1
|
Wang X, Yan A, Wang B, Sun W, Pan B. Prevalence and molecular characterization of Cryptosporidium spp. in pre-weaned diarrheic dairy calves and their bedding materials in northern China. Parasitol Res 2024; 123:356. [PMID: 39432112 DOI: 10.1007/s00436-024-08360-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 09/26/2024] [Indexed: 10/22/2024]
Abstract
Cryptosporidiosis, primarily caused by Cryptosporidium parvum, is a significant cause of diarrhea in pre-weaned dairy calves. To investigate the prevalence of Cryptosporidium among pre-weaned diarrheic dairy calves and identify potential sources of infection in northern China, 234 fecal samples from 18 farms in six regions were analyzed for Cryptosporidium. Furthermore, 217 bedding samples from both occupied and unoccupied calf hutches, heating lamp pens, and individual calving pens in eight farms in Beijing were also examined for the presence of the parasite. All samples were screened for Cryptosporidium spp. using nested PCR targeting the SSU rRNA gene fragment, and C. parvum was subtyped with nested PCR targeting the 60 kDa glycoprotein gene. The prevalence of Cryptosporidium was 33.3%, with C. parvum and C. bovis constituting 29.9% and 3.4% of cases, respectively. The positive rate of Cryptosporidium in 1- to 4-week-old calves ranged from 9.6 to 63.6%. Analysis of the gp60 fragment of C. parvum revealed four subtypes: IIdA15G1, IIdA17G1, IIdA19G1, and IIdA20G1. Besides the bedding samples in heating lamp pens, both C. parvum and C. bovis were detected in bedding samples throughout the other regions. A significant positive correlation between the detection rate of Cryptosporidium in fecal samples and that in the bedding materials of occupied calf hutches (R = 0.93, P = 0.002). These findings suggest that C. parvum is the predominant species among pre-weaned diarrheic dairy calves in northern China. Contaminated bedding materials may act as sources of infection for newborn calves.
Collapse
Affiliation(s)
- Xu Wang
- College of Veterinary Medicine, China Agricultural University, No. 2 Yuan Ming Yuan West Road, Hai Dian District, Beijing, 100193, China
| | - An Yan
- College of Veterinary Medicine, China Agricultural University, No. 2 Yuan Ming Yuan West Road, Hai Dian District, Beijing, 100193, China
| | - Bohan Wang
- College of Veterinary Medicine, China Agricultural University, No. 2 Yuan Ming Yuan West Road, Hai Dian District, Beijing, 100193, China
| | - Weiwei Sun
- College of Veterinary Medicine, China Agricultural University, No. 2 Yuan Ming Yuan West Road, Hai Dian District, Beijing, 100193, China.
| | - Baoliang Pan
- College of Veterinary Medicine, China Agricultural University, No. 2 Yuan Ming Yuan West Road, Hai Dian District, Beijing, 100193, China.
| |
Collapse
|
2
|
Li M, Yang F, Hou T, Gong X, Li N, Sibley LD, Feng Y, Xiao L, Guo Y. Variant surface protein GP60 contributes to host infectivity of Cryptosporidium parvum. Commun Biol 2024; 7:1175. [PMID: 39294220 PMCID: PMC11411101 DOI: 10.1038/s42003-024-06885-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 09/12/2024] [Indexed: 09/20/2024] Open
Abstract
Biological studies of the determinants of Cryptosporidium infectivity are lacking despite the fact that cryptosporidiosis is a major public health problem. Recently, the 60-kDa glycoprotein (GP60) has received attention because of its high sequence polymorphism and association with host infectivity of isolates and protection against reinfection. However, studies of GP60 function have been hampered by its heavy O-linked glycosylation. Here, we used advanced genetic tools to investigate the processing, fate, and function of GP60. Endogenous gene tagging showed that the GP60 cleavage products, GP40 and GP15, are both highly expressed on the surface of sporozoites, merozoites and male gametes. During invasion, GP40 translocates to the apical end of the zoites and remains detectable at the parasite-host interface. Deletion of the signal peptide, GPI anchor, and GP15 sequences affects the membrane localization of GP40. Deletion of the GP60 gene significantly reduces parasite growth and severity of infection, and replacement of the GP60 gene with sequence from an avirulent isolate reduces the pathogenicity of a highly infective isolate. These results have revealed dynamic changes in GP60 expression during parasite development. They further suggest that GP60 is a key protein mediating host infectivity and pathogenicity.
Collapse
Affiliation(s)
- Muxiao Li
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, 510642, China
| | - Fuxian Yang
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, 510642, China
| | - Tianyi Hou
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, 510642, China
| | - Xiaoqing Gong
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, 510642, China
| | - Na Li
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, 510642, China
| | - L David Sibley
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, 63130, USA
| | - Yaoyu Feng
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, 510642, China.
- Guangdong Laboratory for Lingnan Modern Agriculture, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.
| | - Lihua Xiao
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, 510642, China.
