1
|
Harris EK, Balaraman V, Keating CC, McDowell C, Kimble JB, De La Mota-Peynado A, Borland EM, Graham B, Wilson WC, Richt JA, Kading RC, Gaudreault NN. Co-Infection of Culex tarsalis Mosquitoes with Rift Valley Fever Phlebovirus Strains Results in Efficient Viral Reassortment. Viruses 2025; 17:88. [PMID: 39861876 PMCID: PMC11768849 DOI: 10.3390/v17010088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 01/06/2025] [Accepted: 01/07/2025] [Indexed: 01/27/2025] Open
Abstract
Rift Valley fever phlebovirus (RVFV) is a zoonotic mosquito-borne pathogen endemic to sub-Saharan Africa and the Arabian Peninsula which causes Rift Valley fever in ruminant livestock and humans. Co-infection with divergent viral strains can produce reassortment among the L, S, and M segments of the RVFV genome. Reassortment events can produce novel genotypes with altered virulence, transmission dynamics, and/or mosquito host range. This can have severe implications in areas where RVFV is endemic and convolutes our ability to anticipate transmission and circulation in novel geographic regions. Previously, we evaluated the frequency of RVFV reassortment in a susceptible ruminant host and observed low rates of reassortment (0-1.7%). Here, we tested the hypothesis that reassortment occurs predominantly in the mosquito using a highly permissive vector, Culex tarsalis. Cells derived from Cx. tarsalis or adult mosquitoes were co-infected with either two virulent (Kenya-128B-15 and SA01-1322) or a virulent and attenuated (Kenya-128B-15 and MP-12) strain of RVFV. Our results showed approximately 2% of virus genotypes isolated from co-infected Cx. tarsalis-derived cells were reassortant. Co-infected mosquitoes infected via infectious bloodmeal resulted in a higher percentage of reassortant virus (2-60%) isolated from midgut and salivary tissues at 14 days post-infection. The percentage of reassortant genotypes isolated from the midguts of mosquitoes co-infected with Kenya-128B-15 and SA01-1322 was similar to that of mosquitoes co-infected with Kenya-128B-15 and MP-12- strains (60 vs. 47%). However, only 2% of virus isolated from the salivary glands of Kenya-128B-15 and SA01-1322 co-infected mosquitoes represented reassortant genotypes. This was contrasted by 54% reassortment in the salivary glands of mosquitoes co-infected with Kenya-128B-15 and MP-12 strains. Furthermore, we observed preferential inclusion of genomic segments from the three parental strains among the reassorted viruses. Replication curves of select reassorted genotypes were significantly higher in Vero cells but not in Culex-derived cells. These data imply that mosquitoes play a crucial role in the reassortment of RVFV and potentially contribute to driving evolution of the virus.
Collapse
Affiliation(s)
- Emma K. Harris
- Center for Vector-Borne Infectious Diseases, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA; (E.K.H.); (B.G.)
| | - Velmurugan Balaraman
- Center of Excellence for Emerging and Zoonotic Animal Diseases, Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS 66506, USA (C.M.); (J.A.R.)
| | - Cassidy C. Keating
- Center of Excellence for Emerging and Zoonotic Animal Diseases, Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS 66506, USA (C.M.); (J.A.R.)
| | - Chester McDowell
- Center of Excellence for Emerging and Zoonotic Animal Diseases, Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS 66506, USA (C.M.); (J.A.R.)
| | - J. Brian Kimble
- Foreign Arthropod-Borne Animal Diseases Research Unit, United States Department of Agriculture, Agricultural Research Service, National Bio and Agro-Defense Facility, Manhattan, KS 66505, USA; (J.B.K.); (A.D.L.M.-P.); (W.C.W.)
| | - Alina De La Mota-Peynado
- Foreign Arthropod-Borne Animal Diseases Research Unit, United States Department of Agriculture, Agricultural Research Service, National Bio and Agro-Defense Facility, Manhattan, KS 66505, USA; (J.B.K.); (A.D.L.M.-P.); (W.C.W.)
