1
|
Du Y, Xia J, Wang Z, Xu J, Ji Y, Jin Y, Pu L, Xu S. Evolution of H6N6 viruses in China between 2014 and 2019 involves multiple reassortment events. Emerg Microbes Infect 2024; 13:2341142. [PMID: 38581279 DOI: 10.1080/22221751.2024.2341142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 04/04/2024] [Indexed: 04/08/2024]
Abstract
H6N6 avian influenza viruses (AIVs) have been widely detected in wild birds, poultry, and even mammals. Recently, H6N6 viruses were reported to be involved in the generation of H5 and H7 subtype viruses. To investigate the emergence, evolutionary pattern, and potential for an epidemic of H6N6 viruses, the complete genomes of 198 H6N6 viruses were analyzed, including 168 H6N6 viruses deposited in the NCBI and GISAID databases from inception to January 2019 and 30 isolates collected from China between November 2014 and January 2019. Using phylogenetic analysis, the 198 strains of H6N6 viruses were identified as 98 genotypes. Molecular clock analysis indicated that the evolution of H6N6 viruses in China was constant and not interrupted by selective pressure. Notably, the laboratory isolates reassorted with six subtype viruses: H6N2, H5N6, H7N9, H5N2, H4N2, and H6N8, resulting in nine novel H6N6 reassortment events. These results suggested that H6N6 viruses can act as an intermediary in the evolution of H5N6, H6N6, and H7N9 viruses. Animal experiments demonstrated that the 10 representative H6N6 viruses showed low pathogenicity in chickens and were capable of infecting mice without prior adaptation. Our findings suggest that H6N6 viruses play an important role in the evolution of AIVs, and it is necessary to continuously monitor and evaluate the potential epidemic of the H6N6 subtype viruses.
Collapse
Affiliation(s)
- Yingying Du
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, People's Republic of China
| | - Jun Xia
- Institute of Veterinary Medicine, Xinjiang Academy of Animal Sciences, Urumqi, People's Republic of China
| | - Zhengxiang Wang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, People's Republic of China
| | - Jie Xu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, People's Republic of China
| | - Yanhong Ji
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, People's Republic of China
| | - Yinghong Jin
- Institute of Veterinary Medicine, Xinjiang Academy of Animal Sciences, Urumqi, People's Republic of China
| | - Ling Pu
- Guizhou Institute of Animal Husbandry and Veterinary Science, Guizhou, People's Republic of China
| | - Shuai Xu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, People's Republic of China
| |
Collapse
|
2
|
Song X, Tian J, Li M, Bai X, Zhao Z, Shi J, Zeng X, Tian G, Guan Y, Chai H, Li Y, Chen H. Epidemiology and biological characteristics of influenza A (H4N6) viruses from wild birds. Emerg Microbes Infect 2024; 13:2418909. [PMID: 39417306 PMCID: PMC11523250 DOI: 10.1080/22221751.2024.2418909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 10/11/2024] [Accepted: 10/15/2024] [Indexed: 10/19/2024]
Abstract
During the active surveillance, we isolated nine H4N6 subtype influenza A viruses from wild birds in China. To reveal the epidemiology and biology characteristics of H4 subtype influenza A virus from wild birds, we investigated H4 subtype viruses available in the public source, and found that the H4 viruses have been detected in at least 37 countries to date, and more than 73.6% of the viruses were from wild Anseriformes. Bayesian phylogeographic analysis showed that Mongolia worked as the important transmission centre for Eurasian lineage H4 viruses spreading. Phylogenetic analysis of HA genes indicated that global H4 influenza A viruses were divided into Eurasian and North American lineage, our nine H4N6 isolates fell into the Eurasian lineage. Recombination analysis suggested that nine H4N6 isolates underwent complex gene recombination with various subtypes of influenza A viruses and formed two genotypes. Notably, nine H4N6 isolates acquired mammalian virulence-increasing residues. Two representative H4N6 viruses possessed dual receptor binding specificity, they could efficiently replicate in MDCK and 293 T cells in vitro infection, also could cross the species barrier to infect mice directly without prior adaption in vivo experiments. These findings emphasize the public health issues represented by H4 viruses, and highlight the need to strengthen the active surveillance of H4 viruses from wild birds.