- Guangdong Laboratory for Lingnan Modern Agriculture, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.
| | - Yaqiong Guo
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
3
|
Huang Y, Li J, Pei S, You H, Liu H, Guo Y, Xu R, Li N, Feng Y, Xiao L. Optimization of a DiCre recombinase system with reduced leakage for conditional genome editing of Cryptosporidium. Parasit Vectors 2024; 17:352. [PMID: 39169430 PMCID: PMC11337648 DOI: 10.1186/s13071-024-06431-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 08/02/2024] [Indexed: 08/23/2024] Open
Abstract
BACKGROUND The dimerizable Cre recombinase system (DiCre) exhibits increased leaky activity in Cryptosporidium, leading to unintended gene editing in the absence of induction. Therefore, optimization of the current DiCre technique is necessary for functional studies of essential Cryptosporidium genes. METHODS Based on the results of transcriptomic analysis of Cryptosporidium parvum stages, seven promoters with different transcriptional capabilities were screened to drive the expression of Cre fragments (FKBP-Cre59 and FRB-Cre60). Transient transfection was performed to assess the effect of promoter strength on leakage activity. In vitro and in vivo experiments were performed to evaluate the leaky activity and cleavage efficiency of the optimized DiCre system by polymerase chain reaction (PCR), nanoluciferase, and fluorescence analyses. RESULTS The use of promoters with lower transcriptional activity, such as pcgd6_4110 and pcgd3_260, as opposed to strong promoters such as pActin, pα-Tubulin, and pEnolase, reduced the leakage rate of the system from 35-75% to nearly undetectable levels, as verified by transient transfection. Subsequent in vitro and in vivo experiments using stable lines further demonstrated that the optimized DiCre system had no detectable leaky activity. The system achieved 71% cleavage efficiency in vitro. In mice, a single dose of the inducer resulted in a 10% conditional gene knockout and fluorescent protein expression in oocysts. These fluorescently tagged transgenic oocysts could be enriched by flow sorting for further infection studies. CONCLUSIONS A DiCre conditional gene knockout system for Cryptosporidium with good cleavage efficiency and reduced leaky activity has been successfully established.
Collapse
Affiliation(s)
- Yue Huang
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, 510642, China
| | - Jinli Li
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, 510642, China
| | - Shifeng Pei
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, 510642, China
| | - Heng You
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, 510642, China
| | - Huimin Liu
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, 510642, China
| | - Yaqiong Guo
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, 510642, China
| | - Rui Xu
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, 510642, China
| | - Na Li
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, 510642, China
| | - Yaoyu Feng
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, 510642, China.
- Guangdong Laboratory for Lingnan Modern Agriculture, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.
| | - Lihua Xiao
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, 510642, China.
- Guangdong Laboratory for Lingnan Modern Agriculture, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
4
|
Wang MY, Zhang S, Zhang ZS, Qian XY, Chai HL, Wang Y, Fan WJ, Yi C, Ding YL, Han WX, Zhao L, Liu YH. Prevalence and molecular characterization of Cryptosporidium spp., Enterocytozoon bieneusi, and Giardia duodenalis in dairy cattle in Ningxia, northwestern China. Vet Res Commun 2024; 48:2629-2643. [PMID: 38565798 DOI: 10.1007/s11259-024-10364-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 03/25/2024] [Indexed: 04/04/2024]
Abstract
Cryptosporidium spp., Enterocytozoon bieneusi, and Giardia duodenalis are common intestinal pathogens that infect humans and animals. To date, research regarding these three protozoa in the Ningxia Hui Autonomous Region (Ningxia) has mostly been limited to a single pathogen, and comprehensive data on mixed infections are unavailable. This study aimed to evaluate the zoonotic potential of these three protozoa. In this study, small subunit ribosomal RNA (SSU rRNA) and 60 kDa glycoprotein (gp60) genes of Cryptosporidium; internal transcribed spacer (ITS) gene of E. bieneusi; and SSU rRNA, glutamate dehydrogenase (gdh), triosephosphate isomerase (tpi), and beta-giardin (bg) genes of G. duodenalis were examined. DNA extraction, polymerase chain reaction, and sequence analysis were performed on fecal samples collected from 320 dairy cattle at three intensive dairy farms in Ningxia in 2021 to determine the prevalence and genetic characteristics of these three protozoa. The findings revealed that 61.56% (197/320) of the samples were infected with at least one protozoan. The overall prevalence of Cryptosporidium was 19.38% (62/320), E. bieneusi was 41.56% (133/320), and G. duodenalis was 29.38% (94/320). This study identified four Cryptosporidium species (C. bovis, C. andersoni, C. ryanae, and C. parvum) and the presence of mixed infections with two or three Cryptosporidium species. C. bovis was the dominant species in this study, while the dominant C. parvum subtypes were IIdA15G1 and IIdA20G1. The genotypes of E. bieneusis were J, BEB4, and I alongside the novel genotypes NX1-NX8, all belonging to group 2, with genotype J being dominant. G. duodenalis assemblages were identified as assemblages E, A, and B, and a mixed infection involving assemblages A + E was identified, with assemblage E being the dominant one. Concurrently, 11 isolates formed 10 different assemblage E multilocus genotypes (MLGs) and 1 assemblage A MLG and assemblage E MLGs formed 5 subgroups. To the best of our knowledge, this is the first report on mixed infection with two or three Cryptosporidium species in cattle in Ningxia and on the presence of the C. parvum subtype IIdA20G1 in this part of China. This study also discovered nine genotypes of E. bieneusis and novel features of G. duodenalis assemblages in Ningxia. This study indicates that dairy cattle in this region may play a significant role in the zoonotic transmission of Cryptosporidium spp., E. bieneusi, and G. duodenalis.
