1
|
Ratiu C, Dufresne SF, Thiant S, Roy J. Epstein-Barr Virus Monitoring after an Allogeneic Hematopoietic Stem Cell Transplant: Review of the Recent Data and Current Practices in Canada. Curr Oncol 2024; 31:2780-2795. [PMID: 38785492 PMCID: PMC11119229 DOI: 10.3390/curroncol31050211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/10/2024] [Accepted: 05/10/2024] [Indexed: 05/25/2024] Open
Abstract
Epstein-Barr virus-related post-transplantation lymphoproliferative disorder (EBV-PTLD) is a serious complication following hematopoietic stem cell transplantation (HSCT). A pre-emptive strategy using rituximab, which aims to manage patients early at the time of EBV reactivation to avoid PTLD, has been recommended by the most recent ECIL-6 guidelines in 2016. However, there is still a great heterogeneity of viral-load monitoring protocols, targeted patient populations, and pre-emptive treatment characteristics between centers, making precise EBV monitoring recommendations difficult. We conducted a literature review from the most recent publications between 1 January 2015 and 1 August 2023, to summarize the emerging data on EBV-PTLD prevention strategies in HSCT recipients, including the EBV-DNA threshold and use of rituximab. We also present the results of a survey of current practices carried out in 12 of the main HSCT centers across Canada. We confirm that pre-emptive rituximab remains an efficient strategy for EBV-PTLD prevention. However, there is an urgent need to perform prospective, randomized, multicentric trials with larger numbers of patients reflecting current practices to determine the best clinical conduct with regards to rituximab dosing, timing of treatment, and criteria to initiate treatments. Longer follow-ups will also be necessary to assess patients' long-term outcomes.
Collapse
Affiliation(s)
- Claire Ratiu
- Faculty of Medicine, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Simon F. Dufresne
- Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, Université de Montréal, Montréal, QC H3T 1J4, Canada
- Division of Infectious Diseases and Clinical Microbiology, Department of Medicine, Maisonneuve-Rosemont Hospital, Montréal, QC H1T 2M4, Canada
- Centre de Recherche de l’Hôpital Maisonneuve-Rosemont, Montréal, QC H1T 2M4, Canada
| | - Stéphanie Thiant
- Centre de Recherche de l’Hôpital Maisonneuve-Rosemont, Montréal, QC H1T 2M4, Canada
- Division of Hematology, Oncology and Transplantation, Department of Medicine, Maisonneuve-Rosemont Hospital, 5415 de l’Assomption, Montréal, QC H1T 2M4, Canada
| | - Jean Roy
- Faculty of Medicine, Université de Montréal, Montréal, QC H3T 1J4, Canada
- Centre de Recherche de l’Hôpital Maisonneuve-Rosemont, Montréal, QC H1T 2M4, Canada
- Division of Hematology, Oncology and Transplantation, Department of Medicine, Maisonneuve-Rosemont Hospital, 5415 de l’Assomption, Montréal, QC H1T 2M4, Canada
| |
Collapse
|
2
|
Storek J, Lindsay J. Rituximab for posttransplant lymphoproliferative disorder - therapeutic, preemptive, or prophylactic? Bone Marrow Transplant 2024; 59:6-11. [PMID: 38001229 DOI: 10.1038/s41409-023-02155-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 10/31/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023]
Abstract
To minimize mortality due to posttransplant lymphoproliferative disorder (PTLD), the following strategies have been used: (1) Therapy without EBV Monitoring, i.e., administration of rituximab after PTLD diagnosis, usually by biopsy, in the absence of routine Epstein-Barr virus (EBV) DNAemia monitoring, (2) Prompt Therapy, i.e., monitoring EBV DNAemia, searching for PTLD by imaging when the DNAemia has exceeded a pre-specified threshold, and administration of rituximab if the imaging is consistent with PTLD, (3) Preemptive Therapy, i.e., monitoring EBV DNAemia and administration of rituximab when the DNAemia has exceeded a pre-specified threshold, and (4) Prophylaxis, i.e., administration of rituximab to all transplant recipients. The superiority of one of these strategies over the other strategies has not been established. Here we review the pros and cons of each strategy. Preemptive therapy or prophylaxis may currently be preferred for patients who are at a high risk of dying due to PTLD. However, Therapy without EBV Monitoring may be used for both high- and low-risk patients in the future, if effective and relatively non-toxic therapies for rituximab-refractory PTLD (e.g., EBV-specific T cells) have become easily available.
Collapse
Affiliation(s)
- Jan Storek
- University of Calgary, Calgary, AB, Canada.
| | - Julian Lindsay
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- National Centre for Infection in Cancer and Transplantation, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| |
Collapse
|
3
|
Papalexandri A, Gavriilaki E, Vardi A, Kotsiou N, Demosthenous C, Constantinou N, Touloumenidou T, Zerva P, Kika F, Iskas M, Batsis I, Mallouri D, Yannaki E, Anagnostopoulos A, Sakellari I. Pre-Emptive Use of Rituximab in Epstein-Barr Virus Reactivation: Incidence, Predictive Factors, Monitoring, and Outcomes. Int J Mol Sci 2023; 24:16029. [PMID: 38003218 PMCID: PMC10671524 DOI: 10.3390/ijms242216029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/30/2023] [Accepted: 11/03/2023] [Indexed: 11/26/2023] Open
Abstract
Post-transplant lymphoproliferative disease (PTLD) is a fatal complication of hematopoietic cell transplantation (HCT) associated with the Epstein-Barr virus (EBV). Multiple factors such as transplant type, graft-versus-host disease (GVHD), human leukocyte antigens (HLA) mismatch, patient age, and T-lymphocyte-depleting treatments increase the risk of PTLD. EBV reactivation in hematopoietic cell transplant recipients is monitored through periodic quantitative polymerase chain reaction (Q-PCR) tests. However, substantial uncertainty persists regarding the clinically significant EBV levels for these patients. Guidelines recommend initiating EBV monitoring no later than four weeks post-HCT and conducting it weekly. Pre-emptive therapies, such as the reduction of immunosuppressive therapy and the administration of rituximab to treat EBV viral loads are also suggested. In this study, we investigated the occurrence of EBV-PTLD in 546 HCT recipients, focusing on the clinical manifestations and risk factors associated with the disease. We managed to identify 67,150 viral genomic copies/mL as the cutoff point for predicting PTLD, with 80% sensitivity and specificity. Among our cohort, only 1% of the patients presented PTLD. Anti-thymocyte globulin (ATG) and GVHD were independently associated with lower survival rates and higher treatment-related mortality. According to our findings, prophylactic measures including regular monitoring, pre-emptive therapy, and supportive treatment against infections can be effective in preventing EBV-related complications. This study also recommends conducting EBV monitoring at regular intervals, initiating pre-emptive therapy when viral load increases, and identifying factors that increase the risk of PTLD. Our study stresses the importance of frequent and careful follow-ups of post-transplant complications and early intervention in order to improve survival rates and reduce mortality.
