1
|
Seybold B, Funk T, Dreger P, Egerer G, Brandt J, Mueller-Tidow C, Giesen N, Merle U. Microbiological risk factors, ICU survival, and 1-year survival in hematological patients with pneumonia requiring invasive mechanical ventilation. Eur J Clin Microbiol Infect Dis 2024; 43:1679-1688. [PMID: 38922376 PMCID: PMC11349809 DOI: 10.1007/s10096-024-04883-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 06/19/2024] [Indexed: 06/27/2024]
Abstract
PURPOSE To identify pathogenic microorganisms and microbiological risk factors causing high morbidity and mortality in immunocompromised patients requiring invasive mechanical ventilation due to pneumonia. METHODS A retrospective single-center study was performed at the intensive care unit (ICU) of the Department of Internal Medicine at Heidelberg University Hospital (Germany) including 246 consecutive patients with hematological malignancies requiring invasive mechanical ventilation due to pneumonia from 08/2004 to 07/2016. Microbiological and radiological data were collected and statistically analyzed for risk factors for ICU and 1-year mortality. RESULTS ICU and 1-year mortality were 63.0% (155/246) and 81.0% (196/242), respectively. Pneumonia causing pathogens were identified in 143 (58.1%) patients, multimicrobial infections were present in 51 (20.7%) patients. Fungal, bacterial and viral pathogens were detected in 89 (36.2%), 55 (22.4%) and 41 (16.7%) patients, respectively. Human herpesviruses were concomitantly reactivated in 85 (34.6%) patients. As significant microbiological risk factors for ICU mortality probable invasive Aspergillus disease with positive serum-Galactomannan (odds ratio 3.1 (1.2-8.0), p = 0.021,) and pulmonary Cytomegalovirus reactivation at intubation (odds ratio 5.3 (1.1-26.8), p = 0.043,) were identified. 1-year mortality was not significantly associated with type of infection. Of interest, 19 patients had infections with various respiratory viruses and Aspergillus spp. superinfections and experienced high ICU and 1-year mortality of 78.9% (15/19) and 89.5% (17/19), respectively. CONCLUSIONS Patients with hematological malignancies requiring invasive mechanical ventilation due to pneumonia showed high ICU and 1-year mortality. Pulmonary Aspergillosis and pulmonary reactivation of Cytomegalovirus at intubation were significantly associated with negative outcome.
Collapse
Affiliation(s)
- Benjamin Seybold
- Department of Anesthesiology, Heidelberg University Hospital, Im Neuenheimer Feld 420, 69120, Heidelberg, Germany.
| | - Timo Funk
- Department of Dermatology, Venereology and Allergology, Frankfurt University Hospital, Frankfurt, Germany
| | - Peter Dreger
- Department of Hematology, Oncology and Rheumatology, Heidelberg University Hospital, Heidelberg, Germany
| | - Gerlinde Egerer
- Department of Hematology, Oncology and Rheumatology, Heidelberg University Hospital, Heidelberg, Germany
| | - Juliane Brandt
- Department of Hematology, Oncology and Rheumatology, Heidelberg University Hospital, Heidelberg, Germany
| | - Carsten Mueller-Tidow
- Department of Hematology, Oncology and Rheumatology, Heidelberg University Hospital, Heidelberg, Germany
| | - Nicola Giesen
- Department of Hematology, Oncology and Rheumatology, Heidelberg University Hospital, Heidelberg, Germany
- Department of Hematology, Oncology and Palliative Care, Robert Bosch Hospital, Stuttgart, Germany
| | - Uta Merle
- Department of Internal Medicine IV, Heidelberg University Hospital, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany.