Collapse
Affiliation(s)
- Xingdong Song
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
| | - Jingman Tian
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
| | - Minghui Li
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
| | - Xiaoli Bai
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
| | - Zhiguo Zhao
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
| | - Jianzhong Shi
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
| | - Xianying Zeng
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
| | - Guobin Tian
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
| | - Yuntao Guan
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
| | - Hongliang Chai
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, People’s Republic of China
| | - Yanbing Li
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
| | - Hualan Chen
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
| |
Collapse
|
3
|
Guan L, Babujee L, Presler R, Pattinson D, Nguyen HLK, Hoang VMP, Le MQ, van Bakel H, Kawaoka Y, Neumann G. Avian H6 Influenza Viruses in Vietnamese Live Bird Markets during 2018-2021. Viruses 2024; 16:367. [PMID: 38543733 PMCID: PMC10975462 DOI: 10.3390/v16030367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/13/2024] [Accepted: 02/17/2024] [Indexed: 04/01/2024] Open
Abstract
Avian influenza viruses of the H6 subtype are prevalent in wild ducks and likely play an important role in the ecology of influenza viruses through reassortment with other avian influenza viruses. Yet, only 152 Vietnamese H6 virus sequences were available in GISAID (Global Initiative on Sharing All Influenza Data) prior to this study with the most recent sequences being from 2018. Through surveillance in Vietnamese live bird markets from 2018 to 2021, we identified 287 samples containing one or several H6 viruses and other influenza A virus subtypes, demonstrating a high rate of co-infections among birds in Vietnamese live bird markets. For the 132 H6 samples with unique influenza virus sequences, we conducted phylogenetic and genetic analyses. Most of the H6 viruses were similar to each other and closely related to other H6 viruses; however, signs of reassortment with other avian influenza viruses were evident. At the genetic level, the Vietnamese H6 viruses characterized in our study encode a single basic amino acid at the HA cleavage site, consistent with low pathogenicity in poultry. The Vietnamese H6 viruses analyzed here possess an amino acid motif in HA that confers binding to both avian- and human-type receptors on host cells, consistent with their ability to infect mammals. The frequent detection of H6 viruses in Vietnamese live bird markets, the high rate of co-infections of birds with different influenza viruses, and the dual receptor-binding specificity of these viruses warrant their close monitoring for potential infection and spread among mammals.
Collapse
Affiliation(s)
- Lizheng Guan
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin—Madison, Madison, WI 53711, USA; (L.G.); (L.B.); (D.P.)
| | - Lavanya Babujee
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin—Madison, Madison, WI 53711, USA; (L.G.); (L.B.); (D.P.)
| | - Robert Presler
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin—Madison, Madison, WI 53711, USA; (L.G.); (L.B.); (D.P.)
| | - David Pattinson
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin—Madison, Madison, WI 53711, USA; (L.G.); (L.B.); (D.P.)
| | - Hang Le Khanh Nguyen
- National Institute of Hygiene and Epidemiology, Hanoi 100000, Vietnam; (H.L.K.N.); (V.M.P.H.); (M.Q.L.)
| | - Vu Mai Phuong Hoang
- National Institute of Hygiene and Epidemiology, Hanoi 100000, Vietnam; (H.L.K.N.); (V.M.P.H.); (M.Q.L.)
| | - Mai Quynh Le
- National Institute of Hygiene and Epidemiology, Hanoi 100000, Vietnam; (H.L.K.N.); (V.M.P.H.); (M.Q.L.)
| | - Harm van Bakel
- Department of Genetics and Genomic Services, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
| | - Yoshihiro Kawaoka
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin—Madison, Madison, WI 53711, USA; (L.G.); (L.B.); (D.P.)
- Division of Virology, Department of Microbiology and Immunology, and International Research Center for Infectious Diseases, The Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
- Research Center for Global Viral Diseases, National Center for Global Health and Medicine, Tokyo 162-8655, Japan
- Infection and Advanced Research (UTOPIA) Center, The University of Tokyo Pandemic Preparedness, Tokyo 108-8639, Japan
| | - Gabriele Neumann
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin—Madison, Madison, WI 53711, USA; (L.G.); (L.B.); (D.P.)