Collapse
Affiliation(s)
- Apostolia Papalexandri
- Hematology Department, BMT Unit, General Hospital “George Papanicolaou”, 57010 Thessaloniki, Greece; (A.P.); (A.V.); (C.D.); (T.T.); (P.Z.); (F.K.); (M.I.); (I.B.); (D.M.); (E.Y.); (A.A.); (I.S.)
| | - Eleni Gavriilaki
- 2nd Propedeutic Department of Internal Medicine, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece;
| | - Anna Vardi
- Hematology Department, BMT Unit, General Hospital “George Papanicolaou”, 57010 Thessaloniki, Greece; (A.P.); (A.V.); (C.D.); (T.T.); (P.Z.); (F.K.); (M.I.); (I.B.); (D.M.); (E.Y.); (A.A.); (I.S.)
| | - Nikolaos Kotsiou
- 2nd Propedeutic Department of Internal Medicine, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece;
| | - Christos Demosthenous
- Hematology Department, BMT Unit, General Hospital “George Papanicolaou”, 57010 Thessaloniki, Greece; (A.P.); (A.V.); (C.D.); (T.T.); (P.Z.); (F.K.); (M.I.); (I.B.); (D.M.); (E.Y.); (A.A.); (I.S.)
| | - Natassa Constantinou
- Hematology Department, BMT Unit, General Hospital “George Papanicolaou”, 57010 Thessaloniki, Greece; (A.P.); (A.V.); (C.D.); (T.T.); (P.Z.); (F.K.); (M.I.); (I.B.); (D.M.); (E.Y.); (A.A.); (I.S.)
| | - Tasoula Touloumenidou
- Hematology Department, BMT Unit, General Hospital “George Papanicolaou”, 57010 Thessaloniki, Greece; (A.P.); (A.V.); (C.D.); (T.T.); (P.Z.); (F.K.); (M.I.); (I.B.); (D.M.); (E.Y.); (A.A.); (I.S.)
| | - Panagiota Zerva
- Hematology Department, BMT Unit, General Hospital “George Papanicolaou”, 57010 Thessaloniki, Greece; (A.P.); (A.V.); (C.D.); (T.T.); (P.Z.); (F.K.); (M.I.); (I.B.); (D.M.); (E.Y.); (A.A.); (I.S.)
| | - Fotini Kika
- Hematology Department, BMT Unit, General Hospital “George Papanicolaou”, 57010 Thessaloniki, Greece; (A.P.); (A.V.); (C.D.); (T.T.); (P.Z.); (F.K.); (M.I.); (I.B.); (D.M.); (E.Y.); (A.A.); (I.S.)
| | - Michalis Iskas
- Hematology Department, BMT Unit, General Hospital “George Papanicolaou”, 57010 Thessaloniki, Greece; (A.P.); (A.V.); (C.D.); (T.T.); (P.Z.); (F.K.); (M.I.); (I.B.); (D.M.); (E.Y.); (A.A.); (I.S.)
| | - Ioannis Batsis
- Hematology Department, BMT Unit, General Hospital “George Papanicolaou”, 57010 Thessaloniki, Greece; (A.P.); (A.V.); (C.D.); (T.T.); (P.Z.); (F.K.); (M.I.); (I.B.); (D.M.); (E.Y.); (A.A.); (I.S.)
| | - Despina Mallouri
- Hematology Department, BMT Unit, General Hospital “George Papanicolaou”, 57010 Thessaloniki, Greece; (A.P.); (A.V.); (C.D.); (T.T.); (P.Z.); (F.K.); (M.I.); (I.B.); (D.M.); (E.Y.); (A.A.); (I.S.)
| | - Evangelia Yannaki
- Hematology Department, BMT Unit, General Hospital “George Papanicolaou”, 57010 Thessaloniki, Greece; (A.P.); (A.V.); (C.D.); (T.T.); (P.Z.); (F.K.); (M.I.); (I.B.); (D.M.); (E.Y.); (A.A.); (I.S.)
| | - Achilles Anagnostopoulos
- Hematology Department, BMT Unit, General Hospital “George Papanicolaou”, 57010 Thessaloniki, Greece; (A.P.); (A.V.); (C.D.); (T.T.); (P.Z.); (F.K.); (M.I.); (I.B.); (D.M.); (E.Y.); (A.A.); (I.S.)
| | - Ioanna Sakellari
- Hematology Department, BMT Unit, General Hospital “George Papanicolaou”, 57010 Thessaloniki, Greece; (A.P.); (A.V.); (C.D.); (T.T.); (P.Z.); (F.K.); (M.I.); (I.B.); (D.M.); (E.Y.); (A.A.); (I.S.)
| |
Collapse
|
4
|
Wormser VR, Agudelo Higuita NI, Ramaswami R, Melendez DP. Hematopoietic stem cell transplantation and the noncytomegalovirus herpesviruses. Transpl Infect Dis 2023; 25 Suppl 1:e14201. [PMID: 38041493 DOI: 10.1111/tid.14201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 10/12/2023] [Accepted: 11/12/2023] [Indexed: 12/03/2023]
Abstract
Although hematopoietic stem cell transplantation (HSCT) and other cellular therapies have significantly improved outcomes in the management of multiple hematological and nonhematological malignancies, the resulting impairment in humoral and cellular response increases the risk for opportunistic infection as an undesirable side effect. With their ability to establish latent infection and reactivate when the host immune system is at its weakest point, the Herpesviridae family constitutes a significant proportion of these opportunistic pathogens. Despite recent advancements in preventing and managing herpesvirus infections, they continue to be a common cause of significant morbidity and mortality in transplanted patients. Herein, we aim to provide and update on herpesvirus other than cytomegalovirus (CMV) affecting recipients of HSCT and other cellular therapies.