| | - Erin M. Borland
- Center for Vector-Borne Infectious Diseases, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA; (E.K.H.); (B.G.)
| | - Barbara Graham
- Center for Vector-Borne Infectious Diseases, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA; (E.K.H.); (B.G.)
| | - William C. Wilson
- Foreign Arthropod-Borne Animal Diseases Research Unit, United States Department of Agriculture, Agricultural Research Service, National Bio and Agro-Defense Facility, Manhattan, KS 66505, USA; (J.B.K.); (A.D.L.M.-P.); (W.C.W.)
| | - Juergen A. Richt
- Center of Excellence for Emerging and Zoonotic Animal Diseases, Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS 66506, USA (C.M.); (J.A.R.)
| | - Rebekah C. Kading
- Center for Vector-Borne Infectious Diseases, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA; (E.K.H.); (B.G.)
| | - Natasha N. Gaudreault
- Center of Excellence for Emerging and Zoonotic Animal Diseases, Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS 66506, USA (C.M.); (J.A.R.)
| |
Collapse
|
2
|
Jeon J, Kim E. Exploring Future Pandemic Preparedness Through the Development of Preventive Vaccine Platforms and the Key Roles of International Organizations in a Global Health Crisis. Vaccines (Basel) 2025; 13:56. [PMID: 39852835 PMCID: PMC11768803 DOI: 10.3390/vaccines13010056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 12/27/2024] [Accepted: 01/08/2025] [Indexed: 01/26/2025] Open
Abstract
Background: The emergence of more than 40 new infectious diseases since the 1980s has emerged as a serious global health concern, many of which are zoonotic. In response, many international organizations, including the US Centers for Disease Control and Prevention (CDC), the World Health Organization (WHO), and the European Center for Disease Prevention and Control (ECDC), have developed strategies to combat these health threats. The need for rapid vaccine development has been highlighted by Coronavirus disease 2019 (COVID-19), and mRNA technology has shown promise as a platform. While the acceleration of vaccine development has been successful, concerns have been raised about the technical limits, safety, supply, and distribution of vaccines. Objective: This study analyzes the status of vaccine platform development in global pandemics and explores ways to respond to future pandemic crises through an overview of the roles of international organizations and their support programs. It examines the key roles and partnerships of international organizations such as the World Health Organization (WHO), vaccine research and development expertise of the Coalition for Epidemic Preparedness Innovations (CEPI), control of the vaccine supply chain and distribution by the Global Alliance for Vaccines and Immunization (GAVI), and technology transfer capabilities of the International Vaccine Institute (IVI) in supporting the development, production, and supply of vaccine platform technologies for pandemic priority diseases announced by WHO and CEPI and analyzes their vaccine support programs and policies to identify effective ways to rapidly respond to future pandemics caused by emerging infectious diseases. Methods: This study focused on vaccine platform technology and the key roles of international organizations in the pandemic crisis. Literature data on vaccine platform development was collected, compared, and analyzed through national and international literature data search sites, referring to articles, journals, research reports, publications, books, guidelines, clinical trial data, and related reports. In addition, the websites of international vaccine support organizations, such as WHO, CEPI, GAVI, and IVI, were used to examine vaccine support projects, initiatives, and collaborations through literature reviews and case study methods. Results: The COVID-19 pandemic brought focus on the necessity for developing innovative vaccine platforms. Despite initial concerns, the swift integration of cutting-edge development technologies, mass production capabilities, and global collaboration have made messenger RNA (mRNA) vaccines a game-changing technology. As a result of the successful application of novel vaccine platforms, it is important to address the remaining challenges, including technical limits, safety concerns, and equitable global distribution. To achieve this, it is essential to review the regulatory, policy, and