| |
Collapse
|
4
|
Xu X, Chen Q, Tan M, Liu J, Li X, Yang L, Shu Y, Wang D, Zhu W. Epidemiology, evolution, and biological characteristics of H6 avian influenza viruses in China. Emerg Microbes Infect 2023; 12:2151380. [PMID: 36440484 PMCID: PMC9788695 DOI: 10.1080/22221751.2022.2151380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
H6 avian influenza virus (AIV) is one of the most prevalent AIV subtypes in birds globally. To investigate the current situation and characteristics of H6 AIVs circulating in China, we analysed the epidemiology, genetic evolution and pathogenic features of this subtype. During 2000-2021, H6 subtype AIVs spread widely through Southern China and presented high host diversity. On analysing 171 H6 viruses isolated during 2009-2021, dynamic reassortments were observed among H6 and other co-circulating AIV subtypes, and these generated a total of 16 different genotypes. A few H6N6 strains possessed L226 and S228 mutations of hemagglutinin (H3 numbering), which may enhance the affinity of H6 viruses to human receptors. H6N6 viruses also exhibited divergent pathogenicity and growth profiles in vivo and in vitro. Some of the H6N6 viruses could infect mice without mammalian adaptation, and even caused death in this species. Therefore, our study demonstrated that the H6 AIVs posed a potential threat to human health and highlighted the urgent need for continued surveillance and evaluation of the H6 influenza viruses circulating in the field.
Collapse
Affiliation(s)
- Xiaohao Xu
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangdong, People’s Republic of China,National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention; WHO Collaborating Center for Reference and Research on Influenza; Key Laboratory for Medical Virology, National Health and Family Planning Commission, Beijing, People’s Republic of China
| | - Qi Chen
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangdong, People’s Republic of China,National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention; WHO Collaborating Center for Reference and Research on Influenza; Key Laboratory for Medical Virology, National Health and Family Planning Commission, Beijing, People’s Republic of China
| | - Min Tan
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention; WHO Collaborating Center for Reference and Research on Influenza; Key Laboratory for Medical Virology, National Health and Family Planning Commission, Beijing, People’s Republic of China
| | - Jia Liu
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention; WHO Collaborating Center for Reference and Research on Influenza; Key Laboratory for Medical Virology, National Health and Family Planning Commission, Beijing, People’s Republic of China
| | - Xiyan Li
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention; WHO Collaborating Center for Reference and Research on Influenza; Key Laboratory for Medical Virology, National Health and Family Planning Commission, Beijing, People’s Republic of China
| | - Lei Yang
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention; WHO Collaborating Center for Reference and Research on Influenza; Key Laboratory for Medical Virology, National Health and Family Planning Commission, Beijing, People’s Republic of China
| | - Yuelong Shu
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangdong, People’s Republic of China,Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People’s Republic of China, Yuelong Shu School of Public Health (Shenzhen), Sun Yat-sen University, Guangdong, People’s Republic of China; Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People’s Republic of China
| | - Dayan Wang
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention; WHO Collaborating Center for Reference and Research on Influenza; Key Laboratory for Medical Virology, National Health and Family Planning Commission, Beijing, People’s Republic of China,Dayan Wang National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention; WHO Collaborating Center for Reference and Research on Influenza; Key Laboratory for Medical Virology, National Health and Family Planning Commission, Beijing, People’s Republic of China
| | - Wenfei Zhu
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention; WHO Collaborating Center for Reference and Research on Influenza; Key Laboratory for Medical Virology, National Health and Family Planning Commission, Beijing, People’s Republic of China,Wenfei Zhu National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention; WHO Collaborating Center for Reference and Research on Influenza; Key Laboratory for Medical Virology, National Health and Family Planning Commission, Beijing, People’s Republic of China
| |
Collapse
|
5
|
Yan Z, Li Y, Huang S, Wen F. Global distribution, receptor binding, and cross-species transmission of H6 influenza viruses: risks and implications for humans. J Virol 2023; 97:e0137023. [PMID: 37877722 PMCID: PMC10688349 DOI: 10.1128/jvi.01370-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2023] Open
Abstract
The H6 subtype of avian influenza virus (AIV) is a pervasive subtype that is ubiquitously found in both wild bird and poultry populations across the globe. Recent investigations have unveiled its capacity to infect mammals, thereby expanding its host range beyond that of other subtypes and potentially facilitating its global transmission. This heightened breadth also endows H6 AIVs with the potential to serve as a genetic reservoir for the emergence of highly pathogenic avian influenza strains through genetic reassortment and adaptive mutations. Furthermore, alterations in key amino acid loci within the H6 AIV genome foster the evolution of viral infection mechanisms, which may enable the virus to surmount interspecies barriers and infect mammals, including humans, thus posing a potential threat to human well-being. In this review, we summarize the origins, dissemination patterns, geographical distribution, cross-species transmission dynamics, and genetic attributes of H6 influenza viruses. This study holds implications for the timely detection and surveillance of H6 AIVs.