| |
Collapse
|
2
|
Pérez A, Gómez D, Montoro J, Chorão P, Hernani R, Guerreiro M, Villalba M, Albert E, Carbonell-Asins JA, Hernández-Boluda JC, Navarro D, Solano C, Piñana JL. Are any specific respiratory viruses more severe than others in recipients of allogeneic stem cell transplantation? A focus on lower respiratory tract disease. Bone Marrow Transplant 2024; 59:1118-1126. [PMID: 38730040 DOI: 10.1038/s41409-024-02304-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/23/2024] [Accepted: 04/30/2024] [Indexed: 05/12/2024]
Abstract
In the general population, influenza virus, respiratory syncytial virus, and SARS-CoV-2 are considered the most severe community-acquired respiratory viruses (CARVs). However, allogeneic stem cell transplant (allo-SCT) recipients may also face severe courses from other CARVs. This retrospective study compared outcomes of various CARV lower respiratory tract diseases (LRTD) in 235 adult allo-SCT recipients, excluding co-infection episodes. We included 235 adults allo-SCT recipients experiencing 353 CARV LRTD consecutive episodes (130 rhinovirus, 63 respiratory syncytial virus, 43 influenza, 43 human parainfluenza virus, 23 human metapneumovirus, 19 Omicron SARS-CoV-2, 17 common coronavirus, 10 adenovirus and 5 human bocavirus) between December 2013 and June 2023. Day 100 overall survival ranged from 78% to 90% without significant differences among CARV types. Multivariable analysis of day 100 all-cause mortality identified corticosteroid use of >1 to <30 mg/d [Hazard ratio (HR) 2.45, p = 0.02) and ≥30 mg/d (HR 2.20, p = 0.015) along with absolute lymphocyte count <0.2 × 109/L (HR 5.82, p < 0.001) and number of CARV episodes as a continuous variable per one episode increase (HR 0.48, p = 0.001) as independent risk factors for all-cause mortality. Degree of immunosuppression, rather than intrinsic CARV virulence, has the most significant impact on mortality in allo-SCT recipients with CARV-LRTD.
Collapse
Affiliation(s)
- Ariadna Pérez
- Department of Hematology. Hospital Clínico Universitario of Valencia, Spain. INCLIVA Biomedical Research Institute, Valencia, Spain
| | - Dolores Gómez
- Microbiology Service, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - Juan Montoro
- Hematology Division, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - Pedro Chorão
- Hematology Division, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - Rafael Hernani
- Department of Hematology. Hospital Clínico Universitario of Valencia, Spain. INCLIVA Biomedical Research Institute, Valencia, Spain
| | - Manuel Guerreiro
- Hematology Division, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - Marta Villalba
- Hematology Division, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - Eliseo Albert
- Microbiology Service, Hospital Clínico Universitario, Valencia, Spain
| | | | - Juan Carlos Hernández-Boluda
- Department of Hematology. Hospital Clínico Universitario of Valencia, Spain. INCLIVA Biomedical Research Institute, Valencia, Spain
- Department of Medicine, School of Medicine, University of Valencia, Valencia, Spain
| | - David Navarro
- Microbiology Service, Hospital Clínico Universitario, Valencia, Spain
- Department of Microbiology, School of Medicine, University of Valencia, Valencia, Spain
| | - Carlos Solano
- Department of Hematology. Hospital Clínico Universitario of Valencia, Spain. INCLIVA Biomedical Research Institute, Valencia, Spain
- Department of Medicine, School of Medicine, University of Valencia, Valencia, Spain
| | - José Luis Piñana
- Department of Hematology. Hospital Clínico Universitario of Valencia, Spain. INCLIVA Biomedical Research Institute, Valencia, Spain.
