1
|
Carnegie L, Raghwani J, Fournié G, Hill SC. Phylodynamic approaches to studying avian influenza virus. Avian Pathol 2023; 52:289-308. [PMID: 37565466 DOI: 10.1080/03079457.2023.2236568] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 06/23/2023] [Accepted: 07/07/2023] [Indexed: 08/12/2023]
Abstract
Avian influenza viruses can cause severe disease in domestic and wild birds and are a pandemic threat. Phylodynamics is the study of how epidemiological, evolutionary, and immunological processes can interact to shape viral phylogenies. This review summarizes how phylodynamic methods have and could contribute to the study of avian influenza viruses. Specifically, we assess how phylodynamics can be used to examine viral spread within and between wild or domestic bird populations at various geographical scales, identify factors associated with virus dispersal, and determine the order and timing of virus lineage movement between geographic regions or poultry production systems. We discuss factors that can complicate the interpretation of phylodynamic results and identify how future methodological developments could contribute to improved control of the virus.
Collapse
Affiliation(s)
- L Carnegie
- Department of Pathobiology and Population Sciences, Royal Veterinary College (RVC), Hatfield, UK
| | - J Raghwani
- Department of Pathobiology and Population Sciences, Royal Veterinary College (RVC), Hatfield, UK
| | - G Fournié
- Department of Pathobiology and Population Sciences, Royal Veterinary College (RVC), Hatfield, UK
- Université de Lyon, INRAE, VetAgro Sup, UMR EPIA, Marcy l'Etoile, France
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMR EPIA, Saint Genes Champanelle, France
| | - S C Hill
- Department of Pathobiology and Population Sciences, Royal Veterinary College (RVC), Hatfield, UK
| |
Collapse
|
2
|
Carnegie L, Hasan M, Mahmud R, Hoque MA, Debnath N, Uddin MH, Lewis NS, Brown I, Essen S, Giasuddin M, Pfeiffer DU, Samad MA, Biswas P, Raghwani J, Fournié G, Hill SC. H9N2 avian influenza virus dispersal along Bangladeshi poultry trading networks. Virus Evol 2023; 9:vead014. [PMID: 36968264 PMCID: PMC10032359 DOI: 10.1093/ve/vead014] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 01/30/2023] [Accepted: 02/24/2023] [Indexed: 02/27/2023] Open
Abstract
Avian influenza virus subtype H9N2 is endemic in Bangladesh's poultry population. The subtype affects poultry production and poses a potential zoonotic risk. Insufficient understanding of how the poultry trading network shapes the dissemination of avian influenza viruses has hindered the design of targeted interventions to reduce their spread. Here, we use phylodynamic analyses of haemagglutinin sequences to investigate the spatial spread and dispersal patterns of H9N2 viruses in Bangladesh's poultry population, focusing on its two largest cities (Dhaka and Chattogram) and their poultry production and distribution networks. Our analyses suggest that H9N2 subtype avian influenza virus lineage movement occurs relatively less frequently between Bangladesh's two largest cities than within each city. H9N2 viruses detected in single markets are often more closely related to viruses from other markets in the same city than to each other, consistent with close epidemiological connectivity between markets. Our analyses also suggest that H9N2 viruses may spread more frequently between chickens of the three most commonly sold types (sunali-a cross-bred of Fayoumi hen and Rhode Island Red cock, deshi-local indigenous, and exotic broiler) in Dhaka than in Chattogram. Overall, this study improves our understanding of how Bangladesh's poultry trading system impacts avian influenza virus spread and should contribute to the design of tailored surveillance that accommodates local heterogeneity in virus dispersal patterns.