Collapse
Affiliation(s)
- Vanessa R Wormser
- Division of Infectious Diseases, Department of Medicine, University of Utah Health Sciences Center, Salt Lake City, Utah, USA
| | - Nelson Iván Agudelo Higuita
- Section of Infectious Diseases, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
- Instituto de Enfermedades Infecciosas y Parasitología Antonio Vidal, Tegucigalpa, Honduras
| | - Ramya Ramaswami
- HIV and AIDS Malignancy Branch, Center for Cancer Research, NCI, Bethesda, Maryland, USA
| | - Dante P Melendez
- Division of Infectious Diseases, Department of Medicine, University of Utah Health Sciences Center, Salt Lake City, Utah, USA
| |
Collapse
|
5
|
Wei X, Xie Y, Jiang R, Li H, Wu H, Zhang Y, Li L, Zhou S, Ma X, Tang Z, He J, Wu D, Wu X. The impact of Rituximab administered before transplantation in patients undergoing allogeneic hematopoietic stem cell transplantation: A real-world study. Front Immunol 2022; 13:967026. [PMID: 36119024 PMCID: PMC9471377 DOI: 10.3389/fimmu.2022.967026] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
Rituximab is used to eliminate B cells as a chimeric monoclonal antibody directed against CD20, a B-cell antigen expressed on B cells. To explore the impact of rituximab administered before transplantation, we implemented a retrospective, monocentric study and utilized real-world data collected at our center between January 2018 and December 2020, and then followed until December 2021. Based on whether a dose of 375mg/m2 rituximab was used at least once within two weeks before transplantation, patients undergoing allo-HSCT were classified into two groups: rituximab (N=176) and non-rituximab (N=344) group. Amongst all the patients, the application of rituximab decreased EBV reactivation (P<0.01) and rituximab was an independent factor in the prevention of EBV reactivation by both univariate and multivariate analyses (HR 0.56, 95%CI 0.33-0.97, P=0.04). In AML patients, there were significant differences in the cumulative incidence of aGVHD between the two groups (P=0.04). Our data showed that rituximab was association with a decreased incidence of aGVHD in AML patients according to both univariate and multivariate analyses. There was no difference between the two groups in other sets of populations. Thus, our study indicated that rituximab administered before transplantation may help prevent EBV reactivation in all allo-HSCT patients, as well as prevent aGVHD in AML patients after allo-HSCT.
Collapse
Affiliation(s)
- Xiya Wei
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Yiyu Xie
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Department of Internal Medicine, Yale-New Haven Health/Bridgeport Hospital, Bridgeport, CT, United States
| | - Ruoyu Jiang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Huiyu Li
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Heqing Wu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Yuqi Zhang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Ling Li
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Shiyuan Zhou
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Xiao Ma
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Zaixiang Tang
- Department of Epidemiology and Statistics, School of Public Health, Faculty of Medicine, Soochow University, Suzhou, China
| | - Jun He
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Depei Wu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
- *Correspondence: Xiaojin Wu, ; Depei Wu,
| | - Xiaojin Wu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
- *Correspondence: Xiaojin Wu, ; Depei Wu,
| |
Collapse
|
6
|
Epstein-Barr virus posttransplant lymphoproliferative disorder: update on management and outcomes. Curr Opin Infect Dis 2021; 34:635-645. [PMID: 34751183 PMCID: PMC8589110 DOI: 10.1097/qco.0000000000000787] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW Management of Epstein-Barr virus posttransplant lymphoproliferative disorder (EBV PTLD) is complex, involving risk stratification, prevention and/or preemptive measures involving monitoring EBV DNAemia and balancing treatment options, using a combination of reduction of immune suppression, anti-B cell therapy, and cytotoxic T lymphocytes (CTLs). RECENT FINDINGS The highest risk factor for the development of EBV PTLD in hematopoietic cell transplant (HCT) remains T cell depletion, with increasing use of antithymocyte globulin (ATG) or alemtuzumab in conditioning. In solid organ transplantation (SOT), the incidence of PTLD is highest among EBV seronegative recipients who are at risk for primary EBV infection following transplant in the first 12 months. Prevention is a critical component of the management of EBV PTLD. Although preemptive therapy remains standard of care, there continues to be heterogenicity and debate over the optimal choice of EBV DNA quantification and the threshold to use. Novel therapies such as donor-derived multipathogen and EBV specific CTLs for the prevention and third party CTLs for the treatment of EBV PTLD are promising, with rapidly expanding evidence, including large scale Phase III trials currently underway. SUMMARY With an increasing number of risk groups for developing EBV PTLD in HCT and SOT, management strategies using prophylaxis or preemptive therapy remain standard of care, however the use of prophylactic or preemptive EBV specific or multipathogen CTLs show promising results and safety profiles.
Collapse
|
7
|
Hosoi H, Matsuyama Y, Murata S, Mushino T, Sonoki T. Prolonged Epstein-Barr virus reactivation coincident with chronic graft-versus-host disease after allogeneic hematopoietic stem cell transplantation. Leuk Lymphoma 2021; 63:1009-1012. [PMID: 34784844 DOI: 10.1080/10428194.2021.2005047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Hiroki Hosoi
- Department of Hematology/Oncology, Wakayama Medical University, Wakayama, Japan
| | - Yoriko Matsuyama
- Department of Hematology/Oncology, Wakayama Medical University, Wakayama, Japan
| | - Shogo Murata
- Department of Hematology/Oncology, Wakayama Medical University, Wakayama, Japan
| | - Toshiki Mushino
- Department of Hematology/Oncology, Wakayama Medical University, Wakayama, Japan
| | - Takashi Sonoki
- Department of Hematology/Oncology, Wakayama Medical University, Wakayama, Japan
| |
Collapse
|
8
|
Lindsay J, Othman J, Yong MK, Ritchie D, Chee L, Tay K, Tio SY, Kerridge I, Fay K, Stevenson W, Arthur C, Chen SCA, Kong DCM, Greenwood M, Pergam SA, Liu C, Slavin MA. Dynamics of Epstein-Barr virus on post-transplant lymphoproliferative disorders after antithymocyte globulin-conditioned allogeneic hematopoietic cell transplant. Transpl Infect Dis 2021; 23:e13719. [PMID: 34453768 DOI: 10.1111/tid.13719] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 08/19/2021] [Indexed: 11/26/2022]
Abstract
BACKGROUND The use of antithymocyte globulin (ATG) in allogeneic hematopoietic cell transplant (HCT) is associated with an increased risk of Epstein-Barr virus (EBV) reactivation and post-transplant lymphoproliferative disorders (PTLD). The dynamics and outcomes of EBV-DNAemia are not well described in this population. METHODS We retrospectively assessed the kinetics of EBV-DNAemia after ATG conditioning of HCT recipients. Receiver operating characteristic (ROC) curves were used to assess EBV-DNAemia to predict EBV-PTLD in this group. RESULTS A total of 174/405 (43%) consecutive HCT recipients from two centers met inclusion criteria of ATG conditioned, non-B-cell lymphoma patients. Of these with EBV-DNA measured using standardized IU/ml, 78.6% (92/117) developed EBV-DNAemia: 62% spontaneously resolved; 19% cleared after preemptive rituximab, and 13% developed EBV-PTLD. ROC curve analysis using maximum pre-EBV-PTLD EBV-DNAemia, demonstrated an AUC of 0.912 with EBV-DNAemia of 9782 IU/ml, associated with 82.6% sensitivity and 94.4% specificity for development of EBV-PTLD. Median time for EBV-DNAemia to increase from initial detection to >1000 IU/ml was 7 days; to >10 000 IU/ml, 12 days; and to >100 000 IU/ml, 18 days. Median EBV-DNAemia level prior to administration of rituximab was significantly lower in patients with successful preemptive treatment, compared with those who developed EBV-PTLD (3.41 log10 IU/ml [3.30-3.67] vs. 4.34 log10 IU/ml [3.85-5.13], p = .002; i.e., 2628 IU/ml vs. 21 965 IU/ml, respectively). CONCLUSIONS EBV-DNAemia >10 000 IU/ml was the strongest predictor of the development of EBV-PTLD, and progression to this level was rapid in ATG-conditioned HCT recipients. This information may guide EBV-PTLD management strategies in these high-risk patients.
