1
|
Kim KH, Kim YC, Jeong BH. Novel Polymorphisms and Genetic Characteristics of the Prion Protein Gene in Pheasants. Front Vet Sci 2022; 9:935476. [PMID: 35903139 PMCID: PMC9322948 DOI: 10.3389/fvets.2022.935476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 06/20/2022] [Indexed: 11/13/2022] Open
Abstract
Transmissible spongiform encephalopathies (TSEs) also known as prion diseases, are fatal neurodegenerative diseases. Prion diseases are caused by abnormal prion protein (PrPSc) derived from normal prion protein (PrPC), which is encoded by the prion protein gene (PRNP). Prion diseases have been reported in several mammals. Notably, chickens, one species of bird, have not been reported to develop prion diseases and showed resistance to bovine spongiform encephalopathy (BSE) infection. However, genetic polymorphisms of the PRNP gene and protein structure of the prion protein (PrP) related to vulnerability to prion diseases have not been investigated in pheasants, another species of bird. We performed amplicon sequencing of the pheasant PRNP gene to identify genetic polymorphisms in 148 pheasants. We analyzed the genotype, allele and haplotype frequencies of the pheasant PRNP polymorphisms. In addition, we evaluated the effect of genetic polymorphisms of the pheasant PRNP gene on pheasant PrP by the AMYCO, PROVEAN, PolyPhen-2 and PANTHER softwares. Furthermore, we compared the amino acid sequences of tandem repeat domains and secondary and tertiary structures of prion proteins (PrPs) among several animals. Finally, we investigated the impact of non-synonymous single nucleotide polymorphisms (SNPs) on hydrogen bonds and tertiary structures of pheasant PrP by Swiss PDB viewer software. We identified 34 novel genetic polymorphisms of the pheasant PRNP gene including 8 non-synonymous SNPs and 6 insertion/deletion polymorphisms. Among the non-synonymous SNPs, the L23F, G33C and R177Q SNPs showed that they could have a deleterious effect on pheasant PrP. In addition, the R177Q SNP was predicted to show an increase in amyloid propensity and a reduction in hydrogen bonds of pheasant PrP. Among the insertion/deletion polymorphisms, c.163_180delAACCCGGGGTATCCCCAC showed that it could have a detrimental effect on pheasant PrP. Furthermore, secondary and tertiary structures of pheasant PrP were predicted to have structures similar to those of chicken PrP. To the best of our knowledge, this is the first study on genetic polymorphisms of the pheasant PRNP gene.
Collapse
Affiliation(s)
- Kyung Han Kim
- Korea Zoonosis Research Institute, Jeonbuk National University, Jeonju, South Korea
- Department of Bioactive Material Sciences, Institute for Molecular Biology and Genetics, Jeonbuk National University, Jeonju, South Korea
| | - Yong-Chan Kim
- Korea Zoonosis Research Institute, Jeonbuk National University, Jeonju, South Korea
- Department of Bioactive Material Sciences, Institute for Molecular Biology and Genetics, Jeonbuk National University, Jeonju, South Korea
| | - Byung-Hoon Jeong
- Korea Zoonosis Research Institute, Jeonbuk National University, Jeonju, South Korea
- Department of Bioactive Material Sciences, Institute for Molecular Biology and Genetics, Jeonbuk National University, Jeonju, South Korea
- *Correspondence: Byung-Hoon Jeong
| |
Collapse
|
2
|
