | - Kunpeng Han
- Yancheng Animal Husbandry and Veterinary Station, Yancheng 224001, China
| | - Ling Yang
- Yancheng Animal Husbandry and Veterinary Station, Yancheng 224001, China
| | - Huanli Wang
- Yancheng Engineering Research Center of Animal Biologics, College of Marine and Biological Engineering, Yancheng Teachers University, Yancheng 224002, China
| | - Zhongjun Fan
- Yancheng Engineering Research Center of Animal Biologics, College of Marine and Biological Engineering, Yancheng Teachers University, Yancheng 224002, China.
| |
Collapse
|
20
|
Wu K, Zhang Y, Zeng S, Liu X, Li Y, Li X, Chen W, Li Z, Qin Y, Chen J, Fan S. Development and Application of RAA Nucleic Acid Test Strip Assay and Double RAA Gel Electrophoresis Detection Methods for ASFV and CSFV. Front Mol Biosci 2022; 8:811824. [PMID: 35174210 PMCID: PMC8841470 DOI: 10.3389/fmolb.2021.811824] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 12/24/2021] [Indexed: 11/13/2022] Open
Abstract
African swine fever (ASF) is an acute, severe and hemorrhagic infectious disease caused by African swine fever virus (ASFV) infecting domestic pigs and wild boars. Since the outbreak of the disease in China in 2018, it has brought a great impact on China’s pig industry. Classical swine fever (CSF) is an acute contact infectious disease of pigs caused by classical swine fever virus (CSFV) infection. Clinically, acute CSF usually shows persistent high fever, anorexia, extensive congestion and bleeding of the skin and mucosa, which are similar to ASF. It is of great significance to prevent, control and accurately detect ASF and CSF in pig farms. In this study, Recombinase aided amplification (RAA) technology combined with a nucleic acid test strip (RAA-strip) was established for simple and specific detection of ASFV/CSFV. The sensitivity and preliminary clinical application results showed that the RAA test strip established in this study could detect recombinant plasmids containing ASFV/CSFV gene fragments as low as 103 copies/µL. The minimum detection limits of virus DNA/cDNA were 10 and 12 pg respectively, and there was no cross-reaction with other porcine viruses. The specificity of the method was good. We used 37–42 clinical samples to evaluate the performance of our established method, and the positive concordance rates with conventional PCR were 94.1 and 57.1%, respectively. In addition, ASFV and CSFV double RAA agarose gel electrophoresis detection methods were established. The results showed that the method had good specificity. The detection limit of this method is 106 copies for ASFV p72 gene recombinant plasmid and 105 copies for CSFV NS5B Gene recombinant plasmid. The use of this method for clinical material detection was consistent with the PCR method. In summary, the developed method of RAA-strip assay for ASFV and CSFV realized the visual detection of pathogens, and the developed method of dual RAA agarose gel electrophoresis assay for ASFV and CSFV realized the simultaneous detection of two pathogens in one reaction, with good specificity, high sensitivity and rapid reaction rate, which was expected to be clinically feasible for the differential diagnosis of ASF and CSF provided technical support.
Collapse
Affiliation(s)
- Keke Wu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Yuanyuan Zhang
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Sen Zeng
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Xiaodi Liu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Yuwan Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Xiaowen Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Wenxian Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Zhaoyao Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Yuwei Qin
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Jinding Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
- *Correspondence: Jinding Chen, ; Shuangqi Fan,
| | - Shuangqi Fan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
- *Correspondence: Jinding Chen, ; Shuangqi Fan,
| |
Collapse
|
21
|
Wang W, Zhou L, Ge X, Han J, Guo X, Chen Y, Zhang Y, Yang H. Development of a VP2-based real-time fluorescent reverse transcription recombinase-aided amplification assay to rapidly detect Senecavirus A. Transbound Emerg Dis 2021; 69:2828-2839. [PMID: 34931455 DOI: 10.1111/tbed.14435] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 12/01/2021] [Accepted: 12/14/2021] [Indexed: 01/28/2023]
Abstract
Senecavirus A (SVA), a newly emergent picornavirus correlated with sudden neonatal mortality and vesicular lesions in pigs, has had a considerable impact on the global pig farming industry. Timely and dependable detection of SVA is helpful in preventing the further spread of this pathogenic virus. In the current study, a real-time fluorescent reverse transcription recombinase-aided amplification (rRT-RAA) assay, which targets the most conserved region within the VP2 gene of SVA, was developed and evaluated for SVA detection. The detection limit for this assay was tested to be 1.185 50% tissue culture infective dose (TCID50 ) of SVA RNA per reaction at a 95% confidence interval, which is comparable to that of a previously published rRT-PCR assay for SVA. The testing results of the rRT-RAA assay were very reproducible and repeatable, with inter- and intra-assay coefficient of variation values less than 7.0%. In addition, the established rRT-RAA assay displayed excellent specificity for SVA detection without cross-reaction with other clinically important swine pathogenic viruses. The diagnostic performance of rRT-RAA was evaluated using 189 clinical swine samples, which were detected in parallel using the reference rRT-PCR assay. The results showed that 146 and 151 samples tested positive for SVA by rRT-RAA and rRT-PCR, respectively. The overall agreement between both assays was 97.4% (184/189) with a kappa value of 0.927 (p < .001). Further linear regression analysis demonstrated that the detection results between the two assays were significantly correlated (R2 = 0.9192, p < .0001). Taken together, our newly established rRT-RAA assay is a powerful and time-saving diagnostic tool for SVA detection in clinical samples. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Wenlong Wang
- Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, P.R. China
| | - Lei Zhou
- Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, P.R. China
| | - Xinna Ge
- Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, P.R. China
| | - Jun Han
- Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, P.R. China
| | - Xin Guo
- Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, P.R. China
| | - Yanhong Chen
- Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, P.R. China
| | - Yongning Zhang
- Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, P.R. China
| | - Hanchun Yang
- Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, P.R. China
| |
Collapse
|
22
|
Fan G, Zhang R, He X, Tian F, Nie M, Shen X, Ma X. RAP: A Novel Approach to the Rapid and Highly Sensitive Detection of Respiratory Viruses. Front Bioeng Biotechnol 2021; 9:766411. [PMID: 34805120 PMCID: PMC8602363 DOI: 10.3389/fbioe.2021.766411] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 10/13/2021] [Indexed: 11/25/2022] Open
Abstract
Recombinase aided amplification (RAA) is an emerging isothermal amplification method used for detecting various pathogens. However, RAA requires a complex and long probe to ensure high sensitivity during fluorescence assay. TaqMan probe used for quantitative PCR (qPCR) is simple and universal. Herein, we developed a new approach for detecting nucleic acids of pathogens, known as RAP (Recombinase aided PCR). The method combines RAA and qPCR to ensure a rapid and highly sensitive detection using a conventional qPCR device. RAP is a two-stage amplification process performed in a single tube within 1 hour. The method involves an RAA reaction for 10 min at 39°C (first stage) followed by 15 cycles of qPCR (second stage). Using human adenovirus 3 (HADV3) and human adenovirus 7 (HADV7) plasmids, the sensitivities of RAP assays for detecting HADV3 and HADV7 were 6 and 17 copies per reaction, respectively. The limit of RAP detection was at least 16-fold lower than the corresponding qPCR, and no-cross reaction with other respiratory viruses was observed. The results of RAP analysis revealed 100% consistency with qPCR assay. This study shows that RAP assay is a rapid, specific, and highly sensitive detection method with a potential for clinical and laboratory application.
Collapse
Affiliation(s)
- Guohao Fan
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Ruiqing Zhang
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xiaozhou He
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Fengyu Tian
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Mingzhu Nie
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xinxin Shen
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xuejun Ma
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China.,Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
23
|
Chen H, Sun C, Wang Y, Gao X, You J, Yu W, Sun N, Yang Y, Li X. Rapid Detection of SARS-CoV-2 Using Duplex Reverse Transcription-Multienzyme Isothermal Rapid Amplification in a Point-of-Care Testing. Front Cell Infect Microbiol 2021; 11:678703. [PMID: 34746020 PMCID: PMC8569318 DOI: 10.3389/fcimb.2021.678703] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 09/30/2021] [Indexed: 12/12/2022] Open
Abstract
In December 2019, a severe acute respiratory syndrome caused by SARS-CoV-2 spread rapidly worldwide. Portable nucleic acid tests of SARS-CoV-2 are critically important for diagnostics. In this study, we used an isothermal amplification method-Multienzyme Isothermal Rapid Amplification (MIRA)-for rapid detection of SARS-CoV-2. We designed the primers and probes in ORF1ab and N gene of SARS-CoV-2. The amplicons could be monitored by lateral flow dipsticks (LFDs). The reaction temperature, time, concentrations of primers and probes, and working volume were optimized. Four commercial swab collection buffers were used to test the amplification efficacy of our assay without RNA extraction. Our assay was able to amplify duplex targets of SARS-CoV-2 in one single reaction using one-step RT-MIRA. The assay worked well in a low volume of 10 μl at 38°C for 20 min. Using three collection buffers without guanidinium, our assay was able to amplify efficaciously without RNA extraction. The 95% limit of detection (LoD) of the RT-MIRA assay was 49.5 (95% CI, 46.8-52.7) copies/ml for ORF1ab gene and 48.8 (95% CI, 46.5-52.6) copies/ml for N gene. There is no cross-reaction with other human respiratory pathogens, such as SARS-CoV, MERS-CoV, influenza A virus, influenza B virus, human adenovirus, respiratory syncytial virus, human parainfluenza virus, and coronavirus 229E in our assay. The precision evaluation revealed that the C50-20% to C50+20% range bounds the C5-C95 interval. This assay also showed high anti-interference ability. The extraction-free RT-MIRA and qPCR detection results of 243 nucleic acid specimens from suspected patients or national references showed a 100.0% (95% confidence interval, 94.2%-100.0%) positive predictive value and a 100.0% (95% confidence interval, 92.7%-100.0%) negative predictive value. Compared with qPCR, the kappa value of the two assays was 1.00 (P < 0.0001). In conclusion, we provide a portable and visualized method for detection of SARS-CoV-2 without RNA extraction, allowing its application in SARS-CoV-2 on-site detection.
