1
|
Fromsa A, Willgert K, Srinivasan S, Mekonnen G, Bedada W, Gumi B, Lakew M, Tadesse B, Bayissa B, Sirak A, Girma Abdela M, Gebre S, Chibssa T, Veerasami M, Vordermeier HM, Bakker D, Berg S, Ameni G, Juleff N, de Jong MCM, Wood J, Conlan A, Kapur V. BCG vaccination reduces bovine tuberculosis transmission, improving prospects for elimination. Science 2024; 383:eadl3962. [PMID: 38547287 DOI: 10.1126/science.adl3962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 01/24/2024] [Indexed: 04/02/2024]
Abstract
Bacillus Calmette-Guérin (BCG) is a routinely used vaccine for protecting children against Mycobacterium tuberculosis that comprises attenuated Mycobacterium bovis. BCG can also be used to protect livestock against M. bovis; however, its effectiveness has not been quantified for this use. We performed a natural transmission experiment to directly estimate the rate of transmission to and from vaccinated and unvaccinated calves over a 1-year exposure period. The results show a higher indirect efficacy of BCG to reduce transmission from vaccinated animals that subsequently become infected [74%; 95% credible interval (CrI): 46 to 98%] compared with direct protection against infection (58%; 95% CrI: 34 to 73%) and an estimated total efficacy of 89% (95% CrI: 74 to 96%). A mechanistic transmission model of bovine tuberculosis (bTB) spread within the Ethiopian dairy sector was developed and showed how the prospects for elimination may be enabled by routine BCG vaccination of cattle.
Collapse
Affiliation(s)
- Abebe Fromsa
- Aklilu Lemma Institutes of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
- College of Veterinary Medicine and Agriculture, Addis Ababa University, Bishoftu, Ethiopia
| | - Katriina Willgert
- Disease Dynamics Unit, Department of Veterinary Medicine, University of Cambridge, UK
| | - Sreenidhi Srinivasan
- Huck Institutes of Life Sciences, The Pennsylvania State University, University Park, PA, USA
- Department of Animal Science, The Pennsylvania State University, University Park, PA, USA
- The Global Health Initiative, Henry Ford Health, Detroit, MI, USA
| | | | | | - Balako Gumi
- Aklilu Lemma Institutes of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
| | | | | | - Berecha Bayissa
- Aklilu Lemma Institutes of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
| | | | - Musse Girma Abdela
- Aklilu Lemma Institutes of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
| | | | | | | | | | - Douwe Bakker
- Huck Institutes of Life Sciences, The Pennsylvania State University, University Park, PA, USA
- Technical Consultant and Independent Researcher, Lelystad, Netherlands
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad Complutense, Madrid, Spain
| | - Stefan Berg
- Animal and Plant Health Agency, Weybridge, UK
| | - Gobena Ameni
- Aklilu Lemma Institutes of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, United Arab Emirates University, United Arab Emirates
| | - Nick Juleff
- The Bill & Melinda Gates Foundation Seattle, WA, USA
| | - Mart C M de Jong
- Quantitative Veterinary Epidemiology Group, Wageningen UR, The Netherlands
| | - James Wood
- Disease Dynamics Unit, Department of Veterinary Medicine, University of Cambridge, UK
| | - Andrew Conlan
- Disease Dynamics Unit, Department of Veterinary Medicine, University of Cambridge, UK
| | - Vivek Kapur
- Huck Institutes of Life Sciences, The Pennsylvania State University, University Park, PA, USA
- Department of Animal Science, The Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
2
|
Michel AL. Vaccines to control tuberculosis in cattle. Science 2024; 383:1410-1411. [PMID: 38547294 DOI: 10.1126/science.ado4333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
The age-old cattle disease has resisted rigorous control, but the BCG vaccine may do better.
Collapse
Affiliation(s)
- Anita L Michel
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, South Africa
| |
Collapse
|
3
|
Hope JC, Khalid H, Thom ML, Howard CJ, Shaw DJ. Protective Efficacy of BCG Vaccination in Calves Vaccinated at Different Ages. Pathogens 2023; 12:789. [PMID: 37375479 DOI: 10.3390/pathogens12060789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 05/30/2023] [Accepted: 05/30/2023] [Indexed: 06/29/2023] Open
Abstract
Mycobacterium bovis, the causative agent of bovine tuberculosis (bTB), is a globally prevalent pathogen with significant animal welfare, economic and public health impacts. In the UK, the control of bTB relies on detection via tuberculin skin tests with ancillary interferon gamma (IFN-γ) release assays, followed by culling infected animals. Vaccination with Bacille Calmette-Guérin (BCG) could be an important element of bTB control, and a number of studies have demonstrated its protective efficacy, particularly when young calves are vaccinated. Here, we compared immune responses and the protective efficacy of BCG in calves vaccinated within the first day of life and at three weeks of age. Significant protection from M. bovis infection was observed in BCG-vaccinated calves compared to non-vaccinated, age-matched controls. No significant differences were shown between calves vaccinated at one day and at three weeks of age when assessing the protective efficacy of BCG (measured as a reduction in lesions and bacterial burden). Antigen-specific IFN-γ levels were similar between the BCG-vaccinated groups, but significantly different from the non-vaccinated control animals. Antigen-specific IFN-γ expression post-BCG vaccination was correlated significantly with protection from M. bovis infection, whereas IFN-γ levels post-challenge correlated with pathology and bacterial burden. These results indicate that early-life vaccination with BCG could have a significant impact on M. bovis infection and, therefore, bTB incidence, and they demonstrate that age, at least within the first month of life, does not significantly impact the protective effect of vaccination.