support initiatives that have been implemented in response to the COVID-19 pandemic, with particular emphasis on the key stages of vaccine development, production, and distribution, to prepare for future pandemics. An analysis of the status of vaccine development for priority pandemic diseases implies the need for balanced vaccine platform development. Also, international organizations such as WHO, CEPI, GAVI, and IVI play key roles in pandemic preparedness and the development and distribution of preventive vaccines. These organizations collaborated to improve accessibility to vaccines, strengthen the global response to infectious diseases, and address global health issues. The COVID-19 pandemic response demonstrates how the synergistic collaboration of WHO's standardized guidelines, CEPI's vaccine research and development expertise, GAVI's control of the vaccine supply chain and distribution, and IVI's technology transfer capabilities can be united to create a successful process for vaccine development and distribution. Conclusions: In preparation for future pandemics, a balanced vaccine platform development is essential. It should include a balanced investment in both novel technologies such as mRNA and viral vector-based vaccines and traditional platforms. The goal is to develop vaccine platform technologies that can be applied to emerging infectious diseases efficiently and increase manufacturing and distribution capabilities for future pandemics. Moreover, international vaccine support organizations should play key roles in setting the direction of global networking and preparing for international vaccine support programs to address the limitations of previous pandemic responses. As a result, by transforming future pandemic threats from unpredictable crises to surmountable challenges, it is expected to strengthen global health systems and reduce the social and economic burden of emerging infectious diseases in the long term.
Collapse
Affiliation(s)
- Jihee Jeon
- Pharmaceutical Regulatory Affairs, Department of Pharmaceutical Industry, Graduate School, Chung-Ang University, Seoul 06974, Republic of Korea;
| | - Eunyoung Kim
- Pharmaceutical Regulatory Affairs, Department of Pharmaceutical Industry, Graduate School, Chung-Ang University, Seoul 06974, Republic of Korea;
- Central Research Center of Epigenome Based Platform and Its Application for Drug Development, College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
- Data Science, Evidence-Based and Clinical Research Laboratory, Department of Health, Social, and Clinical Pharmacy, College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
- Regulatory Science Policy, Pharmaceutical Regulatory Sciences, Chung-Ang University, Seoul 06974, Republic of Korea
| |
Collapse
|
3
|
Olajiga OM, Jameson SB, Carter BH, Wesson DM, Mitzel D, Londono-Renteria B. Artificial Feeding Systems for Vector-Borne Disease Studies. BIOLOGY 2024; 13:188. [PMID: 38534457 DOI: 10.3390/biology13030188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 02/28/2024] [Accepted: 03/11/2024] [Indexed: 03/28/2024]
Abstract
This review examines the advancements and methodologies of artificial feeding systems for the study of vector-borne diseases, offering a critical assessment of their development, advantages, and limitations relative to traditional live host models. It underscores the ethical considerations and practical benefits of such systems, including minimizing the use of live animals and enhancing experimental consistency. Various artificial feeding techniques are detailed, including membrane feeding, capillary feeding, and the utilization of engineered biocompatible materials, with their respective applications, efficacy, and the challenges encountered with their use also being outlined. This review also forecasts the integration of cutting-edge technologies like biomimicry, microfluidics, nanotechnology, and artificial intelligence to refine and expand the capabilities of artificial feeding systems. These innovations aim to more accurately simulate natural feeding conditions, thereby improving the reliability of studies on the transmission dynamics of vector-borne diseases. This comprehensive review serves as a foundational reference for researchers in the field, proposing a forward-looking perspective on the potential of artificial feeding systems to revolutionize vector-borne disease research.
