1
|
Köster PC, Figueiredo AM, Maloney JG, Dashti A, Bailo B, Torres RT, Fonseca C, Mysterud A, Habela MÁ, Rivero-Juarez A, Vicente J, Serrano E, Arnal MC, de Luco DF, Armenteros JA, Balseiro A, Cardona GA, Carvalho J, Hipólito D, Fernandes J, Palmeira JD, Calero-Bernal R, González-Barrio D, Santin M, Carmena D. Blastocystis occurrence and subtype diversity in European wild boar (Sus scrofa) from the Iberian Peninsula. Vet Res 2024; 55:133. [PMID: 39375799 PMCID: PMC11460206 DOI: 10.1186/s13567-024-01385-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 09/03/2024] [Indexed: 10/09/2024] Open
Abstract
The ongoing increase in wild boar populations across Europe has fostered human-wildlife conflicts, including the transmission of emerging pathogens with zoonotic importance. Blastocystis is a ubiquitous, faecal-oral transmitted protist that can cause gastrointestinal illnesses and is observed in humans and animals worldwide. The role of wildlife in the epidemiology of Blastocystis is insufficiently understood. Thus, we investigated the occurrence and subtype diversity of Blastocystis in free-ranging wild boars from the Iberian Peninsula using conventional PCR and next-generation amplicon sequencing of a fragment of the ssu RNA gene. A total of 459 wild boar faecal samples were collected across Spain (n = 360) and Portugal (n = 99) between 2014 and 2021. Blastocystis was present in 15.3% (70/459; 95% CI 12.1-18.9) of the wild boars analysed, and its occurrence was significantly higher in Portugal (34.3%, 34/99; 95% CI 25.1-44.6) than in Spain (10.0%, 36/360; 95% CI 7.1-13.6). Seven Blastocystis subtypes (ST5, ST10b, ST13-ST15, ST24b, and ST43) were detected among the surveyed wild boar populations, with greater variability detected in Portuguese samples. ST5 was identified in all the Blastocystis-positive animals, whereas 14.3% of them harboured ST mixed colonisations. Our results demonstrate that Blastocystis ST5 is particularly adapted to infect wild boars. The additional identification of zoonotic STs reinforces the role of wild boars as spreaders of zoonotic infections with public health significance.
Collapse
Affiliation(s)
- Pamela C Köster
- Parasitology Reference and Research Laboratory, Spanish National Centre for Microbiology, Health Institute Carlos III, Majadahonda, Madrid, Spain
- Faculty of Health Sciences, Alfonso X El Sabio University (UAX), Villanueva de la Cañada, Madrid, Spain
- Faculty of Medicine, Alfonso X El Sabio University (UAX), Villanueva de la Cañada, Madrid, Spain
| | - Ana M Figueiredo
- Department of Biology and CESAM, University of Aveiro, Aveiro, Portugal
- Centre for Ecological and Evolutionary Synthesis, Department of Bioscience, University of Oslo, Oslo, Norway
| | - Jenny G Maloney
- Environmental Microbial and Food Safety Laboratory, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD, USA
| | - Alejandro Dashti
- Parasitology Reference and Research Laboratory, Spanish National Centre for Microbiology, Health Institute Carlos III, Majadahonda, Madrid, Spain
| | - Begoña Bailo
- Parasitology Reference and Research Laboratory, Spanish National Centre for Microbiology, Health Institute Carlos III, Majadahonda, Madrid, Spain
| | - Rita T Torres
- Department of Biology and CESAM, University of Aveiro, Aveiro, Portugal
| | - Carlos Fonseca
- Department of Biology and CESAM, University of Aveiro, Aveiro, Portugal
- ForestWISE-Collaborative Laboratory for Integrated Forest & Fire Management, Vila Real, Portugal
| | - Atle Mysterud
- Centre for Ecological and Evolutionary Synthesis, Department of Bioscience, University of Oslo, Oslo, Norway
| | - Miguel Á Habela
- Department of Animal Health, Veterinary Sciences Faculty, Extremadura University, Caceres, Spain
| | - Antonio Rivero-Juarez
- Infectious Diseases Unit, Maimonides Institute for Biomedical Research (IMIBIC), University Hospital Reina Sofía, University of Córdoba, Córdoba, Spain
- Center for Biomedical Research Network in Infectious Diseases (CIBERINFEC), Health Institute Carlos III, Madrid, Spain
| | - Joaquín Vicente
- SaBio Group, Institute for Game and Wildlife Research, IREC (UCLM-CSIC-JCCM), Ciudad Real, Spain
| | - Emmanuel Serrano
- Wildlife Ecology & Health Group (WE&H), Wildlife Environmental Pathology Service (SEFaS), Department of Animal Medicine and Surgery, Autonomous University of Barcelona, Bellaterra, Spain
| | - Maria C Arnal
- Department of Animal Pathology, Veterinary Faculty, University of Zaragoza, Saragossa, Spain
| | | | - José A Armenteros
- Council of Development, Territory Planning and the Environment of the Principado de Asturias, Oviedo, Spain
| | - Ana Balseiro
- Animal Health Department, Veterinary School, University of León, León, Spain
- Animal Health Department, Mountain Livestock Institute (CSIC-University of León), León, Spain
| | | | - João Carvalho
- Department of Biology and CESAM, University of Aveiro, Aveiro, Portugal
| | - Dário Hipólito
- Department of Biology and CESAM, University of Aveiro, Aveiro, Portugal
- Veterinary Biology Unit, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10000, Zagreb, Croatia
| | - Joana Fernandes
- Department of Biology and CESAM, University of Aveiro, Aveiro, Portugal
- Center for Evolutionary Hologenomics, The GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| | - Josman D Palmeira
- Department of Biology and CESAM, University of Aveiro, Aveiro, Portugal
| | - Rafael Calero-Bernal
- SALUVET, Department of Animal Health, Faculty of Veterinary, Complutense University of Madrid, Madrid, Spain
| | - David González-Barrio
- Parasitology Reference and Research Laboratory, Spanish National Centre for Microbiology, Health Institute Carlos III, Majadahonda, Madrid, Spain.