Collapse
Affiliation(s)
- Hui Chen
- Department of Medicine, JiangSu University, Zhenjiang, China.,Department of Basic Medical Laboratory, Institute of Clinical Laboratory Science, Jinling Hospital, Clinical School of Medical College, Nanjing University, Nanjing, China
| | - Chang Sun
- Department of Orthopaedics, Jinling Hospital, Clinical School of Medical College, Nanjing University, Nanjing, China
| | - Yang Wang
- Department of Orthopaedics, Jinling Hospital, Clinical School of Medical College, Nanjing University, Nanjing, China
| | - Xiaojiao Gao
- Department of Clinical Laboratory, Jinling Hospital, Clinical School of Medical College, Nanjing University, Nanjing, China
| | - Jinwei You
- Department of Laboratory Animal, Jinling Hospital, Clinical School of Medical College, Nanjing University, Nanjing, China
| | - Wanwan Yu
- Department of Emergency, Jinling Hospital, Clinical School of Medical College, Nanjing University, Nanjing, China
| | - Ning Sun
- Department of Basic Medical Laboratory, Institute of Clinical Laboratory Science, Jinling Hospital, Clinical School of Medical College, Nanjing University, Nanjing, China
| | - Yang Yang
- Department of Basic Medical Laboratory, Institute of Clinical Laboratory Science, Jinling Hospital, Clinical School of Medical College, Nanjing University, Nanjing, China
| | - Xiaojun Li
- Department of Basic Medical Laboratory, Institute of Clinical Laboratory Science, Jinling Hospital, Clinical School of Medical College, Nanjing University, Nanjing, China.,State Key Laboratory of Analytical Chemistry for Life Science, Department of Chemistry, Nanjing University, Nanjing, China
| |
Collapse
|
24
|
Mu D, Zhou D, Xie G, Liu J, Xiong Q, Feng X, Xu H. The fluorescent probe-based recombinase-aided amplification for rapid detection of Escherichia coli O157:H7. Mol Cell Probes 2021; 60:101777. [PMID: 34737039 DOI: 10.1016/j.mcp.2021.101777] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 10/21/2021] [Accepted: 10/29/2021] [Indexed: 01/21/2023]
Abstract
Escherichia coli O157:H7 (E. coli O157:H7) is a common foodborne morbigenous microorganism, which can spread through fecal-oral transmission. Humans can be infected by ingesting foods and water contaminated with E. coli O157:H7, which can cause various symptoms. In present study, we have successfully developed a quick and hypersensitive fluorescent probe-based Recombinase-aided amplification (RAA) method and applied in E. coli O157:H7 detection at 39 °C in 20 min. The sensitivity of the assay in pure E. coli O157:H7 suspension was 5.6 × 100 CFU/mL. The fluorescent probe-based RAA assay was further applied in three samples, and the limit of detection (LOD) in skimmed milk, lettuces and lake water was 5.4 × 101 CFU/mL, 7.9 × 101 CFU/mL and 5.2 × 101 CFU/mL, separately. This method showed a high sensitivity and short detection time, which has the feasible application in on-site test in real samples.
Collapse
Affiliation(s)
- Dan Mu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, PR China.
| | - Donggen Zhou
- Ningbo International Travel Healthcare Center (Ningbo Customs Port Outpatient Department), Ningbo, 315010, PR China.
| | - Guoyang Xie
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, PR China.
| | - Ju Liu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, PR China.
| | - Qin Xiong
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, PR China.
| | - Xiaoyan Feng
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, PR China.
| | - Hengyi Xu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, PR China.