Collapse
Affiliation(s)
- Zhanfei Yan
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong, China
| | - You Li
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong, China
| | - Shujian Huang
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong, China
| | - Feng Wen
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong, China
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, College of Life Science and Engineering, Foshan University, Foshan, China
| |
Collapse
|
6
|
Lin M, Yao QC, Liu J, Huo M, Zhou Y, Chen M, Li Y, Gao Y, Ge Y. Evolution and Reassortment of H6 Subtype Avian Influenza Viruses. Viruses 2023; 15:1547. [PMID: 37515233 PMCID: PMC10383184 DOI: 10.3390/v15071547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/10/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
The H6 subtype of avian influenza virus (H6 AIV) is the most detected AIV subtype in poultry and wild birds. It causes economic losses to the poultry industry, and the most important, H6 AIV may have the ability to infect mammals, which is a great threat to public health security. In addition, the H6 subtype can serve as a precursor to providing internal genes for other highly pathogenic AIVs, posing a potential threat. H6 AIV currently face to the high positive detection rate and harmless nature of H6 AIV and because not highly effective H6 subtype vaccine available on the market. In this study, we focused on the prevalence of H6 AIV in poultry and wild birds, phylogenetic analysis, genetic variation characteristics, selection analysis, and prevention and control to provide relevant references for the scientific prevention and control of H6 AIV in future.
Collapse
Affiliation(s)
- Mingqin Lin
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Qiu-Cheng Yao
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Jing Liu
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Miaotong Huo
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Yan Zhou
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Minyi Chen
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Yuanguo Li
- Military Veterinary Research Institute of Academy of Military Medical Sciences, Changchun 130000, China
| | - Yuwei Gao
- Military Veterinary Research Institute of Academy of Military Medical Sciences, Changchun 130000, China
| | - Ye Ge
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| |
Collapse
|
7
|
Genetic, Antigenic, and Pathobiological Characterization of H9 and H6 Low Pathogenicity Avian Influenza Viruses Isolated in Vietnam from 2014 to 2018. Microorganisms 2023; 11:microorganisms11020244. [PMID: 36838209 PMCID: PMC9962344 DOI: 10.3390/microorganisms11020244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/15/2023] [Accepted: 01/16/2023] [Indexed: 01/21/2023] Open
Abstract
The H9 and H6 subtypes of low pathogenicity avian influenza viruses (LPAIVs) cause substantial economic losses in poultry worldwide, including Vietnam. Herein, we characterized Vietnamese H9 and H6 LPAIVs to facilitate the control of avian influenza. The space-time representative viruses of each subtype were selected based on active surveillance from 2014 to 2018 in Vietnam. Phylogenetic analysis using hemagglutinin genes revealed that 54 H9 and 48 H6 Vietnamese LPAIVs were classified into the sublineages Y280/BJ94 and Group II, respectively. Gene constellation analysis indicated that 6 and 19 genotypes of the H9 and H6 subtypes, respectively, belonged to the representative viruses. The Vietnamese viruses are genetically related to the previous isolates and those in neighboring countries, indicating their circulation in poultry after being introduced into Vietnam. The antigenicity of these subtypes was different from that of viruses isolated from wild birds. Antigenicity was more conserved in the H9 viruses than in the H6 viruses. Furthermore, a representative H9 LPAIV exhibited systemic replication in chickens, which was enhanced by coinfection with avian pathogenic Escherichia coli O2. Although H9 and H6 were classified as LPAIVs, their characterization indicated that their silent spread might significantly affect the poultry industry.