| | - Monica Santin
- Environmental Microbial and Food Safety Laboratory, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD, USA.
| | - David Carmena
- Parasitology Reference and Research Laboratory, Spanish National Centre for Microbiology, Health Institute Carlos III, Majadahonda, Madrid, Spain
- Center for Biomedical Research Network in Infectious Diseases (CIBERINFEC), Health Institute Carlos III, Madrid, Spain
| |
Collapse
|
2
|
Santos-Silva S, da Silva Dias Moraes DF, López-López P, Rivero-Juarez A, Mesquita JR, Nascimento MSJ. Hepatitis E Virus in the Iberian Peninsula: A Systematic Review. FOOD AND ENVIRONMENTAL VIROLOGY 2023; 15:193-211. [PMID: 37434079 PMCID: PMC10499749 DOI: 10.1007/s12560-023-09560-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 06/26/2023] [Indexed: 07/13/2023]
Abstract
One of the most frequent causes of acute viral hepatitis is hepatitis E virus (HEV) causing 20 million infections worldwide each year and 44,000 deaths. Studies on HEV in the Iberian Peninsula have been increasing through time with HEV infection being identified in humans and animals. The aim of the present systematic review was to compile and evaluate all the published data on HEV from studies performed in humans, animals and environmental samples in the Iberian Peninsula. The electronic databases Mendeley, PubMed, Scopus, and Web of Science were thoroughly searched, and research published up until February 01, 2023 were included. Resulting in a total of 151 eligible papers by full reading and application of PRISMA exclusion/inclusion criteria. Overall, the present review shows that several HEV genotypes, namely HEV-1, 3, 4, and 6 as well as Rocahepevirus, are circulating in humans, animals, and in the environment in the Iberian Peninsula. HEV-3 was the most common genotype circulating in humans in Portugal and Spain, as expected for developed countries, with HEV-1 only being detected in travelers and emigrants from HEV endemic regions. Spain is the biggest pork producer in Europe and given the high circulation of HEV in pigs, with HEV-3 being primarily associated to zoonotic transmission through consumption of swine meat and meat products, in our opinion, the introduction of an HEV surveillance system in swine and inclusion of HEV in diagnostic routines for acute and chronic human hepatitis would be important. Additionally, we propose that establishing a monitoring mechanism for HEV is crucial in order to gain a comprehensive understanding of the prevalence of this illness and the various strains present in the Iberian Peninsula, as well as their potential impact on public health.
Collapse
Affiliation(s)
- Sérgio Santos-Silva
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | | | - Pedro López-López
- Grupo de Virología Clínica y Zoonosis, Unidad de Enfermedades Infecciosas, Instituto Maimónides de Investigación Biomédica de Córdoba, Hospital Reina Sofía, Universidad de Córdoba, Córdoba, Spain
- CIBERINFEC, ISCIII - CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | - António Rivero-Juarez
- Grupo de Virología Clínica y Zoonosis, Unidad de Enfermedades Infecciosas, Instituto Maimónides de Investigación Biomédica de Córdoba, Hospital Reina Sofía, Universidad de Córdoba, Córdoba, Spain
- CIBERINFEC, ISCIII - CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | - João R Mesquita
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal.
- Epidemiology Research Unit (EPIUnit), Instituto de Saúde Pública da Universidade do Porto, Porto, Portugal.
- Laboratório para a Investigação Integrativa e Translacional em Saúde Populacional (ITR), Porto, Portugal.
| | | |
Collapse
|
3
|
Delling C, Daugschies A. Literature Review: Coinfection in Young Ruminant Livestock- Cryptosporidium spp. and Its Companions. Pathogens 2022; 11:103. [PMID: 35056051 PMCID: PMC8777864 DOI: 10.3390/pathogens11010103] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/05/2022] [Accepted: 01/10/2022] [Indexed: 02/04/2023] Open
Abstract
The protozoan Cryptosporidium parvum is one of the major causative pathogens of diarrhoea in young ruminants; therefore, it causes economic losses and impairs animal welfare. Besides C. parvum, there are many other non-infectious and infectious factors, such as rotavirus, Escherichia coli, and Giardia duodenalis, which may lead to diarrhoeic disease in young livestock. Often, more than one infectious agent is detected in affected animals. Little is known about the interactions bet-ween simultaneously occurring pathogens and their potential effects on the course of disease. In this review, a brief overview about pathogens associated with diarrhoea in young ruminants is presented. Furthermore, information about coinfections involving Cryptosporidium is provided.
Collapse
Affiliation(s)
- Cora Delling
- Institute of Parasitology, Faculty of Veterinary Medicine, Leipzig University, An den Tierkliniken 35, 04103 Leipzig, Germany;
| | | |
Collapse
|