Collapse
Affiliation(s)
- L Carnegie
- Department of Pathobiology and Population Sciences, Royal Veterinary College, University of London, Hatfield, Hertfordshire AL9 7TA, UK
| | - M Hasan
- Animal Health Research Division, Bangladesh Livestock Research Institute (BLRI), Dhaka 1341, Bangladesh
| | - R Mahmud
- Department of Medicine & Surgery, Faculty of Veterinary Medicine, Chattogram Veterinary and Animal Sciences University (CVASU), Zakir Hossain Road, Khulshi, Chattogram 4202, Bangladesh
| | - M A Hoque
- Department of Medicine & Surgery, Faculty of Veterinary Medicine, Chattogram Veterinary and Animal Sciences University (CVASU), Zakir Hossain Road, Khulshi, Chattogram 4202, Bangladesh
| | - N Debnath
- Department of Medicine & Surgery, Faculty of Veterinary Medicine, Chattogram Veterinary and Animal Sciences University (CVASU), Zakir Hossain Road, Khulshi, Chattogram 4202, Bangladesh
| | - M H Uddin
- Department of Medicine & Surgery, Faculty of Veterinary Medicine, Chattogram Veterinary and Animal Sciences University (CVASU), Zakir Hossain Road, Khulshi, Chattogram 4202, Bangladesh
| | - N S Lewis
- Department of Virology, Animal and Plant Health Agency (APHA), Woodham Lane, New Haw, Addlestone, Surrey KT15 3NB, UK
| | - I Brown
- Department of Virology, Animal and Plant Health Agency (APHA), Woodham Lane, New Haw, Addlestone, Surrey KT15 3NB, UK
| | - S Essen
- Department of Virology, Animal and Plant Health Agency (APHA), Woodham Lane, New Haw, Addlestone, Surrey KT15 3NB, UK
| | - Md Giasuddin
- Animal Health Research Division, Bangladesh Livestock Research Institute (BLRI), Dhaka 1341, Bangladesh
| | - D U Pfeiffer
- Department of Pathobiology and Population Sciences, Royal Veterinary College, University of London, Hatfield, Hertfordshire AL9 7TA, UK
- Department of Infectious Diseases and Public Health, City University of Hong Kong, 83 Tat Chee Ave, Kowloon Tong, Hong Kong SAR, PR China
| | - M A Samad
- Animal Health Research Division, Bangladesh Livestock Research Institute (BLRI), Dhaka 1341, Bangladesh
| | - P Biswas
- Department of Microbiology and Veterinary Public Health, Chattogram Veterinary and Animal Sciences University (CVASU), Zakir Hossain Road, Khulshi, Chattogram 4202, Bangladesh
| | - J Raghwani
- Department of Pathobiology and Population Sciences, Royal Veterinary College, University of London, Hatfield, Hertfordshire AL9 7TA, UK
| | - G Fournié
- Department of Pathobiology and Population Sciences, Royal Veterinary College, University of London, Hatfield, Hertfordshire AL9 7TA, UK
- Université de Lyon, INRAE, VetAgro Sup, UMR EPIA, Campus vétérinaire de VetAgro Sup, 1 avenue Bourgelat, Marcy, l’Etoile 69280, France
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMR EPIA, Centre INRAE Clermont-Auvergne-Rhône-Alpes, Saint Genes Champanelle 63122, France
| | - S C Hill
- Department of Pathobiology and Population Sciences, Royal Veterinary College, University of London, Hatfield, Hertfordshire AL9 7TA, UK
| |
Collapse
|
3
|
Van Borm S, Boseret G, Dellicour S, Steensels M, Roupie V, Vandenbussche F, Mathijs E, Vilain A, Driesen M, Dispas M, Delcloo AW, Lemey P, Mertens I, Gilbert M, Lambrecht B, van den Berg T. Combined Phylogeographic Analyses and Epidemiologic Contact Tracing to Characterize Atypically Pathogenic Avian Influenza (H3N1) Epidemic, Belgium, 2019. Emerg Infect Dis 2023; 29:351-359. [PMID: 36692362 PMCID: PMC9881769 DOI: 10.3201/eid2902.220765] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The high economic impact and zoonotic potential of avian influenza call for detailed investigations of dispersal dynamics of epidemics. We integrated phylogeographic and epidemiologic analyses to investigate the dynamics of a low pathogenicity avian influenza (H3N1) epidemic that occurred in Belgium during 2019. Virus genomes from 104 clinical samples originating from 85% of affected farms were sequenced. A spatially explicit phylogeographic analysis confirmed a dominating northeast to southwest dispersal direction and a long-distance dispersal event linked to direct live animal transportation between farms. Spatiotemporal clustering, transport, and social contacts strongly correlated with the phylogeographic pattern of the epidemic. We detected only a limited association between wind direction and direction of viral lineage dispersal. Our results highlight the multifactorial nature of avian influenza epidemics and illustrate the use of genomic analyses of virus dispersal to complement epidemiologic and environmental data, improve knowledge of avian influenza epidemiologic dynamics, and enhance control strategies.