Kim YC, Kim HH, Kim K, Kim AD, Jeong BH. Novel Polymorphisms and Genetic Characteristics of the Shadow of Prion Protein Gene ( SPRN) in Cats, Hosts of Feline Spongiform Encephalopathy. Viruses 2022; 14:v14050981. [PMID: 35632724 PMCID: PMC9148082 DOI: 10.3390/v14050981] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/02/2022] [Accepted: 05/03/2022] [Indexed: 02/04/2023] Open
Abstract
Prion diseases are transmissible spongiform encephalopathies (TSEs) caused by pathogenic prion protein (PrPSc) originating from normal prion protein (PrPC) and have been reported in several types of livestock and pets. Recent studies have reported that the shadow of prion protein (Sho) encoded by the shadow of prion protein gene (SPRN) interacts with prion protein (PrP) and accelerates prion diseases. In addition, genetic polymorphisms in the SPRN gene are related to susceptibility to prion diseases. However, genetic polymorphisms in the feline SPRN gene and structural characteristics of the Sho have not been investigated in cats, a major host of feline spongiform encephalopathy (FSE). We performed amplicon sequencing to identify feline SPRN polymorphisms in the 623 bp encompassing the open reading frame (ORF) and a small part of the 3' untranslated region (UTR) of the SPRN gene. We analyzed the impact of feline SPRN polymorphisms on the secondary structure of SPRN mRNA using RNAsnp. In addition, to find feline-specific amino acids, we carried out multiple sequence alignments using ClustalW. Furthermore, we analyzed the N-terminal signal peptide and glycosylphosphatidylinositol (GPI)-anchor using SignalP and PredGPI, respectively. We identified three novel SNPs in the feline SPRN gene and did not find strong linkage disequilibrium (LD) among the three SNPs. We found four major haplotypes of the SPRN polymorphisms. Strong LD was not observed between PRNP and SPRN polymorphisms. In addition, we found alterations in the secondary structure and minimum free energy of the mRNA according to the haplotypes in the SPRN polymorphisms. Furthermore, we found four feline-specific amino acids in the feline Sho using multiple sequence alignments among several species. Lastly, the N-terminal signal sequence and cutting site of the Sho protein of cats showed similarity with those of other species. However, the feline Sho protein exhibited the shortest signal sequence and a unique amino acid in the omega-site of the GPI anchor. To the best of our knowledge, this is the first report on genetic polymorphisms of the feline SPRN gene.
Collapse
Affiliation(s)
- Yong-Chan Kim
- Korea Zoonosis Research Institute, Jeonbuk National University, Iksan 54531, Jeonbuk, Korea; (Y.-C.K.); (H.-H.K.)
- Department of Bioactive Material Sciences and Institute for Molecular Biology and Genetics, Jeonbuk National University, Jeonju 54896, Jeonbuk, Korea
| | - Hyeon-Ho Kim
- Korea Zoonosis Research Institute, Jeonbuk National University, Iksan 54531, Jeonbuk, Korea; (Y.-C.K.); (H.-H.K.)
- Department of Bioactive Material Sciences and Institute for Molecular Biology and Genetics, Jeonbuk National University, Jeonju 54896, Jeonbuk, Korea
| | - Kiwon Kim
- Haemalken Animal Hospital, Yangju 11492, Gyeonggi, Korea;
| | - An-Dang Kim
- Cool-Pet Animal Hospital, Anyang 14066, Gyeonggi, Korea;
| | - Byung-Hoon Jeong
- Korea Zoonosis Research Institute, Jeonbuk National University, Iksan 54531, Jeonbuk, Korea; (Y.-C.K.); (H.-H.K.)