Collapse
Affiliation(s)
- Olayinka M Olajiga
- Department of Tropical Medicine and Infectious Disease, Tulane University, New Orleans, LA 70112, USA
| | - Samuel B Jameson
- Department of Tropical Medicine and Infectious Disease, Tulane University, New Orleans, LA 70112, USA
| | - Brendan H Carter
- Department of Tropical Medicine and Infectious Disease, Tulane University, New Orleans, LA 70112, USA
| | - Dawn M Wesson
- Department of Tropical Medicine and Infectious Disease, Tulane University, New Orleans, LA 70112, USA
| | - Dana Mitzel
- Animal Diseases Research Unit, National Bio- and Agro-Defense Facility, United States Department of Agriculture, Agricultural Research Service, Manhattan, KS 66506, USA
| | - Berlin Londono-Renteria
- Department of Tropical Medicine and Infectious Disease, Tulane University, New Orleans, LA 70112, USA
| |
Collapse
|
4
|
Alkan C, Jurado-Cobena E, Ikegami T. Advancements in Rift Valley fever vaccines: a historical overview and prospects for next generation candidates. NPJ Vaccines 2023; 8:171. [PMID: 37925544 PMCID: PMC10625542 DOI: 10.1038/s41541-023-00769-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 10/18/2023] [Indexed: 11/06/2023] Open
Abstract
Rift Valley fever (RVF) is a zoonotic viral disease transmitted by mosquitoes and causes abortion storms, fetal malformations, and newborn animal deaths in livestock ruminants. In humans, RVF can manifest as hemorrhagic fever, encephalitis, or retinitis. Outbreaks of RVF have been occurring in Africa since the early 20th century and continue to pose a threat to both humans and animals in various regions such as Africa, Madagascar, the Comoros, Saudi Arabia, and Yemen. The development of RVF vaccines is crucial in preventing mortality and morbidity and reducing the spread of the virus. While several veterinary vaccines have been licensed in endemic countries, there are currently no licensed RVF vaccines for human use. This review provides an overview of the existing RVF vaccines, as well as potential candidates for future studies on RVF vaccine development, including next-generation vaccines that show promise in combating the disease in both humans and animals.
Collapse
Affiliation(s)
- Cigdem Alkan
- Department of Pathology, The University of Texas Medical Branch at Galveston, 301 University Blvd, Galveston, TX, 77555, USA
| | - Eduardo Jurado-Cobena
- Department of Microbiology and Immunology, The University of Texas Medical Branch at Galveston, 301 University Blvd, Galveston, TX, 77555, USA
| | - Tetsuro Ikegami
- Department of Pathology, The University of Texas Medical Branch at Galveston, 301 University Blvd, Galveston, TX, 77555, USA.
- The Sealy Institute for Vaccine Sciences, The University of Texas Medical Branch at Galveston, 301 University Blvd, Galveston, TX, 77555, USA.
- The Center for Biodefense and Emerging Infectious Diseases, The University of Texas Medical Branch at Galveston, 301 University Blvd, Galveston, TX, 77555, USA.
| |
Collapse
|
5
|
Smith CB, Hodges NF, Kading RC, Campbell CL. Dishevelled Has Anti-Viral Activity in Rift Valley Fever Virus Infected Aedes aegypti. Viruses 2023; 15:2140. [PMID: 38005818 PMCID: PMC10675198 DOI: 10.3390/v15112140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 10/17/2023] [Accepted: 10/19/2023] [Indexed: 11/26/2023] Open
Abstract
Mosquitoes in the genera Aedes and Culex are vectors of Rift Valley fever virus (RVFV), which emerges in periodic epidemics in Africa and Saudi Arabia. Factors that influence the transmission dynamics of RVFV are not well characterized. To address this, we interrogated mosquito host-signaling responses through analysis of differentially expressed genes (DEGs) in two mosquito species with marked differences in RVFV vector competence: Aedes aegypti (Aae, low competence) and Culex tarsalis (Cxt, high competence). Mosquito-host transcripts related to three different signaling pathways were investigated. Selected genes from the Wingless (Wg, WNT-beta-catenin) pathway, which is a conserved regulator of cell proliferation and differentiation, were assessed. One of these, dishevelled (DSH), differentially regulates progression/inhibition of the WNT and JNK (c-Jun N-terminal Kinase) pathways. A negative regulator of the JNK-signaling pathway, puckered, was also assessed. Lastly, Janus kinase/signal transducers and activators of transcription (JAK-STAT) are important for innate immunity; in this context, we tested domeless levels. Here, individual Aae and Cxt were exposed to RVFV MP-12 via oral bloodmeals and held for 14 days. Robust decreases in DEGs in both Aae and Cxt were observed. In particular, Aae DSH expression, but not Cxt DSH, was correlated to the presence/absence of viral RNA at 14 days post-challenge (dpc). Moreover, there was an inverse relationship between the viral copy number and aaeDSH expression. DSH silencing resulted in increased viral copy numbers compared to controls at 3 dpc, consistent with a role for aaeDSH in antiviral immunity. Analysis of cis-regulatory regions for the genes of interest revealed clues to upstream regulation of these pathways.