| |
Collapse
|
3
|
Wang Y, Zhang X, Xu L, Wang Y, Yan C, Chen H, Chen Y, Wei F, Han W, Wang F, Wang J, Huang X, Mo X. Clinical manifestations, prognostic factors, and outcomes of adenovirus pneumonia after allogeneic hematopoietic stem cell transplantation. Virol J 2024; 21:110. [PMID: 38745209 PMCID: PMC11094961 DOI: 10.1186/s12985-024-02383-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 05/03/2024] [Indexed: 05/16/2024] Open
Abstract
BACKGROUND Severe pneumonia is one of the most important causes of mortality after allogeneic hematopoietic stem cell transplantation (allo-HSCT). Adenovirus (ADV) is a significant cause of severe viral pneumonia after allo-HSCT, and we aimed to identify the clinical manifestations, prognostic factors, and outcomes of ADV pneumonia after allo-HSCT. METHODS Twenty-nine patients who underwent allo-HSCT at the Peking University Institute of Hematology and who experienced ADV pneumonia after allo-HSCT were enrolled in this study. The Kaplan-Meier method was used to estimate the probability of overall survival (OS). Potential prognostic factors for 100-day OS after ADV pneumonia were evaluated through univariate and multivariate Cox regression analyses. RESULTS The incidence rate of ADV pneumonia after allo-HSCT was approximately 0.71%. The median time from allo-HSCT to the occurrence of ADV pneumonia was 99 days (range 17-609 days). The most common clinical manifestations were fever (86.2%), cough (34.5%) and dyspnea (31.0%). The 100-day probabilities of ADV-related mortality and OS were 40.4% (95% CI 21.1%-59.7%) and 40.5% (95% CI 25.2%-64.9%), respectively. Patients with low-level ADV DNAemia had lower ADV-related mortality and better OS than did those with high-level (≥ 106 copies/ml in plasma) ADV DNAemia. According to the multivariate analysis, high-level ADV DNAemia was the only risk factor for intensive care unit admission, invasive mechanical ventilation, ADV-related mortality, and OS after ADV pneumonia. CONCLUSIONS We first reported the prognostic factors and confirmed the poor outcomes of patients with ADV pneumonia after allo-HSCT. Patients with high-level ADV DNAemia should receive immediate and intensive therapy.
Collapse
Affiliation(s)
- Yuewen Wang
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, No. 11 Xizhimen South Street, Xicheng District, Beijing, 100044, China
| | - Xiaohui Zhang
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, No. 11 Xizhimen South Street, Xicheng District, Beijing, 100044, China
| | - Lanping Xu
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, No. 11 Xizhimen South Street, Xicheng District, Beijing, 100044, China
- Research Unit of Key Technique for Diagnosis and Treatments of Hematologic Malignancies, Chinese Academy of Medical Sciences, Beijing, 2019RU029, China
| | - Yu Wang
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, No. 11 Xizhimen South Street, Xicheng District, Beijing, 100044, China
| | - Chenhua Yan
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, No. 11 Xizhimen South Street, Xicheng District, Beijing, 100044, China
- Research Unit of Key Technique for Diagnosis and Treatments of Hematologic Malignancies, Chinese Academy of Medical Sciences, Beijing, 2019RU029, China
| | - Huan Chen
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, No. 11 Xizhimen South Street, Xicheng District, Beijing, 100044, China
| | - Yuhong Chen
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, No. 11 Xizhimen South Street, Xicheng District, Beijing, 100044, China
| | - Fangfang Wei
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, No. 11 Xizhimen South Street, Xicheng District, Beijing, 100044, China
| | - Wei Han
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, No. 11 Xizhimen South Street, Xicheng District, Beijing, 100044, China
| | - Fengrong Wang
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, No. 11 Xizhimen South Street, Xicheng District, Beijing, 100044, China
| | - Jingzhi Wang
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, No. 11 Xizhimen South Street, Xicheng District, Beijing, 100044, China
| | - Xiaojun Huang
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, No. 11 Xizhimen South Street, Xicheng District, Beijing, 100044, China
- Research Unit of Key Technique for Diagnosis and Treatments of Hematologic Malignancies, Chinese Academy of Medical Sciences, Beijing, 2019RU029, China
- Peking-Tsinghua Center for Life Sciences, Beijing, 100871, China
| | - Xiaodong Mo
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, No. 11 Xizhimen South Street, Xicheng District, Beijing, 100044, China.
- Research Unit of Key Technique for Diagnosis and Treatments of Hematologic Malignancies, Chinese Academy of Medical Sciences, Beijing, 2019RU029, China.