Collapse
|
8
|
Wan Z, Gong J, Sang J, Jiang W, Zhao Z, Lian M, Tang T, Li Y, Kan Q, Xie Q, Li T, Shao H, Gao W, Qin A, Ye J. Mouse adaptation of H6 avian influenza viruses and their molecular characteristics. Front Microbiol 2022; 13:1049979. [PMID: 36466692 PMCID: PMC9713515 DOI: 10.3389/fmicb.2022.1049979] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 10/24/2022] [Indexed: 10/27/2023] Open
Abstract
H6 avian influenza viruses (AIVs) not only continue to circulate in both domestic poultry and wild waterfowl, but also have occasionally caused spillovers infections in pigs and humans, posing a potential threat to public health. However, the molecular mechanism of H6 AIV adaptation to mammals remains largely unknown. In this study, two mouse-adapted (MA) H6 AIV strains, named as MA E-Teal/417 and MA GWF-Goose/740, were generated through blind passages in BALB/c mice. The two MA H6 strains replicated more efficiently and showed higher virulence than the corresponding wild type (WT) H6 strains in mice. Genome sequencing revealed that MA E-Teal/417 and MA GWF-Goose/740 carried six amino acid mutations (PB2-T224A/E627K, HA-G124R, NA-F167L/Y356H and M1-M92R), and four amino acid mutations (PB1-K577E, PA-T97I/D514E and HA-T276K), respectively, when compared to the corresponding WT virus. Receptor binding assay showed MA E-Teal/417 had stronger binding activity to α-2,3 SA than WT E-Teal/417. Moreover, the polymerase activity analysis found the RNP polymerase activity of both MA H6 viruses was significantly higher than that of the corresponding WT virus in 293T cells. All these demonstrate that H6 AIV can acquire limit amino acid substitutions to adapt to mammals and increase virulence, highlighting the significance of monitoring such mutations of H6 AIV in the field for alarming the potential of its cross-transmission and pathogenesis in mammals.
Collapse
Affiliation(s)
- Zhimin Wan
- Key Laboratory of Jiangsu Preventive Veterinary Medicine, Key Laboratory for Avian Preventive Medicine, College of Veterinary Medicine, Ministry of Education, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
- Institute of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, Jiangsu, China
| | - Jianxi Gong
- Key Laboratory of Jiangsu Preventive Veterinary Medicine, Key Laboratory for Avian Preventive Medicine, College of Veterinary Medicine, Ministry of Education, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
- Institute of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, Jiangsu, China
| | - Jianjun Sang
- Sinopharm Yangzhou VAC Biological Engineering Co. Ltd, Yangzhou, Jiangsu, China
| | - Wenjie Jiang
- Key Laboratory of Jiangsu Preventive Veterinary Medicine, Key Laboratory for Avian Preventive Medicine, College of Veterinary Medicine, Ministry of Education, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
- Institute of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, Jiangsu, China
| | - Zhehong Zhao
- Key Laboratory of Jiangsu Preventive Veterinary Medicine, Key Laboratory for Avian Preventive Medicine, College of Veterinary Medicine, Ministry of Education, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
- Institute of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, Jiangsu, China
| | - Mingjun Lian
- Key Laboratory of Jiangsu Preventive Veterinary Medicine, Key Laboratory for Avian Preventive Medicine, College of Veterinary Medicine, Ministry of Education, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
- Institute of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, Jiangsu, China
| | - Ting Tang
- Key Laboratory of Jiangsu Preventive Veterinary Medicine, Key Laboratory for Avian Preventive Medicine, College of Veterinary Medicine, Ministry of Education, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
- Institute of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, Jiangsu, China
| | - Yafeng Li
- Key Laboratory of Jiangsu Preventive Veterinary Medicine, Key Laboratory for Avian Preventive Medicine, College of Veterinary Medicine, Ministry of Education, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
- Institute of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, Jiangsu, China
| | - Qiuqi Kan
- Key Laboratory of Jiangsu Preventive Veterinary Medicine, Key Laboratory for Avian Preventive Medicine, College of Veterinary Medicine, Ministry of Education, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
- Institute of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, Jiangsu, China
| | - Quan Xie
- Key Laboratory of Jiangsu Preventive Veterinary Medicine, Key Laboratory for Avian Preventive Medicine, College of Veterinary Medicine, Ministry of Education, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
- Institute of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, Jiangsu, China
| | - Tuofan Li
- Key Laboratory of Jiangsu Preventive Veterinary Medicine, Key Laboratory for Avian Preventive Medicine, College of Veterinary Medicine, Ministry of Education, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