Collapse
Affiliation(s)
- Jayne C Hope
- Division of Infection and Immunity, The Roslin Institute, and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK
| | - Hamza Khalid
- Division of Infection and Immunity, The Roslin Institute, and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK
| | - Michelle L Thom
- Institute for Animal Health, Compton RG20 7NN, UK
- The Pirbright Institute, Pirbright GU24 0NF, UK
| | | | - Darren J Shaw
- Division of Infection and Immunity, The Roslin Institute, and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK
| |
Collapse
|
4
|
Milián-Suazo F, González-Ruiz S, Contreras-Magallanes YG, Sosa-Gallegos SL, Bárcenas-Reyes I, Cantó-Alarcón GJ, Rodríguez-Hernández E. Vaccination Strategies in a Potential Use of the Vaccine against Bovine Tuberculosis in Infected Herds. Animals (Basel) 2022; 12:ani12233377. [PMID: 36496897 PMCID: PMC9735741 DOI: 10.3390/ani12233377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/11/2022] [Accepted: 11/29/2022] [Indexed: 12/04/2022] Open
Abstract
Bovine tuberculosis (bTB) is a disease of cattle that represents a risk to public health and causes severe economic losses to the livestock industry. Recently, one of the strategies recommended for reducing the prevalence of the disease in animals is the use of the BCG vaccine, alone or in combination with proteins. It has been shown that the vaccine elicits a strong immune response, downsizes the number of animals with visible lesions, and reduces the rate of infection as well as the bacillary count. This paper, based on scientific evidence, makes suggestions about some practical vaccination alternatives that can be used in infected herds to reduce bTB prevalence, considering BCG strains, vaccine doses, routes of application, and age of the animals. Our conclusion is that vaccination is a promising alternative to be included in current control programs in underdeveloped countries to reduce the disease burden.
Collapse
Affiliation(s)
- Feliciano Milián-Suazo
- Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Santiago de Querétaro 76010, Mexico
| | - Sara González-Ruiz
- Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Santiago de Querétaro 76010, Mexico
- Correspondence:
| | | | | | - Isabel Bárcenas-Reyes
- Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Santiago de Querétaro 76010, Mexico
| | | | - Elba Rodríguez-Hernández
- Centro Nacional de Investigación Disciplinaria en Fisiología y Mejoramiento Animal, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Ajuchitlán 76280, Mexico
| |
Collapse
|
5
|
Khalid H, van Hooij A, Connelley TK, Geluk A, Hope JC. Protein Levels of Pro-Inflammatory Cytokines and Chemokines as Biomarkers of Mycobacterium bovis Infection and BCG Vaccination in Cattle. Pathogens 2022; 11:pathogens11070738. [PMID: 35889984 PMCID: PMC9320177 DOI: 10.3390/pathogens11070738] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/23/2022] [Accepted: 06/25/2022] [Indexed: 12/10/2022] Open
Abstract
Bovine tuberculosis (bTB), caused by Mycobacterium bovis, is a globally prevalent infectious disease with significant animal welfare and economic impact. Difficulties in implementing test-and-slaughter measures in low- and middle-income countries (LMICs) and the underperformance of the current diagnostics establish a clear need to develop improved diagnostics. Adaptive immunity biomarkers other than IFNγ could be useful as suggested by various gene expression studies; however, a comprehensive assessment at the protein level is lacking. Here, we screened a range of chemokines and cytokines for their potential as biomarkers in samples from M. bovis experimentally challenged or naive animals. Although serum concentrations for most proteins were low, the pro-inflammatory markers, IL-2, CXCL-9, IP-10 and CCL4, in addition to IFNγ, were found to be significantly elevated in bovine tuberculin (PPDb)-stimulated whole blood supernatants. Further assessment of these molecules in BCG-vaccinated with or without subsequent M. bovis challenge or naive animals revealed that PPDb-specific IL-2 and IP-10, in addition to IFNγ, could discriminate naive and BCG-vaccinated from M. bovis challenged animals. Moreover, these proteins, along with CCL4, showed DIVA potential, i.e., enabling differentiation of M. bovis-infected animals from BCG-vaccinated animals. Combined analysis of cytokines and chemokines could also accurately identify M. bovis infection with strong correlations observed between PPDb-specific IFNγ, IL-2 and IP-10 levels. This provides proof of concept for utilizing multiple biomarker signatures for discrimination of animals with respect to M. bovis infection or BCG vaccination status.