- Department of Bioactive Material Sciences and Institute for Molecular Biology and Genetics, Jeonbuk National University, Jeonju 54896, Jeonbuk, Korea
- Correspondence: ; Tel.: +82-63-900-4040; Fax: +82-63-900-4012
| |
Collapse
|
3
|
Roh IS, Kim YC, Won SY, Jeong MJ, Park KJ, Park HC, Lee YR, Kang HE, Sohn HJ, Jeong BH. The first report of a strong association between genetic polymorphisms of the prion protein gene (PRNP) and susceptibility to chronic wasting disease (CWD) in sika deer (Cervus nippon). Transbound Emerg Dis 2022; 69:e2073-e2083. [PMID: 35349210 DOI: 10.1111/tbed.14543] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/16/2022] [Accepted: 03/27/2022] [Indexed: 11/28/2022]
Abstract
Prion diseases are incurable neurodegenerative disorders caused by proteinase K-resistant prion protein (PrPSc ) derived from normal prion protein (PrPC ) encoded by the prion protein gene (PRNP). Although the cervid PRNP gene plays a pivotal role in the pathological mechanism of chronic wasting disease (CWD), there is no existing association analysis between susceptibility to CWD and genetic polymorphisms of the PRNP gene in sika deer. We investigated genetic polymorphisms of the PRNP gene using amplicon sequencing in sika deer. In addition, to identify a genetic susceptibility factor, we compared genotype, allele and haplotype frequencies of the PRNP gene between CWD-positive and CWD-negative sika deer. Furthermore, to assess the effect of the genetic polymorphisms on sika deer prion protein (PrP), we performed in silico analysis using PolyPhen-2, PROVEAN and AMYCO. Finally, we analyzed the tertiary structure and electrostatic potential of sika deer PrP based on single nucleotide polymorphisms (SNPs) using the SWISS-MODEL and Swiss-PdbViewer programs. We found a total of 24 SNPs of the PRNP gene including 22 novel SNPs (10 synonymous SNPs and 12 non-synonymous SNPs) in sika deer. Among the non-synonymous SNPs, we found a strong association of the susceptibility to CWD with c.56G>A (Ser19Asn). In addition, we found that c.56G>A (Ser19Asn), c.296A>T (His99Leu) and c.560T>A (Val187Asp) were predicted to have damaging effects on sika deer PrP. Furthermore, we observed significant alterations in the electrostatic potential of sika deer PrP by genetic polymorphisms of the 187Asp allele. To the best of our knowledge, this was the first association study between genetic polymorphisms of the PRNP gene and susceptibility to CWD in sika deer. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- In-Soon Roh
- Reference Laboratory for CWD, Foreign Animal Disease Division, Animal and Plant Quarantine Agency, Gimcheon, 39660, Republic of Korea
| | - Yong-Chan Kim
- Korea Zoonosis Research Institute, Jeonbuk National University, Iksan, 54531, Republic of Korea.,Department of Bioactive Material Sciences and Institute for Molecular Biology and Genetics, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Sae-Young Won
- Korea Zoonosis Research Institute, Jeonbuk National University, Iksan, 54531, Republic of Korea.,Department of Bioactive Material Sciences and Institute for Molecular Biology and Genetics, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Min-Ju Jeong
- Korea Zoonosis Research Institute, Jeonbuk National University, Iksan, 54531, Republic of Korea.,Department of Bioactive Material Sciences and Institute for Molecular Biology and Genetics, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Kyung-Je Park
- Reference Laboratory for CWD, Foreign Animal Disease Division, Animal and Plant Quarantine Agency, Gimcheon, 39660, Republic of Korea
| | - Hoo-Chang Park
- Reference Laboratory for CWD, Foreign Animal Disease Division, Animal and Plant Quarantine Agency, Gimcheon, 39660, Republic of Korea
| | - Yu-Ran Lee
- Reference Laboratory for CWD, Foreign Animal Disease Division, Animal and Plant Quarantine Agency, Gimcheon, 39660, Republic of Korea
| | - Hae-Eun Kang
- Reference Laboratory for CWD, Foreign Animal Disease Division, Animal and Plant Quarantine Agency, Gimcheon, 39660, Republic of Korea
| | - Hyun-Joo Sohn
- Reference Laboratory for CWD, Foreign Animal Disease Division, Animal and Plant Quarantine Agency, Gimcheon, 39660, Republic of Korea