Collapse
Affiliation(s)
| | | | | | - Corey L. Campbell
- Center for Vector-Borne Infectious Diseases, Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA; (C.B.S.); (R.C.K.)
| |
Collapse
|
6
|
Chen T, Ding Z, Lan J, Wong G. Advances and perspectives in the development of vaccines against highly pathogenic bunyaviruses. Front Cell Infect Microbiol 2023; 13:1174030. [PMID: 37274315 PMCID: PMC10234439 DOI: 10.3389/fcimb.2023.1174030] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 05/03/2023] [Indexed: 06/06/2023] Open
Abstract
Increased human activities around the globe and the rapid development of once rural regions have increased the probability of contact between humans and wild animals. A majority of bunyaviruses are of zoonotic origin, and outbreaks may result in the substantial loss of lives, economy contraction, and social instability. Many bunyaviruses require manipulation in the highest levels of biocontainment, such as Biosafety Level 4 (BSL-4) laboratories, and the scarcity of this resource has limited the development speed of vaccines for these pathogens. Meanwhile, new technologies have been created, and used to innovate vaccines, like the mRNA vaccine platform and bioinformatics-based antigen design. Here, we summarize current vaccine developments for three different bunyaviruses requiring work in the highest levels of biocontainment: Crimean-Congo Hemorrhagic Fever Virus (CCHFV), Rift Valley Fever Virus (RVFV), and Hantaan virus (HTNV), and provide perspectives and potential future directions that can be further explored to advance specific vaccines for humans and livestock.
Collapse
Affiliation(s)
- Tong Chen
- Viral Hemorrhagic Fevers Research Unit, Chinese Academy of Sciences (CAS) Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences (CAS), Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhe Ding
- Viral Hemorrhagic Fevers Research Unit, Chinese Academy of Sciences (CAS) Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences (CAS), Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jiaming Lan
- Viral Hemorrhagic Fevers Research Unit, Chinese Academy of Sciences (CAS) Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences (CAS), Shanghai, China
| | - Gary Wong
- Viral Hemorrhagic Fevers Research Unit, Chinese Academy of Sciences (CAS) Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences (CAS), Shanghai, China
| |
Collapse
|
7
|
Laureti M, Lee RX, Bennett A, Wilson LA, Sy VE, Kohl A, Dietrich I. Rift Valley Fever Virus Primes Immune Responses in Aedes aegypti Cells. Pathogens 2023; 12:563. [PMID: 37111448 PMCID: PMC10146816 DOI: 10.3390/pathogens12040563] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/25/2023] [Accepted: 04/03/2023] [Indexed: 04/29/2023] Open
Abstract
The ongoing global emergence of arthropod-borne (arbo) viruses has accelerated research into the interactions of these viruses with the immune systems of their vectors. Only limited information exists on how bunyaviruses, such as Rift Valley fever virus (RVFV), are sensed by mosquito immunity or escape detection. RVFV is a zoonotic phlebovirus (Bunyavirales; Phenuiviridae) of veterinary and human public health and economic importance. We have shown that the infection of mosquitoes with RVFV triggers the activation of RNA interference pathways, which moderately restrict viral replication. Here, we aimed to better understand the interactions between RVFV and other vector immune signaling pathways that might influence RVFV replication and transmission. For this, we used the immunocompetent Aedes aegypti Aag2 cell line as a model. We found that bacteria-induced immune responses restricted RVFV replication. However, virus infection alone did not alter the gene expression levels of immune effectors. Instead, it resulted in the marked enhancement of immune responses to subsequent bacterial stimulation. The gene expression levels of several mosquito immune pattern recognition receptors were altered by RVFV infection, which may contribute to this immune priming. Our findings imply that there is a complex interplay between RVFV and mosquito immunity that could be targeted in disease prevention strategies.
