1
|
Dunowska M, More GD, Biggs PJ, Cave NJ. Genomic analysis of canine pneumoviruses and canine respiratory coronavirus from New Zealand. N Z Vet J 2024; 72:191-200. [PMID: 38650102 DOI: 10.1080/00480169.2024.2339845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 03/18/2024] [Indexed: 04/25/2024]
Abstract
AIMS To isolate canine respiratory coronavirus (CRCoV) and canine pneumovirus (CnPnV) in cell culture and to compare partial genomic sequences of CRCoV and CnPnV from New Zealand with those from other countries. METHODS Oropharyngeal swab samples from dogs affected by canine infectious respiratory disease syndrome that were positive for CnPnV (n = 15) or CRCoV (n = 1) by virus-specific reverse transcriptase quantitative PCR (RT-qPCR) in a previous study comprised the starting material. Virus isolation was performed in HRT-18 cells for CRCoV and RAW 264.7 and Vero cells for CnPnV. The entire sequence of CnPnV G protein (1,266 nucleotides) and most (8,063/9,707 nucleotides) of the 3' region of CRCoV that codes for 10 structural and accessory proteins were amplified and sequenced. The sequences were analysed and compared with other sequences available in GenBank using standard molecular tools including phylogenetic analysis. RESULTS Virus isolation was unsuccessful for both CRCoV and CnPnV. Pneumovirus G protein was amplified from 3/15 (20%) samples that were positive for CnPnV RNA by RT-qPCR. Two of these (NZ-048 and NZ-049) were 100% identical to each other, and 90.9% identical to the third one (NZ-007). Based on phylogenetic analysis of the G protein gene, CnPnV NZ-048 and NZ-049 clustered with sequences from the USA, Thailand and Italy in group A, and CnPnV NZ-007 clustered with sequences from the USA in group B. The characteristics of the predicted genes (length, position) and their putative protein products (size, predicted structure, presence of N- and O-glycosylation sites) of the New Zealand CRCoV sequence were consistent with those reported previously, except for the region located between open reading frame (ORF)3 (coding for S protein) and ORF6 (coding for E protein). The New Zealand virus was predicted to encode 5.9 kDa, 27 kDa and 12.7 kDa proteins, which differed from the putative coding capacity of this region reported for CRCoV from other countries. CONCLUSIONS This report represents the first characterisation of partial genomic sequences of CRCoV and CnPnV from New Zealand. Our results suggest that the population of CnPnV circulating in New Zealand is not homogeneous, and that the viruses from two clades described overseas are also present here. Limited conclusions can be made based on only one CRCoV sequence, but the putative differences in the coding capacity of New Zealand CRCoV support the previously reported variability of this region. The reasons for such variability and its biological implications need to be further elucidated.
Collapse
Affiliation(s)
- M Dunowska
- Tāwharau Ora - School of Veterinary Science, Massey University, Palmerston North, New Zealand
| | - G D More
- Tāwharau Ora - School of Veterinary Science, Massey University, Palmerston North, New Zealand
| | - P J Biggs
- Tāwharau Ora - School of Veterinary Science, Massey University, Palmerston North, New Zealand
| | - N J Cave
- Tāwharau Ora - School of Veterinary Science, Massey University, Palmerston North, New Zealand
| |
Collapse
|
2
|
Thieulent CJ, Carossino M, Peak L, Wolfson W, Li G, Balasuriya UBR. Coding-complete genome sequences of two strains of canine pneumovirus derived from dogs with upper respiratory disease in the United States. Microbiol Resour Announc 2024; 13:e0105723. [PMID: 38289056 PMCID: PMC10868281 DOI: 10.1128/mra.01057-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 01/09/2024] [Indexed: 02/16/2024] Open
Abstract
Canine pneumovirus was detected by RT-qPCR in 2022 from nasal swabs collected from two dogs with upper respiratory disease in a shelter in Louisiana, United States. The genomes from the designated strains CPnV USA/LA/2022/124423 and USA/LA/2022/123696 were sequenced and show the closest similarity to the pneumonia virus of mice J3666.