Collapse
Affiliation(s)
- Julian Lindsay
- National Centre for Infection in Cancer, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Haematology Department, Royal North Shore Hospital, Sydney, New South Wales, Australia.,Vaccine and Infectious Disease and Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Jad Othman
- Haematology Department, Royal North Shore Hospital, Sydney, New South Wales, Australia
| | - Michelle K Yong
- National Centre for Infection in Cancer, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Department of Infectious Diseases, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia
| | - David Ritchie
- Clinical Hematology, Peter MacCallum Cancer Centre and Royal Melbourne Hospital, Melbourne, Victoria, Australia.,Department of Medicine, University of Melbourne, Parkville, Victoria, Australia
| | - Lynette Chee
- Clinical Hematology, Peter MacCallum Cancer Centre and Royal Melbourne Hospital, Melbourne, Victoria, Australia.,Department of Medicine, University of Melbourne, Parkville, Victoria, Australia
| | - KimHeng Tay
- Department of Infectious Diseases, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Shio Yen Tio
- National Centre for Infection in Cancer, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Department of Infectious Diseases, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia
| | - Ian Kerridge
- Haematology Department, Royal North Shore Hospital, Sydney, New South Wales, Australia.,Northern Blood Research Centre, Kolling Institute of Medical Research, University of Sydney, Sydney, New South Wales, Australia
| | - Keith Fay
- Haematology Department, Royal North Shore Hospital, Sydney, New South Wales, Australia
| | - William Stevenson
- Haematology Department, Royal North Shore Hospital, Sydney, New South Wales, Australia.,Northern Blood Research Centre, Kolling Institute of Medical Research, University of Sydney, Sydney, New South Wales, Australia
| | - Chris Arthur
- Haematology Department, Royal North Shore Hospital, Sydney, New South Wales, Australia
| | - Sharon C-A Chen
- National Centre for Infection in Cancer, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Centre for Infectious Diseases and Microbiology Laboratory Services, Institute of Clinical Pathology and Medical Research, New South Wales Health Pathology, Westmead Hospital, The University of Sydney, and the Marie Bashir Institute for Infectious Diseases and Biosecurity, Sydney, New South Wales, Australia
| | - David C M Kong
- NHMRC National Centre for Antimicrobial Stewardship, The Peter Doherty Institute for Infections and Immunity, Parkville, Victoria, Australia.,Centre for Medicine Use and Safety, Monash Institute of Pharmaceutical Sciences, Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia.,Pharmacy Department, Ballarat Health Services, Ballarat, Victoria, Australia
| | - Matthew Greenwood
- Haematology Department, Royal North Shore Hospital, Sydney, New South Wales, Australia.,Northern Blood Research Centre, Kolling Institute of Medical Research, University of Sydney, Sydney, New South Wales, Australia
| | - Steven A Pergam
- Vaccine and Infectious Disease and Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA.,Division of Allergy & Infectious Diseases, University of Washington, Seattle, Washington, USA
| | - Catherine Liu
- Vaccine and Infectious Disease and Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA.,Division of Allergy & Infectious Diseases, University of Washington, Seattle, Washington, USA
| | - Monica A Slavin
- National Centre for Infection in Cancer, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Department of Infectious Diseases, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
9
|
Post-transplantation lymphoproliferative disorder after haematopoietic stem cell transplantation. Ann Hematol 2021; 100:865-878. [PMID: 33547921 DOI: 10.1007/s00277-021-04433-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 01/18/2021] [Indexed: 12/19/2022]
Abstract
Post-transplantation lymphoproliferative disorder (PTLD) is a severe complication of haematopoietic stem cell transplantation (HSCT), occurring in a setting of immune suppression and dysregulation. The disease is in most cases driven by the reactivation of the Epstein-Barr virus (EBV), which induces B cell proliferation through different pathomechanisms. Beyond EBV, many factors, variably dependent on HSCT-related immunosuppression, contribute to the disease development. PTLDs share several features with primary lymphomas, though clinical manifestations may be different, frequently depending on extranodal involvement. According to the WHO classification, histologic examination is required for diagnosis, allowing also to distinguish among PTLD subtypes. However, in cases of severe and abrupt presentation, a diagnosis based on a combination of imaging studies and EBV-load determination is accepted. Therapies include prophylactic and pre-emptive interventions, aimed at eradicating EBV proliferation before symptoms onset, and targeted treatments. Among them, rituximab has emerged as first-line option, possibly combined with a reduction of immunosuppression, while EBV-specific cytotoxic T lymphocytes are effective and safe alternatives. Though prognosis remains poor, survival has markedly improved following the adoption of the aforementioned treatments. The validation of innovative, combined approaches is the future challenge.