| |
Collapse
|
4
|
Piñana JL, Tridello G, Xhaard A, Wendel L, Montoro J, Vazquez L, Heras I, Ljungman P, Mikulska M, Salmenniemi U, Perez A, Kröger N, Cornelissen J, Sala E, Martino R, Geurten C, Byrne J, Maertens J, Kerre T, Martin M, Pascual MJ, Yeshurun M, Finke J, Groll AH, Shaw PJ, Blijlevens N, Arcese W, Ganser A, Suarez-Lledo M, Alzahrani M, Choi G, Forcade E, Paviglianiti A, Solano C, Wachowiak J, Zuckerman T, Bader P, Clausen J, Mayer J, Schroyens W, Metafuni E, Knelange N, Averbuch D, de la Camara R. Upper and/or Lower Respiratory Tract Infection Caused by Human Metapneumovirus After Allogeneic Hematopoietic Stem Cell Transplantation. J Infect Dis 2024; 229:83-94. [PMID: 37440459 DOI: 10.1093/infdis/jiad268] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 07/06/2023] [Accepted: 07/10/2023] [Indexed: 07/15/2023] Open
Abstract
BACKGROUND Human metapneumovirus (hMPV) epidemiology, clinical characteristics and risk factors for poor outcome after allogeneic stem cell transplantation (allo-HCT) remain a poorly investigated area. METHODS This retrospective multicenter cohort study examined the epidemiology, clinical characteristics, and risk factors for poor outcomes associated with human metapneumovirus (hMPV) infections in recipients of allo-HCT. RESULTS We included 428 allo-HCT recipients who developed 438 hMPV infection episodes between January 2012 and January 2019. Most recipients were adults (93%). hMPV infections were diagnosed at a median of 373 days after allo-HCT. The infections were categorized as upper respiratory tract disease (URTD) or lower respiratory tract disease (LRTD), with 60% and 40% of cases, respectively. Patients with hMPV LRTD experienced the infection earlier in the transplant course and had higher rates of lymphopenia, neutropenia, corticosteroid use, and ribavirin therapy. Multivariate analysis identified lymphopenia and corticosteroid use (>30 mg/d) as independent risk factors for LRTD occurrence. The overall mortality at day 30 after hMPV detection was 2% for URTD, 12% for possible LRTD, and 21% for proven LRTD. Lymphopenia was the only independent risk factor associated with day 30 mortality in LRTD cases. CONCLUSIONS These findings highlight the significance of lymphopenia and corticosteroid use in the development and severity of hMPV infections after allo-HCT, with lymphopenia being a predictor of higher mortality in LRTD cases.
Collapse
Affiliation(s)
- Jose Luis Piñana
- Hematology Department, Hospital Clinico Universitario de Valencia, Valencia, Spain
- Fundación INCLIVA, Instituto de Investigación Sanitaria, Hospital Clínico, Universitario de Valencia, Valencia, Spain
| | - Gloria Tridello
- Azienda Ospedaliera, Universitaria Integrata Verona, Verona, Italy
| | - Aliénor Xhaard
- Service d'Hématologie-Greffe, Hôpital Saint-Louis, Université Paris-Diderot, Paris, France
| | - Lotus Wendel
- Leiden Study Unit, EBMT, Leiden, The Netherlands
| | - Juan Montoro
- Hematology División, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - Lourdes Vazquez
- Hematology Department, Hospital Clinico Universitario de Salamanca, Salamanca, Spain
| | | | - Per Ljungman
- Department of Cellular Therapy and Allogeneic Stem Cell Transplantation, Karolinska Comprehensive Cancer Center, Karolinska University Hospital Huddinge, Stockholm, Sweden
- Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Malgorzata Mikulska
- Division of Infectious Diseases, Dipartimento di scienze della salute, University of Genoa, Genova, Italy
- IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Urpu Salmenniemi
- Hematology Department, Comprehensive Cancer Center, Helsinki University Central Hospital, Helsinki, Finland
| | - Ariadna Perez
- Hematology Department, Hospital Clinico Universitario de Valencia, Valencia, Spain
- Fundación INCLIVA, Instituto de Investigación Sanitaria, Hospital Clínico, Universitario de Valencia, Valencia, Spain
| | - Nicolaus Kröger
- Department for Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jan Cornelissen
- Hematology Department, Erasmus Medical Center Cancer Institute, Rotterdam, The Netherlands
| | - Elisa Sala
- Department of Internal Medicine III, University Hospital of Ulm, Ulm, Germany