| |
Collapse
|
25
|
Li F, He P, Xiong D, Lou Y, Pu Q, Zhang H, Zhang H, Yu J. A Reverse Transcription Recombinase-Aided Amplification Method for Rapid and Point-of-Care Detection of SARS-CoV-2, including Variants. Viruses 2021; 13:1875. [PMID: 34578456 PMCID: PMC8472806 DOI: 10.3390/v13091875] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 09/08/2021] [Accepted: 09/17/2021] [Indexed: 12/23/2022] Open
Abstract
The worldwide pandemic caused by the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) and its emergence of variants needs rapid and point-of-care testing methods for a broad diagnosis. The regular RT-qPCR is time-consuming and limited in central laboratories, so a broad and large-scale screening requirement calls for rapid and in situ methods. In this regard, a reverse transcription recombinase-aided amplification (RT-RAA) is proposed here for the rapid and point-of-care detection of SARS-CoV-2. A set of highly conserved primers and probes targeting more than 98% of SARS-CoV-2 strains, including currently circulating variants (four variants of concerns (VOCs) and three variants of interest (VOIs)), was used in this study. With the preferred primers, the RT-RAA assay showed a 100% specificity to SARS-CoV-2 from eight other respiratory RNA viruses. Moreover, the assay here is of a high sensitivity and 0.48 copies/μL can be detected within 25 min at a constant temperature (42 °C), which can be realized on portable equipment. Furthermore, the RT-RAA assay demonstrated its high agreement for the detection of SARS-CoV-2 in clinical specimens compared with RT-qPCR. The rapid, simple and point-of-care RT-RAA method is expected to be an appealing detection tool to detect SARS-CoV-2, including variants, in clinical diagnostic applications.
Collapse
Affiliation(s)
- Fengyun Li
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, Department of Chemistry, Lanzhou University, Lanzhou 730000, China; (F.L.); (Q.P.); (H.Z.); (H.Z.)
| | - Ping He
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; (P.H.); (D.X.)
- College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dongyan Xiong
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; (P.H.); (D.X.)
- College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yakun Lou
- Zhengzhou Zhongdao Biotechnology Co., Ltd., Zhengzhou 450000, China;
| | - Qiaosheng Pu
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, Department of Chemistry, Lanzhou University, Lanzhou 730000, China; (F.L.); (Q.P.); (H.Z.); (H.Z.)
| | - Haixia Zhang
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, Department of Chemistry, Lanzhou University, Lanzhou 730000, China; (F.L.); (Q.P.); (H.Z.); (H.Z.)
| | - Huige Zhang
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, Department of Chemistry, Lanzhou University, Lanzhou 730000, China; (F.L.); (Q.P.); (H.Z.); (H.Z.)
| | - Junping Yu
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; (P.H.); (D.X.)
- College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
26
|
Chen W, Fan J, Li Z, Zhang Y, Qin Y, Wu K, Li X, Li Y, Fan S, Zhao M. Development of Recombinase Aided Amplification Combined With Disposable Nucleic Acid Test Strip for Rapid Detection of Porcine Circovirus Type 2. Front Vet Sci 2021; 8:676294. [PMID: 34250063 PMCID: PMC8267240 DOI: 10.3389/fvets.2021.676294] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 05/31/2021] [Indexed: 11/13/2022] Open
Abstract
Porcine circovirus type 2 (PCV2) is the dominant causative agent of PCV2 systemic disease (PCV2-SD) in pigs. It can also associate with other diseases such as respiratory and enteric diseases, reproductive failure, porcine dermatitis and nephropathy syndrome in pigs. Currently, PCV2 infection is a considerable threat in the swine industry. Therefore, it is of great significance to prevent, control, and accurately detect PCV2 in pig farms. Recombinase aided amplification (RAA) technology is an isothermal nucleic acid amplification technology that could rapidly amplify the target gene fragment at a constant temperature. The amplification products labeled with specific molecules could be visually detected using the test strip with the corresponding antibody. In the present study, the RAA technology combined with a nucleic acid test strip (RAA-strip) was established for simple and specific detection of PCV2. Primers and probes targeting the PCV2 ORF2 gene were designed according to the RAA technology principles. The PCV2 RAA-strip established in this study could detect as low as 103 copies/μL of recombinant plasmids containing the PCV2 ORF2 gene fragment. The lowest detection limit about viral DNA and virus titers was 6.7 × 10-6 ng/μL and 10 TCID50/mL, respectively. Furthermore, no cross-reaction with other porcine viruses occurred at 37°C and within 15 min. We used 42 clinical samples to assess the performance of our established method. The positive rate of clinical samples detected by PCV2 RAA-strip was 50.00%. This was similar to that detected by PCV2 PCR (45.24%). In conclusion, due to the advantages of strong specificity, high sensitivity, excellent reproducibility, and simple operation method, our PCV2 RAA-strip is suitable for the rapid clinical detection of PCV2 on-site.
Collapse
Affiliation(s)
- Wenxian Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Jindai Fan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Zhaoyao Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Yuanyuan Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Yuwei Qin
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Keke Wu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Xiaowen Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Yuwan Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Shuangqi Fan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Mingqiu Zhao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| |
Collapse
|