Collapse
Affiliation(s)
- Côme J. Thieulent
- Louisiana Animal Disease Diagnostic Laboratory, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, USA
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Mariano Carossino
- Louisiana Animal Disease Diagnostic Laboratory, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, USA
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Laura Peak
- Louisiana Animal Disease Diagnostic Laboratory, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Wendy Wolfson
- Department of Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Ganwu Li
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
| | - Udeni B. R. Balasuriya
- Louisiana Animal Disease Diagnostic Laboratory, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, USA
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, USA
| |
Collapse
|
3
|
Thieulent CJ, Carossino M, Peak L, Strother K, Wolfson W, Balasuriya UBR. Development and Validation of a Panel of One-Step Four-Plex qPCR/RT-qPCR Assays for Simultaneous Detection of SARS-CoV-2 and Other Pathogens Associated with Canine Infectious Respiratory Disease Complex. Viruses 2023; 15:1881. [PMID: 37766287 PMCID: PMC10535912 DOI: 10.3390/v15091881] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 08/28/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Canine infectious respiratory disease complex (CIRDC) is the primary cause of respiratory disease in the canine population and is caused by a wide array of viruses and bacterial pathogens with coinfections being common. Since its recognition in late 2019, Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) has been reported to cause respiratory disease in dogs. Therefore, the rapid detection and differentiation of SARS-CoV-2 from other common viral and bacterial agents is critical from a public health standpoint. Here, we developed and validated a panel of four one-step multiplex qPCR/RT-qPCR assays for the detection and identification of twelve pathogens associated with CIRDC (canine adenovirus-2, canine distemper virus, canine herpesvirus-1, canine influenza A virus, canine parainfluenza virus, canine pneumovirus, canine respiratory coronavirus, SARS-CoV-2, Bordetella bronchiseptica, Streptococcus equi subsp. zooepidemicus, Mycoplasma cynos, and M. canis), as well as the identification of three main CIV subtypes (i.e., H3N2, H3N8, and H1N1). All developed assays demonstrated high specificity and analytical sensitivity. This panel was used to test clinical specimens (n = 76) from CIRDC-suspected dogs. M. canis, M. cynos, and CRCoV were the most frequently identified pathogens (30.3%, 25.0%, and 19.7% of samples, respectively). The newly emerging pathogens CPnV and SARS-CoV-2 were detected in 5.3% of samples and coinfections were identified in 30.3%. This new multiplex qPCR/RT-qPCR panel is the most comprehensive panel developed thus far for identifying CIRDC pathogens, along with SARS-CoV-2.
Collapse
Affiliation(s)
- Côme J. Thieulent
- Louisiana Animal Disease Diagnostic Laboratory, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA; (C.J.T.); (M.C.); (L.P.); (K.S.)
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Mariano Carossino
- Louisiana Animal Disease Diagnostic Laboratory, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA; (C.J.T.); (M.C.); (L.P.); (K.S.)
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Laura Peak
- Louisiana Animal Disease Diagnostic Laboratory, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA; (C.J.T.); (M.C.); (L.P.); (K.S.)
| | - Keith Strother
- Louisiana Animal Disease Diagnostic Laboratory, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA; (C.J.T.); (M.C.); (L.P.); (K.S.)
| | - Wendy Wolfson
- Department of Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA;
| | - Udeni B. R. Balasuriya
- Louisiana Animal Disease Diagnostic Laboratory, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA; (C.J.T.); (M.C.); (L.P.); (K.S.)
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| |
Collapse
|
4
|
Zhou Q, Yu J, Song X, Zhang J, Zhang B. The discovery of novel papillomaviruses in cats in Southwest China. Virus Genes 2023; 59:484-488. [PMID: 36976417 PMCID: PMC10043845 DOI: 10.1007/s11262-023-01989-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 03/07/2023] [Indexed: 03/29/2023]
Abstract
Feline viral diarrhea is a significant cause of death in kittens. In this study, 12 mammalian viruses were identified by metagenomic sequencing in diarrheal feces in 2019, 2020, and 2021, respectively. Interestingly, a novel of felis catus papillomavirus (FcaPV) was identified for the first time in China. Subsequently, we investigated the prevalence of FcaPV in 252 feline samples, including 168 diarrheal feces and 84 oral swabs, with a total of 57 (22.62%, 57/252) samples detected positive. Of the 57 positive samples, FcaPV genotype 3 (FcaPV-3) was detected at high prevalence rate (68.42%, 39/57), followed by FcaPV-4 (22.8%, 13/57), FcaPV-2 (17.54%, 10/57), and FcaPV-1 (1.75%, 1/55), while no FcaPV-5 and FcaPV-6. In addition, two novel putative FcaPVs were identified, which were the highest similarity to Lambdapillomavirus from Leopardus wiedii or canis familiaris, respectively. Therefore, this study was the first characterization of the viral diversity in feline diarrheal feces and the prevalence of FcaPV in Southwest China.
Collapse
Affiliation(s)
- Qun Zhou
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu, 610041, China
| | - Jifeng Yu
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, 610066, China
| | - Xin Song
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu, 610041, China
| | - Jiaqi Zhang
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu, 610041, China
| | - Bin Zhang
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu, 610041, China.
- Key Laboratory of Ministry of Education and Sichuan Province for Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Chengdu, 610041, China.
| |
Collapse
|