Collapse
|
10
|
Mascitti H. Infections de l’immunodéprimé (hors VIH). Med Mal Infect 2020; 50:8S6-8S11. [PMID: 33357973 DOI: 10.1016/s0399-077x(20)30777-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- H Mascitti
- Service d'infectiologie, CHU Raymond-Poincaré (AP-HP), Université Paris-Saclay, 104, boulevard Raymond-Poincaré, 92380 Garches, France..
| |
Collapse
|
11
|
Liu L, Liu Q, Feng S. Management of Epstein-Barr virus-related post-transplant lymphoproliferative disorder after allogeneic hematopoietic stem cell transplantation. Ther Adv Hematol 2020; 11:2040620720910964. [PMID: 32523657 PMCID: PMC7236397 DOI: 10.1177/2040620720910964] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 01/21/2020] [Indexed: 12/16/2022] Open
Abstract
Epstein–Barr virus-related post-transplant lymphoproliferative disorder (EBV-PTLD) is a rare but life-threatening complication after allogeneic hematopoietic stem cell transplantation (allo-HSCT). T-cell immunodeficiency after transplantation and EBV primary infection/reactivation play major roles in the pathogenesis. Unspecific clinical manifestations make the diagnosis difficult and time consuming. Moreover, this fatal disease usually progresses rapidly, and leads to multiple organ dysfunction or death if not treated promptly. Early diagnosis of EBV-DNAemia or EBV-PTLD generally increases the chances of successful treatment by focusing on regular monitoring of EBV-DNA and detection of symptomatic patients as early as possible. Rituximab ± reduction of immunosuppression (RI) is currently the first-line choice in preemptive intervention and targeted treatment. Unless patients are suffering from severe graft versus host disease (GvHD), it is better to combine rituximab with RI. Once a probable diagnosis is made, the first-line treatment should be initiated rapidly, along with, or ahead of, biopsy, although histopathologic confirmation is requisite. In addition, EBV-specific cytotoxic T lymphocytes (EBV-CTLs) or donor lymphocyte infusion (DLI) has shown promise in cases of suboptimal response. Chemotherapy ± rituximab might lend more opportunities to refractory/relapsed patients, who might also benefit from ongoing clinical trials. Herein, we discuss our clinical experience in detail based on the current literature and our five cases.
Collapse
Affiliation(s)
- Li Liu
- Hematopoietic Stem Cell Transplantation Center, State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Qifa Liu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Sizhou Feng
- Hematopoietic Stem Cell Transplantation Center, State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College Via No. 288 Nanjing Road, Tianjin, China
| |
Collapse
|
12
|
Lindsay J, Yong MK, Greenwood M, Kong DCM, Chen SCA, Rawlinson W, Slavin M. Epstein-Barr virus related post-transplant lymphoproliferative disorder prevention strategies in allogeneic hematopoietic stem cell transplantation. Rev Med Virol 2020; 30:e2108. [PMID: 32301566 DOI: 10.1002/rmv.2108] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 03/23/2020] [Accepted: 03/26/2020] [Indexed: 12/12/2022]
Abstract
Epstein-Barr virus associated post-transplant lymphoproliferative disorders (EBV PTLD) are recognized as a significant cause of morbidity and mortality in patients undergoing allogeneic hematopoietic stem cell transplantation (alloHSCT). The number of patients at risk of developing EBV PTLD is increasing, partly as a result of highly immunosuppressive regimens, including the use of anti-thymocyte globulin (ATG). Importantly, there is heterogeneity in PTLD management strategies between alloHSCT centers worldwide. This review summarizes the different EBV PTLD prevention strategies being utilized including the alloHSCT and T-cell depletion regimes and the risk they confer; monitoring programs, including the timing and analytes used for EBV virus detection, as well as pre-emptive thresholds and therapy with rituximab. In the absence of an institution-specific policy, it is suggested that the optimal pre-emptive strategy in HSCT recipients with T-cell depleting treatments, acute graft vs host disease (GVHD) and a mismatched donor for PTLD prevention is (a) monitoring of EBV DNA post-transplant weekly using plasma or WB as analyte and (b) pre-emptively reducing immune suppression (if possible) at an EBV DNA threshold of >1000 copies/mL (plasma or WB), and treating with rituximab at a threshold of >1000 copies/mL (plasma) or >5000 copies/mL (WB). There is emerging evidence for prophylactic rituximab as a feasible and safe strategy for PTLD, particularly if pre-emptive monitoring is problematic. Future management strategies such as prophylactic EBV specific CTLs have shown promising results and as this procedure becomes less expensive and more accessible, it may become the strategy of choice for EBV PTLD prevention.
Collapse
Affiliation(s)
- Julian Lindsay
- Haematology Department, Royal North Shore Hospital, Sydney, New South Wales, Australia.,National Centre for Infection in Cancer, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Michelle K Yong
- National Centre for Infection in Cancer, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Department of Infectious Diseases, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia
| | - Matthew Greenwood
- Haematology Department, Royal North Shore Hospital, Sydney, New South Wales, Australia.,Northern Blood Research Centre, Kolling Institute of Medical Research, University of Sydney, Sydney, New South Wales, Australia
| | - David C M Kong
- National Centre for Infection in Cancer, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,National Centre for Antimicrobial Stewardship at The Peter Doherty Institute for Infections and Immunity, Parkville, Victoria, Australia.,Centre for Medicine Use and Safety, Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia.,Pharmacy Department, Ballarat Health Services, Ballarat, Victoria, Australia
| | - Sharon C A Chen
- National Centre for Infection in Cancer, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Centre for Infectious Diseases and Microbiology, New South Wales Health Pathology, Westmead Hospital, The University of Sydney, Sydney, New South Wales, Australia.,Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Sydney, New South Wales, Australia
| | - William Rawlinson
- SAViD (Serology and Virology Division), NSW Health Pathology, Prince of Wales Hospital, and SOMS, BABS and School of Women's and Children's Health, University of New South Wales, Sydney, New South Wales, Australia
| | - Monica Slavin
- National Centre for Infection in Cancer, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Department of Infectious Diseases, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
13
|
Santos CAQ, Rhee Y, Czapka MT, Kazi AS, Proia LA. Make Sure You Have a Safety Net: Updates in the Prevention and Management of Infectious Complications in Stem Cell Transplant Recipients. J Clin Med 2020; 9:jcm9030865. [PMID: 32245201 PMCID: PMC7141503 DOI: 10.3390/jcm9030865] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 03/11/2020] [Indexed: 12/11/2022] Open
Abstract
Hematopoietic stem cell transplant recipients are at increased risk of infection and immune dysregulation due to reception of cytotoxic chemotherapy; development of graft versus host disease, which necessitates treatment with immunosuppressive medications; and placement of invasive catheters. The prevention and management of infections in these vulnerable hosts is of utmost importance and a key “safety net” in stem cell transplantation. In this review, we provide updates on the prevention and management of CMV infection; invasive fungal infections; bacterial infections; Clostridium difficile infection; and EBV, HHV-6, adenovirus and BK infections. We discuss novel drugs, such as letermovir, isavuconazole, meropenem-vaborbactam and bezlotoxumab; weigh the pros and cons of using fluoroquinolone prophylaxis during neutropenia after stem cell transplantation; and provide updates on important viral infections after hematopoietic stem cell transplant (HSCT). Optimizing the prevention and management of infectious diseases by using the best available evidence will contribute to better outcomes for stem cell transplant recipients, and provide the best possible “safety net” for these immunocompromised hosts.