Collapse
Affiliation(s)
- Hamza Khalid
- Division of Infection and Immunity, The Roslin Institute, University of Edinburgh, Easter Bush, Edinburgh EH25 9RG, UK;
- Center for Inflammation Research, The Queen’s Medical Research Institute, Edinburgh BioQuarter, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
- Correspondence: (H.K.); (J.C.H.)
| | - Anouk van Hooij
- Department of Infectious Diseases, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (A.v.H.); (A.G.)
| | - Timothy K. Connelley
- Division of Infection and Immunity, The Roslin Institute, University of Edinburgh, Easter Bush, Edinburgh EH25 9RG, UK;
| | - Annemieke Geluk
- Department of Infectious Diseases, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (A.v.H.); (A.G.)
| | - Jayne C. Hope
- Division of Infection and Immunity, The Roslin Institute, University of Edinburgh, Easter Bush, Edinburgh EH25 9RG, UK;
- Correspondence: (H.K.); (J.C.H.)
| |
Collapse
|
6
|
Lakew M, Srinivasan S, Mesele B, Olani A, Koran T, Tadesse B, Mekonnen GA, Almaw G, Sahlu T, Seyoum B, Beyecha K, Gumi B, Ameni G, Ashenafi H, Bakker D, Kapur V, Gebre S. Utility of the Intradermal Skin Test in a Test-and-Cull Approach to Control Bovine Tuberculosis: A Pilot Study in Ethiopia. Front Vet Sci 2022; 9:823365. [PMID: 35330613 PMCID: PMC8940234 DOI: 10.3389/fvets.2022.823365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 01/17/2022] [Indexed: 11/30/2022] Open
Abstract
Bovine tuberculosis (bTB) is one of the top three, high-priority, livestock diseases in Ethiopia and hence, the need for evaluation of potential control strategies is critical. Here, we applied the test-and-segregate followed by cull strategy for the control of bTB in the intensive Alage dairy farm in Ethiopia. All cattle reared on this farm were repeatedly skin tested using the Comparative Cervical Tuberculin (CCT) test for a total of five times between 2015 and 2021. During the first (October 2015) and second (March 2017) rounds of testing, all reactor animals (>4 mm) were culled, while those that were deemed as inconclusive (1–4 mm) were segregated and retested. At retest, animals with CCT >2 mm were removed from the herd. In the third (December 2017) and fourth (June 2018) rounds of tuberculin testing, a more stringent approach was taken wherein all reactors per the severe mode of CCT test interpretation (>2 mm) were culled. A final herd status check was performed in May 2021. In summary, the number of CCT positives (>4 mm) in the farm dropped from 23.1% (31/134) in October 2015 to 0% in December 2017 and remained 0% until May 2021. In contrast, the number of Single Cervical Tuberculin (SCT) test positives (≥4 mm) increased from 1.8 to 9.5% (from 2017 to 2021), indicating that CCT test might not be sufficient to effectively clear the herd of bTB. However, a more stringent approach would result in a drastic increase in the number of false positives. The total cost of the bTB control effort in this farm holding 134–200 cattle at any given time was conservatively estimated to be ~US$48,000. This, together with the need for culling an unacceptably high number of animals based on skin test status, makes the test-and-cull strategy impractical for nationwide implementation in Ethiopia and other low- and middle-income countries (LMICs) where the infection is endemic. Hence, there is an increased emphasis on the need to explore alternate, affordable measures such as vaccination alongside accurate diagnostics to help control bTB in endemic settings.
Collapse
Affiliation(s)
- Matios Lakew
- National Animal Health Diagnostic and Investigation Center, Sebeta, Ethiopia
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
- *Correspondence: Matios Lakew
| | - Sreenidhi Srinivasan
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, United States
| | - Beruhtesfa Mesele
- Alage Agricultural Technical and Vocational Education Training (ATVET) College, Alage, Ethiopia
| | - Abebe Olani
- National Animal Health Diagnostic and Investigation Center, Sebeta, Ethiopia
| | - Tafesse Koran
- National Animal Health Diagnostic and Investigation Center, Sebeta, Ethiopia
| | - Biniam Tadesse
- National Animal Health Diagnostic and Investigation Center, Sebeta, Ethiopia
| | | | - Gizat Almaw
- National Animal Health Diagnostic and Investigation Center, Sebeta, Ethiopia
| | - Temertu Sahlu
- Alage Agricultural Technical and Vocational Education Training (ATVET) College, Alage, Ethiopia
| | - Bekele Seyoum
- Alage Agricultural Technical and Vocational Education Training (ATVET) College, Alage, Ethiopia
| | - Kebede Beyecha
- Alage Agricultural Technical and Vocational Education Training (ATVET) College, Alage, Ethiopia
| | - Balako Gumi
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Gobena Ameni
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Hagos Ashenafi
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Douwe Bakker
- Independent Researcher and Technical Consultant, Lelystad, Netherlands
| | - Vivek Kapur
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, United States
- Department of Animal Science, The Pennsylvania State University, University Park, PA, United States
| | - Solomon Gebre
- National Animal Health Diagnostic and Investigation Center, Sebeta, Ethiopia
| |
Collapse
|