- Institute of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, Jiangsu, China
| | - Hongxia Shao
- Key Laboratory of Jiangsu Preventive Veterinary Medicine, Key Laboratory for Avian Preventive Medicine, College of Veterinary Medicine, Ministry of Education, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
- Institute of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, Jiangsu, China
| | - Wei Gao
- Key Laboratory of Jiangsu Preventive Veterinary Medicine, Key Laboratory for Avian Preventive Medicine, College of Veterinary Medicine, Ministry of Education, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
- Institute of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, Jiangsu, China
| | - Aijian Qin
- Key Laboratory of Jiangsu Preventive Veterinary Medicine, Key Laboratory for Avian Preventive Medicine, College of Veterinary Medicine, Ministry of Education, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
- Institute of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, Jiangsu, China
| | - Jianqiang Ye
- Key Laboratory of Jiangsu Preventive Veterinary Medicine, Key Laboratory for Avian Preventive Medicine, College of Veterinary Medicine, Ministry of Education, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
- Institute of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, Jiangsu, China
| |
Collapse
|
9
|
Cui M, Huang Y, Wang X, Bian X, Du L, Yan Y, Gu J, Dong W, Zhou J, Liao M. Genetic characterization and evolution of H6N6 subtype avian influenza viruses. Front Microbiol 2022; 13:963218. [PMID: 35979484 PMCID: PMC9376297 DOI: 10.3389/fmicb.2022.963218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 07/04/2022] [Indexed: 11/15/2022] Open
Abstract
H6-subtype avian influenza virus (AIV) was prevalent in the world and could sporadically infect humans. Here, a new chicken-derived H6N6-subtype AIV strain A/chicken/Zhejiang/49/2021 (ZJ49) was isolated in Zhejiang Province, China in 2021. Phylogenetic analysis by Maximum likelihood methods showed that H6-subtype AIVs were classed into 13 groups according to HA gene. The ZJ49 strain belonged to the G12 group, which mainly consisted of strains from Asian and dominated in recent years. Based on NA gene, H6-subtype AIVs were divided into N6.1 and N6.2 clades according to the NA gene. The ZJ49 isolate was located in the N6.2e clade, which mainly consisted of the H5N6-subtype AIVs. Phylogenetic analysis by Bayesian methods showed that the effective quantity size of H6-subtype AIVs increased around 1990, reached a peak around 2015, declined after 2015, then kept in a stable level after 2018. The reassortment analysis predicted that the PB2, PA, and NA genes of ZJ49 may recombine with H5-subtype AIVs. The amino acid at 222 position of HA gene of ZJ49 strain mutated from A to V, suggesting that ZJ49 has a potential ability to cross species barriers. The four glycosylation sites were highly conserved, implying less impact on the fold and conception of HA stem structure. Our results revealed the complicated evolution, reassortment, and mutations of receptor binding sites of H6-subtype AIVs, which emphasize the importance to continuously monitor the epidemiology and evolution of H6-subtype AIVs.
Collapse
Affiliation(s)
- Mingxian Cui
- MOA Key Laboratory of Animal Virology, Department of Veterinary Medicine and Center of Veterinary Medical Sciences, Zhejiang University, Hangzhou, China
| | - Yanming Huang
- MOA Key Laboratory of Animal Virology, Department of Veterinary Medicine and Center of Veterinary Medical Sciences, Zhejiang University, Hangzhou, China
| | - Xingbo Wang
- MOA Key Laboratory of Animal Virology, Department of Veterinary Medicine and Center of Veterinary Medical Sciences, Zhejiang University, Hangzhou, China
| | - Xiyi Bian
- MOA Key Laboratory of Animal Virology, Department of Veterinary Medicine and Center of Veterinary Medical Sciences, Zhejiang University, Hangzhou, China
| | - Liuyang Du
- MOA Key Laboratory of Animal Virology, Department of Veterinary Medicine and Center of Veterinary Medical Sciences, Zhejiang University, Hangzhou, China
| | - Yan Yan
- MOA Key Laboratory of Animal Virology, Department of Veterinary Medicine and Center of Veterinary Medical Sciences, Zhejiang University, Hangzhou, China
| | - Jinyan Gu
- MOA Key Laboratory of Animal Virology, Department of Veterinary Medicine and Center of Veterinary Medical Sciences, Zhejiang University, Hangzhou, China
| | - Weiren Dong
- MOA Key Laboratory of Animal Virology, Department of Veterinary Medicine and Center of Veterinary Medical Sciences, Zhejiang University, Hangzhou, China
| | - Jiyong Zhou
- MOA Key Laboratory of Animal Virology, Department of Veterinary Medicine and Center of Veterinary Medical Sciences, Zhejiang University, Hangzhou, China
- Collaborative Innovation Center and State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
- Jiyong Zhou,
| | - Min Liao
- MOA Key Laboratory of Animal Virology, Department of Veterinary Medicine and Center of Veterinary Medical Sciences, Zhejiang University, Hangzhou, China
- *Correspondence: Min Liao,
| |
Collapse
|