Collapse
Affiliation(s)
- Ming-Yuan Wang
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
| | - Shan Zhang
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
| | - Zhan-Sheng Zhang
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
| | - Xiao-Yin Qian
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
| | - Hai-Liang Chai
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
| | - Yan Wang
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
| | - Wen-Jun Fan
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
| | - Chao Yi
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
| | - Yu-Lin Ding
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Clinical Diagnosis and Treatment Technology in Animal Disease, Ministry of Agriculture and Rural Affairs, Hohhot, China
| | - Wen-Xiong Han
- Inner Mongolia Saikexing Reproductive Biotechnology (Group) Co., Ltd., Hohhot, China
| | - Li Zhao
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China.
- Key Laboratory of Clinical Diagnosis and Treatment Technology in Animal Disease, Ministry of Agriculture and Rural Affairs, Hohhot, China.
| | - Yong-Hong Liu
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China.
- Key Laboratory of Clinical Diagnosis and Treatment Technology in Animal Disease, Ministry of Agriculture and Rural Affairs, Hohhot, China.
| |
Collapse
|
5
|
Deng ML, Heng ZJ, Li LJ, Yang JF, He JJ, Zou FC, Shu FF. Cryptosporidium spp. Infection and Genotype Identification in Pre-Weaned and Post-Weaned Calves in Yunnan Province, China. Animals (Basel) 2024; 14:1907. [PMID: 38998019 PMCID: PMC11240314 DOI: 10.3390/ani14131907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 07/14/2024] Open
Abstract
BACKGROUND Cryptosporidium is a globally distributed zoonotic protozoan parasite in humans and animals. Infection is widespread in dairy cattle, especially in calves, resulting in neonatal enteritis, production losses and high mortality. However, the occurrence of Cryptosporidium spp. in pre- and post-weaned calves in Yunnan Province remains unclear. METHODS We collected 498 fecal samples from Holstein calves on 10 different farms in four regions of Yunnan Province. Nested PCR and DNA sequencing were used to determine the infection, species and genotypes of Cryptosporidium spp. in these animals. RESULTS The overall occurrence of Cryptosporidium spp. in Holstein calves was 32.9% (164/498), and the prevalence in pre- and post-weaned calves was 33.5% (106/316) and 31.9% (58/182), respectively. Four Cryptosporidium species were identified in these animals, namely C. bovis (n = 119), C. parvum (n = 23), C. ryanae (n = 20) and C. andersoni (n = 2). Based on sequencing analysis of the 60 kDa glycoprotein gene of C. bovis, C. parvum and C. ryanae, six subtypes of C. bovis (XXVIe, XXVIb, XXVIf, XXVIa XXVIc and XXVId), two subtypes of C. parvum (IIdA19G1 and IIdA18G1) and four subtypes of C. ryanae (XXIf, XXId, XXIe and XXIg) were identified. CONCLUSIONS These results provide essential information to understand the infection rate, species diversity and genetic structure of Cryptosporidium spp. populations in Holstein pre-weaned and post-weaned calves in Yunnan Province. Further, the presence of IIdA18G1 and IIdA19G1 in C. parvum implies significant animal and public health concerns, which requires greater attention and more preventive measures.
Collapse
Affiliation(s)
- Meng-Ling Deng
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
- Key Laboratory of Veterinary Public Health of Yunnan Province, College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China
| | - Zhao-Jun Heng
- Key Laboratory of Veterinary Public Health of Yunnan Province, College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China
| | - Liu-Jia Li
- College of Agriculture and Biological Science, Dali University, Dali 671003, China
| | - Jian-Fa Yang
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
- Key Laboratory of Veterinary Public Health of Yunnan Province, College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China
| | - Jun-Jun He
- Key Laboratory of Veterinary Public Health of Yunnan Province, College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China
| | - Feng-Cai Zou
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
- Key Laboratory of Veterinary Public Health of Yunnan Province, College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China
| | - Fan-Fan Shu
- Key Laboratory of Veterinary Public Health of Yunnan Province, College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China
| |
Collapse
|
6
|