Collapse
|
14
|
Salmona M, Stefic K, Mahjoub N, de Fontbrune FS, Maylin S, Simon F, Scieux C, Socié G, Mazeron MC, LeGoff J. Automated quantification of Epstein-Barr virus in whole blood for post-transplant lymphoproliferative disorders monitoring. Virol J 2020; 17:20. [PMID: 32014036 PMCID: PMC6998838 DOI: 10.1186/s12985-020-1285-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 01/20/2020] [Indexed: 11/10/2022] Open
Abstract
Background Standardized and sensitive assays for Epstein Barr Virus (EBV) are needed to define universal cutoff for treatment initiation in allogeneic hematopoietic stem cells transplant recipients. In a context of accreditation and the availability of EBV international standard, we evaluated the Abbott RealTime EBV (RT) assay for EBV quantification in whole blood. Methods The RT assay was compared on 282 prospective clinical samples with the Artus EBV PCR Kit V1 assay (V1) and we analyzed the kinetics of EBV load in 11 patients receiving rituximab treatment. Results The estimated limit of detection was 88 IU/mL. The assay was linear (r2 = 0.9974) in the range of all samples tested (100 to 1,000,000 IU/mL). Intra-assay coefficients of variation (CV) ranged between 0.35 and 1.35%, and inter-assay CV between 3.40 and 4.5%. On samples above the limit of quantification, the two assays were strongly correlated. EBV RT values were on average 0.30 log10 IU/mL lower than those measured with the V1 assay. In patients treated with rituximab, the RT assay remained positive in 5 patients at the time it dropped below undetectable levels with the V1 assay. Conclusions In conclusion, the RT assay is a reliable assay for EBV load in whole blood. Its sensitivity will enable to estimate the kinetics of EBV load and the impact of treatments to control EBV reactivations.
Collapse
Affiliation(s)
- Maud Salmona
- Université de Paris Diderot, INSERM U976, Paris, France. .,Laboratoire de Microbiologie, Hôpital Saint-Louis, APHP, Paris, France.
| | - Karl Stefic
- Laboratoire de Microbiologie, Hôpital Saint-Louis, APHP, Paris, France.,Université de Tours, INSERM U1259, Tours, France
| | - Nadia Mahjoub
- Laboratoire de Microbiologie, Hôpital Saint-Louis, APHP, Paris, France
| | | | - Sarah Maylin
- Laboratoire de Microbiologie, Hôpital Saint-Louis, APHP, Paris, France
| | - François Simon
- Université de Paris Diderot, INSERM U976, Paris, France.,Laboratoire de Microbiologie, Hôpital Saint-Louis, APHP, Paris, France
| | - Catherine Scieux
- Université de Paris Diderot, INSERM U976, Paris, France.,Laboratoire de Microbiologie, Hôpital Saint-Louis, APHP, Paris, France
| | - Gérard Socié
- Université de Paris Diderot, INSERM U976, Paris, France.,Hematology and Transplantation Unit, Hôpital Saint-Louis, APHP, Paris, France
| | - Marie-Christine Mazeron
- Université de Paris Diderot, INSERM U976, Paris, France.,Laboratoire de Microbiologie, Hôpital Saint-Louis, APHP, Paris, France
| | - Jérôme LeGoff
- Université de Paris Diderot, INSERM U976, Paris, France.,Laboratoire de Microbiologie, Hôpital Saint-Louis, APHP, Paris, France
| |
Collapse
|
15
|
Fujimoto A, Suzuki R. Epstein-Barr Virus-Associated Post-Transplant Lymphoproliferative Disorders after Hematopoietic Stem Cell Transplantation: Pathogenesis, Risk Factors and Clinical Outcomes. Cancers (Basel) 2020; 12:cancers12020328. [PMID: 32024048 PMCID: PMC7072403 DOI: 10.3390/cancers12020328] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 01/27/2020] [Accepted: 01/30/2020] [Indexed: 02/07/2023] Open
Abstract
Epstein-Barr virus (EBV) is a ubiquitous virus belonging to the human γ-herpes virus subfamily. After primary infection, EBV maintains a life-long latent infection. A major concern is that EBV can cause a diverse range of neoplasms and autoimmune diseases. In addition, patients undergoing hematopoietic stem cell transplantation or solid organ transplantation can experience post-transplant lymphoproliferative disorders (PTLDs) due to dysfunction or suppression of host’s immune system, or uncontrolled proliferation of EBV-infected cells. In recent years, the number of EBV-associated PTLD cases has increased. This review focuses on the current understandings of EBV-associated PTLD pathogenesis, as well as the risk factors and clinical outcomes for patients after allogeneic stem cell transplantation.
Collapse
Affiliation(s)
| | - Ritsuro Suzuki
- Correspondence: ; Tel.: +81-853-20-2517; Fax: +81-853-20-2525
| |
Collapse
|
16
|
Pecoraro A, Crescenzi L, Galdiero MR, Marone G, Rivellese F, Rossi FW, de Paulis A, Genovese A, Spadaro G. Immunosuppressive therapy with rituximab in common variable immunodeficiency. Clin Mol Allergy 2019; 17:9. [PMID: 31080365 PMCID: PMC6501382 DOI: 10.1186/s12948-019-0113-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 04/11/2019] [Indexed: 12/23/2022] Open
Abstract
Common variable immunodeficiency (CVID) is the most frequent symptomatic primary antibody deficiency in adulthood and is characterized by the marked reduction of IgG and IgA serum levels. Thanks to the successful use of polyvalent immunoglobulin replacement therapy to treat and prevent recurrent infections, non-infectious complications, including autoimmunity, polyclonal lymphoproliferation and malignancies, have progressively become the major cause of morbidity and mortality in CVID patients. The management of these complications is particularly challenging, often requiring multiple lines of immunosuppressive treatments. Over the last 5–10 years, the anti-CD20 monoclonal antibody (i.e., rituximab) has been increasingly used for the treatment of both autoimmune and non-malignant lymphoproliferative manifestations associated with CVID. This review illustrates the evidence on the use of rituximab in CVID. For this purpose, first we discuss the mechanisms proposed for the rituximab mediated B-cell depletion; then, we analyze the literature data regarding the CVID-related complications for which rituximab has been used, focusing on autoimmune cytopenias, granulomatous lymphocytic interstitial lung disease (GLILD) and non-malignant lymphoproliferative syndromes. The cumulative data suggest that in the vast majority of the studies, rituximab has proven to be an effective and relatively safe therapeutic option. However, there are currently no data on the long-term efficacy and side effects of rituximab and other second-line therapeutic options. Further randomized controlled trials are needed to optimize the management strategies of non-infectious complications of CVID.