Collapse
|
4
|
Integration of Epidemiological and Genomic Data to Investigate H5N1 HPAI Outbreaks in Northern Italy in 2021-2022. Pathogens 2023; 12:pathogens12010100. [PMID: 36678449 PMCID: PMC9865711 DOI: 10.3390/pathogens12010100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 12/29/2022] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
Between October 2021 and April 2022, 317 outbreaks caused by highly pathogenic avian influenza (HPAI) H5N1 viruses were notified in poultry farms in the northeastern Italian regions. The complete genomes of 214 strains were used to estimate the genetic network based on the similarity of the viruses. An exponential random graph model (ERGM) was used to assess the effect of 'at-risk contacts', 'same owners', 'in-bound/out-bound risk windows overlap', 'genetic differences', 'geographic distances', 'same species', and 'poultry company' on the probability of observing a link within the genetic network, which can be interpreted as the potential propagation of the epidemic via lateral spread or a common source of infection. The variables 'same poultry company' (Est. = 0.548, C.I. = [0.179; 0.918]) and 'risk windows overlap' (Est. = 0.339, C.I. = [0.309; 0.368]) were associated with a higher probability of link formation, while the 'genetic differences' (Est. = -0.563, C.I. = [-0.640; -0.486]) and 'geographic distances' (Est. = -0.058, C.I. = [-0.078; -0.038]) indicated a reduced probability. The integration of epidemiological data with genomic analyses allows us to monitor the epidemic evolution and helps to explain the dynamics of lateral spreads casting light on the potential diffusion routes. The 2021-2022 epidemic stresses the need to further strengthen the biosecurity measures, and to encourage the reorganization of the poultry production sector to minimize the impact of future epidemics.
Collapse
|
5
|
Yao Z, Zheng H, Xiong J, Ma L, Gui R, Zhu G, Li Y, Yang G, Chen G, Zhang J, Chen Q. Genetic and Pathogenic Characterization of Avian Influenza Virus in Migratory Birds between 2015 and 2019 in Central China. Microbiol Spectr 2022; 10:e0165222. [PMID: 35862978 PMCID: PMC9431584 DOI: 10.1128/spectrum.01652-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 06/22/2022] [Indexed: 11/20/2022] Open
Abstract
Active surveillance of avian influenza virus (AIV) in wetlands and lakes is important for exploring the gene pool in wild birds. Through active surveillance from 2015 through 2019, 10,900 samples from wild birds in central China were collected, and 89 AIVs were isolated, including 2 subtypes of highly pathogenic AIV and 12 of low-pathogenic AIV; H9N2 and H6Ny were the dominant subtypes. Phylogenetic analysis of the isolates demonstrated that extensive intersubtype reassortments and frequent intercontinental gene exchange occurred in AIVs. AIV gene segments persistently circulated in several migration seasons, but interseasonal persistence of the whole genome was rare. The whole genomes of one H6N6 and polymerase basic 2 (PB2), polymerase acidic (PA), hemagglutinin (HA), neuraminidase (NA), M, and nonstructural (NS) genes of one H9N2 virus were found to be of poultry origin, suggesting a spillover of AIVs from poultry to wild birds. Importantly, one H9N2 virus only bound to human-type receptor, and one H1N1, four H6, and seven H9N2 viruses possessed dual receptor-binding capacity. Nineteen of 20 representative viruses tested could replicate in the lungs of mice without preadaptation, which poses a clear threat of infection in humans. Together, our study highlights the need for intensive AIV surveillance. IMPORTANCE Influenza virus surveillance in wild birds plays an important role in the early recognition and control of the virus. However, the AIV gene pool in wild birds in central China along the East Asian-Australasian flyway has not been well studied. Here, we conducted a 5-year AIV active surveillance in this region. Our data revealed the long-term circulation and prevalence of AIVs in wild birds in central China, and we observed that intercontinental gene exchange of AIVs is more frequent and continuous than previously thought. Spillover events from poultry to wild bird were observed in H6 and H9 viruses. In addition, in 20 representative viruses, 12 viruses could bind human-type receptors, and 19 viruses could replicate in mice without preadaption. Our work highlights the potential threat of wild bird AIVs to public health.
Collapse
Affiliation(s)
- Zhongzi Yao
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, CAS Center for Influenza Research and Early Warning, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Huabin Zheng
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, CAS Center for Influenza Research and Early Warning, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jiasong Xiong
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, CAS Center for Influenza Research and Early Warning, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Liping Ma
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, CAS Center for Influenza Research and Early Warning, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Rui Gui
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, CAS Center for Influenza Research and Early Warning, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Gongliang Zhu
- The Monitoring Center of Wildlife Diseases and Resource of Hubei Province, Wuhan, China
| | - Yong Li
- The Monitoring Center of Wildlife Diseases and Resource of Hubei Province, Wuhan, China
| | - Guoxiang Yang
- The Monitoring Center of Wildlife Diseases and Resource of Hubei Province, Wuhan, China
| | - Guang Chen
- The Monitoring Center of Wildlife Diseases and Resource of Hubei Province, Wuhan, China
| | - Jun Zhang
- The Monitoring Center of Wildlife Diseases and Resource of Hubei Province, Wuhan, China
| | - Quanjiao Chen
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, CAS Center for Influenza Research and Early Warning, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|