Collapse
Affiliation(s)
| | - Rui-Xue Lee
- MRC-University of Glasgow Centre for Virus Research, 464 Bearsden Road, Glasgow G61 1QH, UK
| | - Amelia Bennett
- The Pirbright Institute, Ash Road, Pirbright GU24 0NF, UK
- Department of Life Sciences, Faculty of Science, Claverton Down, University of Bath, Bath BA2 7AY, UK
| | - Lucas Aladar Wilson
- The Pirbright Institute, Ash Road, Pirbright GU24 0NF, UK
- Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, Foresterhill, University of Aberdeen, Aberdeen AB25 2ZD, UK
| | | | - Alain Kohl
- MRC-University of Glasgow Centre for Virus Research, 464 Bearsden Road, Glasgow G61 1QH, UK
| | - Isabelle Dietrich
- The Pirbright Institute, Ash Road, Pirbright GU24 0NF, UK
- MRC-University of Glasgow Centre for Virus Research, 464 Bearsden Road, Glasgow G61 1QH, UK
| |
Collapse
|
8
|
Wichgers Schreur PJ, Bird BH, Ikegami T, Bermúdez-Méndez E, Kortekaas J. Perspectives of Next-Generation Live-Attenuated Rift Valley Fever Vaccines for Animal and Human Use. Vaccines (Basel) 2023; 11:vaccines11030707. [PMID: 36992291 DOI: 10.3390/vaccines11030707] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/10/2023] [Accepted: 03/14/2023] [Indexed: 03/31/2023] Open
Abstract
Live-attenuated Rift Valley fever (RVF) vaccines transiently replicate in the vaccinated host, thereby effectively initiating an innate and adaptive immune response. Rift Valley fever virus (RVFV)-specific neutralizing antibodies are considered the main correlate of protection. Vaccination with classical live-attenuated RVF vaccines during gestation in livestock has been associated with fetal malformations, stillbirths, and fetal demise. Facilitated by an increased understanding of the RVFV infection and replication cycle and availability of reverse genetics systems, novel rationally-designed live-attenuated candidate RVF vaccines with improved safety profiles have been developed. Several of these experimental vaccines are currently advancing beyond the proof-of-concept phase and are being evaluated for application in both animals and humans. We here provide perspectives on some of these next-generation live-attenuated RVF vaccines and highlight the opportunities and challenges of these approaches to improve global health.