Feng K, Yang S, Xu Y, Wen L, Chen J, Zhang W, Chen S, Shen Y, Xiao L, Guo Y, Feng Y, Li N. Molecular characterization of Cryptosporidium spp., Giardia spp. and Enterocytozoon bieneusi in eleven wild rodent species in China: Common distribution, extensive genetic diversity and high zoonotic potential. One Health 2024; 18:100750. [PMID: 38798737 PMCID: PMC11127529 DOI: 10.1016/j.onehlt.2024.100750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 04/23/2024] [Accepted: 05/06/2024] [Indexed: 05/29/2024] Open
Abstract
Cryptosporidium spp., Giardia spp. and Enterocytozoon bieneusi are common zoonotic pathogens in humans and animals. Although rodents are important parts of the ecosystem and common hosts for these pathogens, little is known of the distribution, genetic diversity and zoonotic potential of these pathogens in wild rodents. A total of 442 fecal samples were collected from eleven wild rodent species in three provinces of China, and analyzed for these pathogens by PCR and DNA sequencing. The infection rates of Cryptosporidium spp., Giardia spp. and E. bieneusi were 19.9% (88/442), 19.8% (75/378) and 12.2% (54/442), respectively. Altogether, 23 known Cryptosporidium species/genotypes were identified and their distribution varied among different sampling locations or rodent species. Subtyping of the zoonotic Cryptosporidium species identified two novel subtype families XVe and XVf in C. viatorum, the subtype family XIIh and a novel subtype family XIIj in C. ubiquitum, and the subtype family IId in C. parvum. Three Giardia species were identified, including G. microti (n = 57), G. muris (n = 15) and G. duodenalis (n = 3), with G. duodenalis assemblages A and G identified in brown rats in urban areas of Guangdong. In addition, 13 E. bieneusi genotypes including eight known and five novel ones were identified, belonging to Groups 1, 2, 10, 14 and 15. Within nine genotypes in the zoonotic Group 1, common human-pathogenic genotypes D, Type IV, PigEbITS7 and Peru8 were detected only in brown rats and Lesser rice-field rats in urban areas of Guangdong. Apparent host adaptation and geographical differences were observed among Cryptosporidium spp., Giardia spp. and E. bieneusi genotypes in wild rodents in the present study. Furthermore, the zoonotic Cryptosporidium species and E. bieneusi genotypes commonly found here suggest a high zoonotic potential of these pathogens in wild rodents, especially in brown rats in urban areas. Hygiene and One Health measures should be implemented in urban streets and food stores to reduce the possible direct and indirect transmission of these rodent-related pathogens.
Collapse
Affiliation(s)
- Kangli Feng
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Shenghua Yang
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Yanhua Xu
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Luxing Wen
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Jia Chen
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Wenbao Zhang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, Xinjiang, China
| | - Shouyi Chen
- Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, Guangdong, China
| | - Yongyi Shen
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Lihua Xiao
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Yaqiong Guo
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Yaoyu Feng
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Na Li
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou 510642, Guangdong, China
| |
Collapse
|
7
|
Deng M, Hou T, Zhang J, Mao X, Yang F, Wei Y, Tang Y, Zeng W, Huang W, Li N, Xiao L, Feng Y, Guo Y. Cultivation, cryopreservation, and transcriptomic studies of host-adapted Cryptosporidium parvum and Cryptosporidium hominis using enteroids. iScience 2024; 27:109563. [PMID: 38623332 PMCID: PMC11016910 DOI: 10.1016/j.isci.2024.109563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/21/2024] [Accepted: 03/22/2024] [Indexed: 04/17/2024] Open
Abstract
Cryptosporidium hominis and Cryptosporidium parvum are major causes of severe diarrhea. Comparative studies of them are hampered by the lack of effective cultivation and cryopreservation methods, especially for C. hominis. Here, we describe adapted murine enteroids for the cultivation and complete development of host-adapted C. parvum and C. hominis subtypes, producing oocysts infectious to mice. Using the system, we developed a cryopreservation method for Cryptosporidium isolates. In comparative RNA-seq analyses of C. hominis cultures, the enteroid system generated significantly more host and pathogen responses than the conventional HCT-8 cell system. In particular, the infection was shown to upregulate PI3K-Akt, Ras, TNF, NF-κB, IL-17, MAPK, and innate immunity signaling pathways and downregulate host cell metabolism, and had significantly higher expression of parasite genes involved in oocyst formation. Therefore, the enteroid system provides a valuable tool for comparative studies of the biology of divergent Cryptosporidium species and isolates.