Collapse
Affiliation(s)
- Antonio Pecoraro
- 1Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research (CISI), World Allergy Organization (WAO) Center of Excellence, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy
| | - Ludovica Crescenzi
- 1Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research (CISI), World Allergy Organization (WAO) Center of Excellence, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy
| | - Maria Rosaria Galdiero
- 1Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research (CISI), World Allergy Organization (WAO) Center of Excellence, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy
| | - Giancarlo Marone
- 2Department of Public Health, University of Naples Federico II, Naples, Italy.,3Monaldi Hospital Pharmacy, Naples, Italy
| | - Felice Rivellese
- 1Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research (CISI), World Allergy Organization (WAO) Center of Excellence, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy.,4Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Francesca Wanda Rossi
- 1Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research (CISI), World Allergy Organization (WAO) Center of Excellence, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy
| | - Amato de Paulis
- 1Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research (CISI), World Allergy Organization (WAO) Center of Excellence, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy
| | - Arturo Genovese
- 1Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research (CISI), World Allergy Organization (WAO) Center of Excellence, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy
| | - Giuseppe Spadaro
- 1Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research (CISI), World Allergy Organization (WAO) Center of Excellence, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy
| |
Collapse
|
17
|
Delapierre B, Reman O, Dina J, Breuil C, Bellal M, Johnson-Ansah H, Gac AC, Damaj G, Chantepie S. Low dose Rituximab for pre-emptive treatment of Epstein Barr virus reactivation after allogenic hematopoietic stem cell transplantation. Curr Res Transl Med 2019; 67:145-148. [PMID: 30871955 DOI: 10.1016/j.retram.2019.03.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 03/05/2019] [Accepted: 03/07/2019] [Indexed: 11/28/2022]
Abstract
INTRODUCTION The most used preemptive therapy for Epstein Barr virus reactivation post allogeneic hematopoietic stem cell (HSCT) transplant is Rituximab, 375 mg/m2, once weekly until EBV viremia negativity. There is no data suggesting such a high dose. OBJECTIVE We hypothesized that a lower dose of Rituximab would be as efficient with less toxicity. PATIENTS In a retrospective, monocentric study, we analyzed 16 consecutive patients treated preemptively with low dose Rituximab for EBV reactivation post HSCT. Patients were treated with low Rituximab dose of 100 mg/m² weekly. Success was defined by a decrease of EBV viremia of 1 log10 and below 1000 UI/ml, and the absence of post-transplant lymphoproliferative disorder (PTLD). RESULTS Success rate was 93.4% (15/16). One (1/16, 6%) PTLD was diagnosed after preemptive therapy, despite a negative viremia. CONCLUSION A low dose of Rituximab of 100 mg/m² per injection for pre-emptive therapy of EBV reactivation post HSCT is safe and effective for preventing PTLD. Prospective, randomized, multicentric trials with larger number of patient are needed to determine the best rituximab dose.
Collapse
Affiliation(s)
- B Delapierre
- Normandie Univ, UNICAEN, CHU de Caen Normandie, 14000 Caen, France
| | - O Reman
- Normandie Univ, UNICAEN, CHU de Caen Normandie, 14000 Caen, France
| | - J Dina
- CHU de Caen, Department of Virology, Normandie Univ, 1400 Caen, France
| | - C Breuil
- Pharmacie du Centre Hospitalo-universitaire (CHU) de Caen, 14000, Caen, France
| | - M Bellal
- Normandie Univ, UNICAEN, CHU de Caen Normandie, 14000 Caen, France
| | - H Johnson-Ansah
- Normandie Univ, UNICAEN, CHU de Caen Normandie, 14000 Caen, France
| | - A C Gac
- Normandie Univ, UNICAEN, CHU de Caen Normandie, 14000 Caen, France
| | - G Damaj
- Normandie Univ, UNICAEN, CHU de Caen Normandie, 14000 Caen, France
| | - S Chantepie
- Normandie Univ, UNICAEN, CHU de Caen Normandie, 14000 Caen, France.
| |
Collapse
|
18
|
Zhou L, Lu DP. Immune reconstitution of HLA-A*0201/BMLF1- and HLA-A*1101/LMP2-specific Epstein Barr virus cytotoxic T lymphocytes within 90 days after haploidentical hematopoietic stem cell transplantation. Virol J 2019; 16:19. [PMID: 30736814 PMCID: PMC6368816 DOI: 10.1186/s12985-019-1123-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 01/21/2019] [Indexed: 02/05/2023] Open
Abstract
Background Haploidentical hematopoietic stem cell transplant (haplo-HSCT) recipients are at high risk for Epstein Barr virus (EBV)-related diseases. EBV-specific CD8+ cytotoxic T cells can control EBV-infected B cell expansion; however, no studies have investigated EBV-specific immune reconstitution after HSCT, particularly haplo-HSCT. Therefore, in this study, we aimed to characterize EBV-specific immune cell reconstitution after haplo-HSCT. Methods HLA-A*1101 and HLA-A*0201 pentamers folded with immunodominant EBV peptides were used to detect EBV-specific CD8+ T cells by flow cytometry in peripheral blood mononuclear cells from 19 haplo-HSCT recipients and the results were compared with those in controls. We also compared the EBV-specific pentamer-binding cell frequencies in patients with or without EBV-related diseases by flow cytometry. Results Pentamer-binding EBV-specific CD8+ T cells were detected at + 30, + 60 and + 90 days after haplo-HSCT in EBV-seropositive patients subjected to haplo-HSCT from an EBV-seropositive donor. The frequencies of the HLA-A*0201/BMLF1-GLC pentamer in haplo-HSCT patients at + 30 days were significantly lower than those in HLA-A*0201-positive healthy controls (p = 0.019) and patients at + 60 days (p = 0.003). The frequencies of the HLA-A*1101/LMP2-SSC pentamer at + 30, + 60, and + 90 days were significantly decreased compared with those in healthy controls (p = 0.009, 0.019, and 0.039, respectively); however, the frequencies of the HLA-A*1101/LMP2-SSC pentamer did not differ significantly among patients at + 30, + 60, and + 90 days (p = 0.886). There was a significant difference in the frequency of the HLA-A*0201/BMLF1-GLC pentamer at + 60 days between patients with and without EBV-related diseases (p = 0.024). Patients with EBV-related diseases showed lower percentages of HLA-A*0201/BMLF1-GLC specific CD8+ T cells. Conclusions Haplo-HSCT recipients could generate EBV-specific CD8+ T cells within + 30 days after transplantation. The HLA-A*0201/BMLF1-GLC pentamer cell frequency at + 60 days may be a useful indicator for monitoring EBV-related diseases in patients after haplo-HSCT. Transfusion with EBV-CTLs within 60 days after haplo-HSCT may have prophylactic effects against EBV-related diseases.