| | - Byung-Hoon Jeong
- Korea Zoonosis Research Institute, Jeonbuk National University, Iksan, 54531, Republic of Korea.,Department of Bioactive Material Sciences and Institute for Molecular Biology and Genetics, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| |
Collapse
|
4
|
Roh IS, Kim YC, Won SY, Park KJ, Park HC, Hwang JY, Kang HE, Sohn HJ, Jeong BH. Association Study of the M132L Single Nucleotide Polymorphism With Susceptibility to Chronic Wasting Disease in Korean Elk: A Meta-Analysis. Front Vet Sci 2022; 8:804325. [PMID: 35097050 PMCID: PMC8795614 DOI: 10.3389/fvets.2021.804325] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 12/13/2021] [Indexed: 12/13/2022] Open
Abstract
Chronic wasting disease (CWD) is a deleterious brain proteinopathy caused by a pathogenic form of prion protein (PrPSc), which is converted from a benign form of prion protein (PrPC) encoded by the prion protein gene (PRNP). In elk, the M132L single nucleotide polymorphism (SNP) of the PRNP gene likely plays a pivotal role in susceptibility to CWD. However, the association of the M132L SNP with susceptibility to CWD has not been evaluated in Korean elk to date. To estimate the association of the M132L SNP with susceptibility to CWD in Korean elk, we investigated the genotype and allele frequencies of the M132L SNP by amplicon sequencing and performed association analysis between CWD-positive and CWD-negative elk. In addition, we performed a meta-analysis to evaluate the association between the M132L SNP and susceptibility to CWD in quantitatively synthesized elk populations. Furthermore, we estimated the effect of the M132L SNP on elk PrP using in silico programs, including PolyPhen-2, PROVEAN, AMYCO and Swiss-PdbViewer. We did not identify a significant association between the M132L SNP of PRNP and susceptibility to CWD in Korean elk. The meta-analysis also did not identify a strong association between the M132L SNP of PRNP and susceptibility to CWD in quantitatively synthesized elk populations. Furthermore, we did not observe significant changes in structure, amyloid propensity or electrostatic potential based on the M132L SNP in elk PrP. To the best of our knowledge, this was the first report of an association analysis and meta-analysis in Korean elk and quantitatively synthesized elk populations, respectively.
Collapse
Affiliation(s)
- In-Soon Roh
- Reference Laboratory for Chronic Wasting Disease (CWD), Foreign Animal Disease Division, Animal and Plant Quarantine Agency, Gimcheon, South Korea
| | - Yong-Chan Kim
- Korea Zoonosis Research Institute, Jeonbuk National University, Iksan, South Korea
- Department of Bioactive Material Sciences and Institute for Molecular Biology and Genetics, Jeonbuk National University, Jeonju, South Korea
| | - Sae-Young Won
- Korea Zoonosis Research Institute, Jeonbuk National University, Iksan, South Korea
- Department of Bioactive Material Sciences and Institute for Molecular Biology and Genetics, Jeonbuk National University, Jeonju, South Korea
| | - Kyung-Je Park
- Reference Laboratory for Chronic Wasting Disease (CWD), Foreign Animal Disease Division, Animal and Plant Quarantine Agency, Gimcheon, South Korea
| | - Hoo-Chang Park
- Reference Laboratory for Chronic Wasting Disease (CWD), Foreign Animal Disease Division, Animal and Plant Quarantine Agency, Gimcheon, South Korea
| | - Ji-Yong Hwang
- Reference Laboratory for Chronic Wasting Disease (CWD), Foreign Animal Disease Division, Animal and Plant Quarantine Agency, Gimcheon, South Korea
| | - Hae-Eun Kang
- Reference Laboratory for Chronic Wasting Disease (CWD), Foreign Animal Disease Division, Animal and Plant Quarantine Agency, Gimcheon, South Korea
| | - Hyun-Joo Sohn
- Reference Laboratory for Chronic Wasting Disease (CWD), Foreign Animal Disease Division, Animal and Plant Quarantine Agency, Gimcheon, South Korea
- Hyun-Joo Sohn
| | - Byung-Hoon Jeong
- Korea Zoonosis Research Institute, Jeonbuk National University, Iksan, South Korea
- Department of Bioactive Material Sciences and Institute for Molecular Biology and Genetics, Jeonbuk National University, Jeonju, South Korea
- *Correspondence: Byung-Hoon Jeong
| |
Collapse
|