Collapse
Affiliation(s)
- Miner Deng
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, Guangdong, China
| | - Tianyi Hou
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, Guangdong, China
| | - Jie Zhang
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, Guangdong, China
| | - Xinjie Mao
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, Guangdong, China
| | - Fuxian Yang
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, Guangdong, China
| | - Yanting Wei
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, Guangdong, China
| | - Yongping Tang
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, Guangdong, China
| | - Wanting Zeng
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, Guangdong, China
| | - Wanyi Huang
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, Guangdong, China
| | - Na Li
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, Guangdong, China
| | - Lihua Xiao
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, Guangdong, China
| | - Yaoyu Feng
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, Guangdong, China
| | - Yaqiong Guo
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, Guangdong, China
| |
Collapse
|
8
|
Li M, Sun X, Chen H, Li N, Feng Y, Xiao L, Guo Y. Stable expression of mucin glycoproteins GP40 and GP15 of Cryptosporidium parvum in Toxoplasma gondii. Parasit Vectors 2024; 17:65. [PMID: 38360646 PMCID: PMC10870685 DOI: 10.1186/s13071-024-06159-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 01/24/2024] [Indexed: 02/17/2024] Open
Abstract
BACKGROUND Cryptosporidium spp. are common protozoa causing diarrhea in humans and animals. There are currently only one FDA-approved drug and no vaccines for cryptosporidiosis, largely due to the limited knowledge of the molecular mechanisms involved in the invasion of the pathogens. Previous studies have shown that GP60, which is cleaved into GP40 and GP15 after expression, is an immunodominant mucin protein involved in the invasion of Cryptosporidium. The protein is highly O-glycosylated, and recombinant proteins expressed in prokaryotic systems are non-functional. Therefore, few studies have investigated the function of GP40 and GP15. METHODS To obtain recombinant GP40 with correct post-translational modifications, we used CRISPR/Cas9 technology to insert GP40 and GP15 into the UPRT locus of Toxoplasma gondii, allowing heterologous expression of Cryptosporidium proteins. In addition, the Twin-Strep tag was inserted after GP40 for efficient purification of GP40. RESULTS Western blotting and immunofluorescent microscopic analyses both indicated that GP40 and GP15 were stably expressed in T. gondii mutants. GP40 localized not only in the cytoplasm of tachyzoites but also in the parasitophorous vacuoles, while GP15 without the GPI anchor was expressed only in the cytoplasm. In addition, a large amount of recTgGP40 was purified using Strep-TactinXT supported by a visible band of ~ 50 kDa in SDS-PAGE. CONCLUSIONS The establishment of a robust and efficient heterologous expression system of GP40 in T. gondii represents a novel approach and concept for investigating Cryptosporidium mucins, overcoming the limitations of previous studies that relied on unstable transient transfection, which involved complex steps and high costs.
Collapse
Affiliation(s)
- Muxiao Li
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, 510642, China
| | - Xiaohua Sun
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, 510642, China
| | - Haoyu Chen
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, 510642, China
| | - Na Li
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, 510642, China
| | - Yaoyu Feng
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, 510642, China
| | - Lihua Xiao
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, 510642, China
| | - Yaqiong Guo
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
9
|
Qin H, Lang J, Zhang K, Zhang A, Chen Y, Fu Y, Wang C, Zhang L. Study on genetic characteristics of Cryptosporidium isolates and first report of C. parvum IIdA24G2 subtype in dairy cattle in China. Parasitol Res 2024; 123:81. [PMID: 38165486 DOI: 10.1007/s00436-023-08107-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 12/22/2023] [Indexed: 01/03/2024]
Abstract
Cryptosporidium is an important gastrointestinal parasite that can cause mild to severe diarrhea in various vertebrates, including humans and domestic animals. Infection is prevalent in dairy cattle, particularly calves, resulting in diarrhea and increased mortality with significant production losses. However, the prevalence and identity of Cryptosporidium spp. in cattle in Heilongjiang Province is still poorly known. Our study aimed to investigate the prevalence and species and subtype distribution of Cryptosporidium in cattle in the region. In addition, we evaluated the zoonotic potential of Cryptosporidium isolates and assessed possible transmission routes and health effects of this organism. We collected 909 fecal samples from five different farms in Heilongjiang Province between August and September 2022. The samples underwent Cryptosporidium detection by nested PCR and small subunit (SSU) rRNA gene sequence analysis. Four Cryptosporidium species were identified, including C. parvum, C. bovis, C. ryanae, and C. andersoni, with an overall prevalence of 4.4% (40/909). Based on sequence analysis of the 60 kDa glycoprotein gene of C. parvum and C. bovis, three subtypes of C. parvum were identified, namely two previously known subtypes (IIdA19G1 and IIdA20G1), and one novel subtype (IIdA24G2). Two distinct subtype families were identified in C. bovis (XXVId and XXVIe). The high diversity of Cryptosporidium in dairy cattle and the emergence of a novel subtype of C. parvum in Heilongjiang Province suggest that dairy cattle may serve as a significant source of zoonotic cryptosporidiosis infection in this region.