Collapse
Affiliation(s)
- Ling Zhou
- The Fifth People's Hospital of Shanghai, Fudan University, No. 801 Heqing Road, Minhang County, Shanghai, 200240, China.
| | - Dao-Pei Lu
- The Fifth People's Hospital of Shanghai, Fudan University, No. 801 Heqing Road, Minhang County, Shanghai, 200240, China.,Shanghai Dao-Pei Hospital, No. 126 Ruili Road, Minhang County, Shanghai, 200240, China
| |
Collapse
|
19
|
Ru Y, Chen J, Wu D. Epstein-Barr virus post-transplant lymphoproliferative disease (PTLD) after hematopoietic stem cell transplantation. Eur J Haematol 2018; 101:283-290. [PMID: 29949208 DOI: 10.1111/ejh.13131] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 06/18/2018] [Indexed: 01/08/2023]
Abstract
Epstein-Barr virus (EBV) viremia and post-transplant lymphoproliferative disease (PTLD) are severe complications after hematopoietic stem cell transplantation (HSCT). A series of risk factors have been found to predict EBV viremia and PTLD, including the T-cell depletion, reduced intensity conditioning, and alternative donor. The rituximab pre-emptive therapy could improve PTLD prognosis significantly, but the trigger of initiating rituximab pre-emptive therapy has not been well established. Additionally, EBV-specific cytotoxic T cell (CTL) is a promising approach to treat EBV-PTLD.
Collapse
Affiliation(s)
- Yuhua Ru
- Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China.,Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Jia Chen
- Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China.,Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Depei Wu
- Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China.,Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| |
Collapse
|
20
|
Jain T, Kosiorek HE, Grys TE, Kung ST, Shah VS, Betcher JA, Slack JL, Leis JF, Khera N, Noel P, Palmer JM, Sproat LZ. Single dose versus multiple doses of rituximab for preemptive therapy of Epstein-Barr virus reactivation after hematopoietic cell transplantation. Leuk Lymphoma 2018; 60:110-117. [PMID: 29979906 DOI: 10.1080/10428194.2018.1459603] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Epstein-Barr virus (EBV) reactivation is an unresolved medical issue after allogeneic hematopoietic stem cell transplantation (HSCT). Rituximab treatment is recommended for EBV reactivation after HSCT but the number of doses of rituximab to use is unclear. In this study, risk factors and outcomes of patients who needed 1 dose vs >1 doses of preemptive rituximab to clear EBV viremia were compared. A higher viral load was more likely to be associated with higher doses of rituximab. Patients whose EBV viremia cleared with 1 dose of rituximab were more likely to have a preceding reduction of immunosuppression. Overall survival (OS) in these 2 cohorts was not different (18.7 vs 26.6 months, respectively, p = .96). Since rituximab can have side effects and is fairly costly, a predictive model to determine the number of rituximab doses using viral load would be a useful and cost-effective manner to utilize rituximab for this indication.
Collapse
Affiliation(s)
- Tania Jain
- a Division of Hematology and Medical Oncology , Mayo Clinic , Phoenix , AZ , USA
| | - Heidi E Kosiorek
- b Division of Biostatistics, Mayo Clinic , Scottsdale , AZ , USA
| | - Thomas E Grys
- c Department of Laboratory Medicine and Pathology , Mayo Clinic , Phoenix , AZ , USA
| | - Shu Ting Kung
- d Department of Internal Medicine , Mayo Clinic , Phoenix , AZ , USA
| | - Vishal S Shah
- e Division of Pharmacy , Mayo Clinic , Phoenix , AZ , USA
| | | | - James L Slack
- a Division of Hematology and Medical Oncology , Mayo Clinic , Phoenix , AZ , USA
| | - Jose F Leis
- a Division of Hematology and Medical Oncology , Mayo Clinic , Phoenix , AZ , USA
| | - Nandita Khera
- a Division of Hematology and Medical Oncology , Mayo Clinic , Phoenix , AZ , USA
| | - Pierre Noel
- a Division of Hematology and Medical Oncology , Mayo Clinic , Phoenix , AZ , USA
| | - Jeanne M Palmer
- a Division of Hematology and Medical Oncology , Mayo Clinic , Phoenix , AZ , USA
| | - Lisa Z Sproat
- a Division of Hematology and Medical Oncology , Mayo Clinic , Phoenix , AZ , USA
| |
Collapse
|
21
|
Epstein-Barr Virus-Related Post-Transplantation Lymphoproliferative Disorders After Allogeneic Hematopoietic Stem Cell Transplantation. Biol Blood Marrow Transplant 2018. [DOI: 10.1016/j.bbmt.2018.02.026] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
22
|
Solano C, Mateo EM, Pérez A, Talaya A, Terol MJ, Albert E, Giménez E, Vinuesa V, Piñana JL, Boluda JCH, Navarro D. Epstein-Barr virus DNA load kinetics analysis in allogeneic hematopoietic stem cell transplant recipients: Is it of any clinical usefulness? J Clin Virol 2017; 97:26-32. [DOI: 10.1016/j.jcv.2017.10.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 10/24/2017] [Indexed: 12/12/2022]
|
23
|
Liu L, Feng SZ. [Advances on Epstein-Barr virus related post-transplant lymphoproliferative disorders after allogeneic hematopoietic stem cell transplantation]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2017; 38:817-821. [PMID: 29081206 PMCID: PMC7348362 DOI: 10.3760/cma.j.issn.0253-2727.2017.09.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Indexed: 11/13/2022]
|