Collapse
Affiliation(s)
- Paul J Wichgers Schreur
- Department of Virology and Molecular Biology, Wageningen Bioveterinary Research, Wageningen University & Research, 8221 RA Lelystad, The Netherlands
- BunyaVax B.V., 8221 RA Lelystad, The Netherlands
| | - Brian H Bird
- One Health Institute, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - Tetsuro Ikegami
- Department of Pathology, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
- The Sealy Institute for Vaccine Sciences, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
- The Center for Biodefense and Emerging Infectious Diseases, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
| | - Erick Bermúdez-Méndez
- Department of Virology and Molecular Biology, Wageningen Bioveterinary Research, Wageningen University & Research, 8221 RA Lelystad, The Netherlands
- Laboratory of Virology, Wageningen University & Research, 6708 PB Wageningen, The Netherlands
| | - Jeroen Kortekaas
- Department of Virology and Molecular Biology, Wageningen Bioveterinary Research, Wageningen University & Research, 8221 RA Lelystad, The Netherlands
- Laboratory of Virology, Wageningen University & Research, 6708 PB Wageningen, The Netherlands
| |
Collapse
|
9
|
Ayers VB, Huang YJS, Dunlop JI, Kohl A, Brennan B, Higgs S, Vanlandingham DL. Replication Kinetics of a Candidate Live-Attenuated Vaccine for Cache Valley Virus in Aedes albopictus. Vector Borne Zoonotic Dis 2022; 22:553-558. [PMID: 36354965 PMCID: PMC9700352 DOI: 10.1089/vbz.2022.0053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Background: The emergence or re-emergence of several orthobunyaviruses (order: Bunyavirales; family: Peribunyaviridae), including Cache Valley virus (CVV) and Oropouche virus, warrants the development and evaluation of candidate live-attenuated vaccines (LAVs). Ideally, these vaccines would elicit long-lasting immunity with one single immunization. Materials and Methods: Since the deletion of two virulence factors, NSs and NSm, has been shown to attenuate the virulence phenotype of orthobunyaviruses, phleboviruses, and nairoviruses, genetic manipulation of the viral genome is considered an effective strategy for the rational design of candidate LAVs for bunyaviruses across multiple families. In addition, the deletion of Rift Valley fever virus NSs and NSm genes has been shown to reduce transmission by mosquitoes. Results: In this study, the ability of a CVV mutant lacking the NSs and NSm genes (2delCVV) to replicate in intrathoracically injected Aedes albopictus was compared with the parental wild-type CVV (wtCVV) 6V633 strain. In contrast to the robust replication of wtCVV in injected mosquitoes, the multiplication kinetics of the 2delCVV mutant was reduced by more than a 100-fold. Conclusion: These results suggest that the deletion of NSm and NSs genes is a feasible approach to rationally design candidate orthobunyavirus LAVs that are highly attenuated in mosquitoes and, therefore, pose little risk of reversion to virulence and transmission.
Collapse
Affiliation(s)
- Victoria B. Ayers
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA
- Biosecurity Research Institute, Kansas State University, Manhattan, Kansas, USA
| | - Yan-Jang S. Huang
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA
- Biosecurity Research Institute, Kansas State University, Manhattan, Kansas, USA
| | - James I. Dunlop
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Alain Kohl
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Benjamin Brennan
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Stephen Higgs
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA
- Biosecurity Research Institute, Kansas State University, Manhattan, Kansas, USA
| | - Dana L. Vanlandingham
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA
- Biosecurity Research Institute, Kansas State University, Manhattan, Kansas, USA
| |
Collapse
|
10
|
Evaluations of rationally designed rift valley fever vaccine candidate RVax-1 in mosquito and rodent models. NPJ Vaccines 2022; 7:109. [PMID: 36131104 PMCID: PMC9492667 DOI: 10.1038/s41541-022-00536-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 09/01/2022] [Indexed: 12/14/2022] Open
Abstract
Rift Valley fever (RVF) is a mosquito-borne zoonosis endemic to Africa and the Arabian Peninsula, which causes large outbreaks among humans and ruminants. Single dose vaccinations using live-attenuated RVF virus (RVFV) support effective prevention of viral spread in endemic countries. Due to the segmented nature of RVFV genomic RNA, segments of vaccine strain-derived genomic RNA could be incorporated into wild-type RVFV within co-infected mosquitoes or animals. Rationally designed vaccine candidate RVax-1 displays protective epitopes fully identical to the previously characterized MP-12 vaccine. Additionally, all genome segments of RVax-1 contribute to the attenuation phenotype, which prevents the formation of pathogenic reassortant strains. This study demonstrated that RVax-1 cannot replicate efficiently in orally fed Aedes aegypti mosquitoes, while retaining strong immunogenicity and protective efficacy in an inbred mouse model, which were indistinguishable from the MP-12 vaccine. These findings support further development of RVax-1 as the next generation MP-12-based vaccine for prevention of Rift Valley fever in humans and animals.
Collapse
|