Collapse
Affiliation(s)
- Huikai Qin
- College of Veterinary Medicine, Henan Agricultural University, No. 15 Longzihu University Area, Zhengdong New District, Zhengzhou, 450046, People's Republic of China
- International Joint Research Laboratory for Zoonotic Diseases of Henan, Zhengzhou, 450046, Henan Province, China
- Key Laboratory of Quality and Safety Control of Poultry Products (Zhengzhou), Ministry of Agriculture and Rural Affairs, Zhengzhou, People's Republic of China
| | - Jiashu Lang
- College of Veterinary Medicine, Henan Agricultural University, No. 15 Longzihu University Area, Zhengdong New District, Zhengzhou, 450046, People's Republic of China
- International Joint Research Laboratory for Zoonotic Diseases of Henan, Zhengzhou, 450046, Henan Province, China
- Key Laboratory of Quality and Safety Control of Poultry Products (Zhengzhou), Ministry of Agriculture and Rural Affairs, Zhengzhou, People's Republic of China
| | - Kaihui Zhang
- College of Veterinary Medicine, Henan Agricultural University, No. 15 Longzihu University Area, Zhengdong New District, Zhengzhou, 450046, People's Republic of China
- International Joint Research Laboratory for Zoonotic Diseases of Henan, Zhengzhou, 450046, Henan Province, China
- Key Laboratory of Quality and Safety Control of Poultry Products (Zhengzhou), Ministry of Agriculture and Rural Affairs, Zhengzhou, People's Republic of China
| | - Aihui Zhang
- Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural affairs, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, Heilongjiang Province, People's Republic of China
| | - Yuancai Chen
- College of Veterinary Medicine, Henan Agricultural University, No. 15 Longzihu University Area, Zhengdong New District, Zhengzhou, 450046, People's Republic of China
- International Joint Research Laboratory for Zoonotic Diseases of Henan, Zhengzhou, 450046, Henan Province, China
- Key Laboratory of Quality and Safety Control of Poultry Products (Zhengzhou), Ministry of Agriculture and Rural Affairs, Zhengzhou, People's Republic of China
| | - Yin Fu
- College of Veterinary Medicine, Henan Agricultural University, No. 15 Longzihu University Area, Zhengdong New District, Zhengzhou, 450046, People's Republic of China
- International Joint Research Laboratory for Zoonotic Diseases of Henan, Zhengzhou, 450046, Henan Province, China
- Key Laboratory of Quality and Safety Control of Poultry Products (Zhengzhou), Ministry of Agriculture and Rural Affairs, Zhengzhou, People's Republic of China
| | - Chunren Wang
- Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural affairs, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, Heilongjiang Province, People's Republic of China
| | - Longxian Zhang
- College of Veterinary Medicine, Henan Agricultural University, No. 15 Longzihu University Area, Zhengdong New District, Zhengzhou, 450046, People's Republic of China.
- International Joint Research Laboratory for Zoonotic Diseases of Henan, Zhengzhou, 450046, Henan Province, China.
- Key Laboratory of Quality and Safety Control of Poultry Products (Zhengzhou), Ministry of Agriculture and Rural Affairs, Zhengzhou, People's Republic of China.
| |
Collapse
|
10
|
Greigert V, Saraav I, Son J, Zhu Y, Dayao D, Antia A, Tzipori S, Witola WH, Stappenbeck TS, Ding S, Sibley LD. Cryptosporidium infection of human small intestinal epithelial cells induces type III interferon and impairs infectivity of Rotavirus. Gut Microbes 2024; 16:2297897. [PMID: 38189373 PMCID: PMC10793699 DOI: 10.1080/19490976.2023.2297897] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 12/18/2023] [Indexed: 01/09/2024] Open
Abstract
Cryptosporidiosis is a major cause of severe diarrheal disease in infants from resource poor settings. The majority of infections are caused by the human-specific pathogen C. hominis and absence of in vitro growth platforms has limited our understanding of host-pathogen interactions and development of effective treatments. To address this problem, we developed a stem cell-derived culture system for C. hominis using human enterocytes differentiated under air-liquid interface (ALI) conditions. Human ALI cultures supported robust growth and complete development of C. hominis in vitro including all life cycle stages. Cryptosporidium infection induced a strong interferon response from enterocytes, possibly driven, in part, by an endogenous dsRNA virus in the parasite. Prior infection with Cryptosporidium induced type III IFN secretion and consequently blunted infection with Rotavirus, including live attenuated vaccine strains. The development of hALI provides a platform for further studies on human-specific pathogens, including clinically important coinfections that may alter vaccine efficacy.
Collapse
Affiliation(s)
- Valentin Greigert
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Iti Saraav
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Juhee Son
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Yinxing Zhu
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Denise Dayao
- Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA, USA
| | - Avan Antia
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Saul Tzipori
- Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA, USA
| | - William H. Witola
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Thaddeus S. Stappenbeck
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Siyuan Ding
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - L. David Sibley
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
11
|
Zhao L, Chai HL, Wang MY, Zhang ZS, Han WX, Yang B, Wang Y, Zhang S, Zhao WH, Ma YM, Zhan YJ, Wang LF, Ding YL, Wang JL, Liu YH. Prevalence and molecular characterization of Cryptosporidium spp. in dairy cattle in Central Inner Mongolia, Northern China. BMC Vet Res 2023; 19:134. [PMID: 37626358 PMCID: PMC10464073 DOI: 10.1186/s12917-023-03696-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 08/18/2023] [Indexed: 08/27/2023] Open
Abstract
BACKGROUND Cryptosporidium is a gastrointestinal protozoan that widely exists in nature, it is an established zoonotic pathogen. Infected cattle are considered to be associated with cryptosporidiosis outbreaks in humans. In the present study, we aimed to assess the prevalence and species distribution of Cryptosporidium in dairy cattle in Central Inner Mongolia. METHODS We focused on the small subunit ribosomal RNA gene (SSU rRNA) of Cryptosporidium and 60-kDa glycoprotein gene (gp60) of Cryptosporidium parvum. We collected 505 dairy cattle manure samples from 6 sampling sites in Inner Mongolia in 2021; the samples were divided into 4 groups based on age. DNA extraction, polymerase chain reaction (PCR), sequence analysis, and restriction fragment length polymorphism (RFLP) using SspI and MboII restriction endonucleases were performed. RFLP analysis was performed to determine the prevalence and species distribution of Cryptosporidium. RESULTS SSU rRNA PCR revealed that the overall prevalence of Cryptosporidium infection was 29.90% (151/505), with a prevalence of 37.67% (55/146) and 26.74% (96/359) in diarrheal and nondiarrheal samples, respectively; these differences were significant. The overall prevalence of Cryptosporidium infection at the 6 sampling sites ranged from 0 to 47.06% and that among the 4 age groups ranged from 18.50 to 43.81%. SSU rRNA sequence analysis and RFLP analysis revealed the presence of 4 Cryptosporidium species, namely, C. bovis (44.37%), C. andersoni (35.10%), C. ryanae (21.85%), and C. parvum (11.92%), along with a mixed infection involving two or three Cryptosporidium species. Cryptosporidium bovis or C. andersoni was the most common cause of infection in the four age groups. The subtype of C. parvum was successfully identified as IIdA via gp60 analysis; all isolates were identified as the subtype IIdA19G1. CONCLUSIONS To the best of our knowledge, this is the first report of dairy cattle infected with four Cryptosporidium species in Inner Mongolia, China, along with a mixed infection involving two or three Cryptosporidium species, with C. bovis and C. andersoni as the dominant species. Moreover, this is the first study to identify C. parvum subtype IIdA19G1 in cattle in Inner Mongolia. Our study findings provide detailed information on molecular epidemiological investigation of bovine cryptosporidiosis in Inner Mongolia, suggesting that dairy cattle in this region are at risk of transmitting cryptosporidiosis to humans.
Collapse
Affiliation(s)
- Li Zhao
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Clinical Diagnosis and Treatment Technology in Animal Disease, Ministry of Agriculture and Rural Affairs, Hohhot, China
| | - Hai-Liang Chai
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
| | - Ming-Yuan Wang
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
| | - Zhan-Sheng Zhang
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
| | - Wen-Xiong Han
- Inner Mongolia Saikexing Reproductive Biotechnology (Group) Co.,Ltd, Hohhot, China
| | - Bo Yang
- Animal Disease Control Center of Ordos, Ordos, China
| | - Yan Wang
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
| | - Shan Zhang
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
| | - Wei-Hong Zhao
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
| | - Yi-Min Ma
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
| | - Yong-Jie Zhan
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
| | - Li-Feng Wang
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
| | - Yu-Lin Ding
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Clinical Diagnosis and Treatment Technology in Animal Disease, Ministry of Agriculture and Rural Affairs, Hohhot, China
| | - Jin-Ling Wang
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Clinical Diagnosis and Treatment Technology in Animal Disease, Ministry of Agriculture and Rural Affairs, Hohhot, China
| | - Yong-Hong Liu
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China.
- Key Laboratory of Clinical Diagnosis and Treatment Technology in Animal Disease, Ministry of Agriculture and Rural Affairs, Hohhot, China.
| |
Collapse
|
12
|
Wang D, Gao H, Zhao L, Lv C, Dou W, Zhang X, Liu Y, Kang X, Guo K. Detection of the dominant pathogens in diarrheal calves of Ningxia, China in 2021-2022. Front Vet Sci 2023; 10:1155061. [PMID: 37138922 PMCID: PMC10149748 DOI: 10.3389/fvets.2023.1155061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 03/30/2023] [Indexed: 05/05/2023] Open
Abstract
Introduction Calf diarrhea is a complex disease that has long been an unsolved problem in the cattle industry. Ningxia is at the forefront of China in the scale of cattle breeding, and calf diarrhea gravely restricts the development of Ningxia's cattle industry. Methods From July 2021 to May 2022, we collected diarrhea stool samples from calves aged 1-103 days from 23 farms in five cities in Ningxia, and performed PCR using specific primers for 15 major reported pathogens of calf diarrhea, including bacteria, viruses, and parasites. The effect of different seasons on the occurrence of diarrhea in calves was explored, the respective epidemic pathogens in different seasons were screened, and more detailed epidemiological investigations were carried out in Yinchuan and Wuzhong. In addition, we analyzed the relationship between different ages, river distributions and pathogen prevalence. Results Eventually, 10 pathogens were detected, of which 9 pathogens were pathogenic and 1 pathogen was non-pathogenic. The pathogens with the highest detection rate were Cryptosporidium (50.46%), Bovine rotavirus (BRV) (23.18%), Escherichia coli (E. coli) K99 (20.00%), and Bovine coronavirus (BCoV) (11.82%). The remaining pathogens such as Coccidia (6.90%), Bovine Astrovirus (BoAstV) (5.46%), Bovine Torovirus (BToV) (4.09%), and Bovine Kobuvirus (BKoV) (3.18%) primarily existed in the form of mixed infection. Discussion The analysis showed that different cities in Ningxia have different pathogens responsible for diarrhea, with Cryptosporidium and BRV being the most important pathogens responsible for diarrhea in calves in all cities. Control measures against those pathogens should be enforced to effectively prevent diarrhea in calves in China.
Collapse
Affiliation(s)
- Dong Wang
- College of Veterinary Medicine, Northwest A&F University, Xianyang, Shaanxi, China
| | - Haihui Gao
- College of Veterinary Medicine, Northwest A&F University, Xianyang, Shaanxi, China
- Institute of Animal Science, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, China
| | - Long Zhao
- College of Veterinary Medicine, Northwest A&F University, Xianyang, Shaanxi, China
| | - Changrong Lv
- College of Veterinary Medicine, Northwest A&F University, Xianyang, Shaanxi, China
| | - Wei Dou
- College of Veterinary Medicine, Northwest A&F University, Xianyang, Shaanxi, China
| | - Xiuping Zhang
- College of Veterinary Medicine, Northwest A&F University, Xianyang, Shaanxi, China
| | - Yong Liu
- College of Veterinary Medicine, Northwest A&F University, Xianyang, Shaanxi, China
| | - Xiaodong Kang
- Institute of Animal Science, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, China
- *Correspondence: Xiaodong Kang
| | - Kangkang Guo
- College of Veterinary Medicine, Northwest A&F University, Xianyang, Shaanxi, China
- Kangkang Guo
| |
Collapse
|
13
|
Development and Preliminary Evaluation of a Nanoparticle-Assisted PCR Assay for the Detection of Cryptosporidium parvum in Calves. Animals (Basel) 2022; 12:ani12151953. [PMID: 35953942 PMCID: PMC9367258 DOI: 10.3390/ani12151953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 07/26/2022] [Accepted: 07/28/2022] [Indexed: 11/16/2022] Open
Abstract
C. parvum is an important diarrheal pathogen in humans and animals, especially in young hosts. To accurately and rapidly detect C. parvum infection in calves, we established a nano-PCR assay targeting the cgd3_330 gene for the specific detection of C. parvum. This nano-PCR assay was ten times more sensitive than that of the normal PCR assay by applying the same primers and did not cross-react with C. andersoni, C. bovis, C. ryanae, Balantidium coli, Enterocytozoon bieneusi, Giardia lamblia, and Blastocystis sp. To further test the nano-PCR in clinical settings, a total of 20 faecal samples from calves were examined by using the nano-PCR, the normal PCR, and the nested PCR assays. The positive rates were 30% (6/20), 30% (6/20), and 25% (5/20) for the nano-PCR, the normal PCR, and the nested PCR assays, respectively, indicating that the nano-PCR and the normal PCR assays had the same positive rate (30%). Taken together, the present study could provide a candidate method for the specific detection of C. parvum infection in calves in clinical settings.
Collapse
|
14
|
Occurrence and Molecular Characterization of Cryptosporidium spp. in Dairy Cattle and Dairy Buffalo in Yunnan Province, Southwest China. Animals (Basel) 2022; 12:ani12081031. [PMID: 35454277 PMCID: PMC9025915 DOI: 10.3390/ani12081031] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 04/02/2022] [Accepted: 04/11/2022] [Indexed: 02/01/2023] Open
Abstract
Simple Summary Cryptosporidium spp. are important gastrointestinal pathogens of humans and animals, causing diarrheal diseases. Cattle are considered as one of the main reservoirs of Cryptosporidium for humans. We first report the occurrence of Cryptosporidium spp. in dairy cattle (14.7%, 65/442) and dairy buffalo (1.1%, 3/258) in Yunnan Province of China. The results of this study suggest that divergent Cryptosporidium spp. (such as C. andersoni, C. bovis, C. ryanae, and C. parvum) can be found in asymptomatic dairy cattle and dairy buffalo in Yunnan, China. The IIdA18G1 subtype of C. parvum, which infects humans and other animals, was also found in this study. Thus, attention should be paid towards preventing the transmission of Cryptosporidium spp. in cattle and humans in Yunnan Province. Abstract Cryptosporidium spp. are important foodborne and waterborne pathogens in humans and animals, causing diarrheal diseases. Cattle are one of the reservoirs of Cryptosporidium infection in humans. However, data on the occurrence of Cryptosporidium spp. in cattle in Yunnan Province remains limited. A total of 700 fecal samples were collected from Holstein cows (n = 442) and dairy buffaloes (n = 258) in six counties of Yunnan Province. The occurrence and genotypes of Cryptosporidium spp. were analyzed using nested PCR and DNA sequencing. Furthermore, the C. andersoni isolates were further analyzed using multilocus sequence typing (MLST) at four gene loci (MS1, MS2, MS3, and MS16), and the C. parvum isolate was subtyped by 60-kDa glycoprotein (gp60) loci. The occurrence of Cryptosporidium spp. in Holstein cows and dairy buffaloes was 14.7% (65/442) and 1.1% (3/258), respectively. Of these positive samples, 56 Holstein cow samples represented C. andersoni, four Holstein cow samples represented C. bovis, three Holstein cow samples represented C. ryanae, and one represented C. parvum. Meanwhile, only three dairy buffalo samples represented C. ryanae. MLST analysis of subtypes of C. andersoni detected four subtypes, including A5A4A2A1 (n = 7), A4A4A4A1 (n = 7), A1A4A4A1 (n = 2), and A4A4A2A1 (n = 1). One C. parvum isolate was identified as the IIdA18G1 subtype. These results revealed the high occurrence and high genetic diversity of Cryptosporidium spp. in Holstein cows in Yunnan Province, enriching the knowledge of the population genetic structure of Cryptosporidium spp. in Yunnan Province.
Collapse
|