| | - Rodrigo Martino
- Hematology Department, Hospital de la Santa Creu I Sant Pau, Barcelona, Spain
| | - Claire Geurten
- Hematology Department, Birmingham Children's Hospital, Birmingham, United Kingdom
- Centre Hospitalier Universitaire de Liege, Liege, Belgium
| | - Jenny Byrne
- Hematology Department, Nottingham University, Nottingham, United Kingdom
| | - Johan Maertens
- Hematology Department, University Hospital Gasthuisberg, Leuven, Belgium
| | - Tessa Kerre
- Hematology Department, Ghent University Hospital, Gent, Belgium
| | - Murray Martin
- Hematology Department, Leicester Royal Infirmary, Leicester, United Kingdom
| | | | - Moshe Yeshurun
- Institution of Hematology, Rabin Medical Center, Petach-Tikva, Israel
- Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Jürgen Finke
- Hematology Department, University of Freiburg, Freiburg, Germany
| | - Andreas H Groll
- Infectious Disease Research Program, Department of Pediatric Hemtology and Oncology and Center for Bone Marrow Transplantation, University Children's Hospital, Muenster, Germany
| | - Peter J Shaw
- The Children`s Hospital at Westmead, Sydney, Australia
| | | | - William Arcese
- Hematology Department, Tor Vergata University of Rome, Rome, Italy
| | | | | | - Mohsen Alzahrani
- Department of Oncology, King Abdulaziz Medical City, Ministry of National Guard-Health Affairs, Riyadh, Saudi Arabia
| | - Goda Choi
- University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Edouard Forcade
- Service d'Hématologie Clinique et Thérapie Cellulaire, Centre Hospitalier Universitaire Bordeaux, Bordeaux, France
| | | | - Carlos Solano
- Hematology Department, Hospital Clinico Universitario de Valencia, Valencia, Spain
- Fundación INCLIVA, Instituto de Investigación Sanitaria, Hospital Clínico, Universitario de Valencia, Valencia, Spain
- Department of Medicine, University of Valencia, Valencia, Spain
| | - Jacek Wachowiak
- Department of Pediatric Oncology, Hematology, and Hematopoietic Cell Transplantation, University of Medical Sciences, Poznan, Poland
| | | | - Peter Bader
- Division for Stem Cell Transplantation, Immunology and Intensive Care Medicine, Department for Pediatrics and Adolescent Medicine, University Hospital, Goethe University, Frankfurt, Germany
| | - Johannes Clausen
- Department of Internal Medicine I, Ordensklinikum Linz-Elisabethinen, Johannes Kepler University, Linz, Austria
| | - Jiri Mayer
- Masaryk University Hospital Brno, Brno, Czech Republic
| | | | - Elisabetta Metafuni
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica e EmatologiaGemelli Research Institute, Fondazione Policlinico Universitario Agostino Gemelli Research Institute, Roma, Italy
| | | | - Dina Averbuch
- Faculty of Medicine, Hebrew University of Jerusalem, Hadassah Medical Center, Jerusalem, Israel
| | - Rafael de la Camara
- Hematology Department, Hospital de la Princesa, Madrid, Spain
- Hematology Department, Hospital Universitario Sanitas La Zarzuela, Madrid, Spain
| |
Collapse
|
5
|
Matsui T, Ogimi C. Risk factors for severity in seasonal respiratory viral infections and how they guide management in hematopoietic cell transplant recipients. Curr Opin Infect Dis 2023; 36:529-536. [PMID: 37729657 DOI: 10.1097/qco.0000000000000968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
PURPOSE OF REVIEW Seasonal respiratory virus infections (RVIs) often progress to severe diseases in hematopoietic cell transplant (HCT) recipients. This review summarizes the current evidence on risk factors for the severity of RVIs in this high-risk population and provides clinical management. RECENT FINDINGS The likelihood of the respiratory viral disease progression depends on the immune status of the host and the type of virus. Conventional host factors, such as the immunodeficiency scoring index and the severe immunodeficiency criteria, have been utilized to estimate the risk of progression to severe disease, including mortality. Recent reports have suggested nonconventional risk factors, such as hyperglycemia, hypoalbuminemia, prior use of antibiotics with broad anaerobic activity, posttransplant cyclophosphamide, and pulmonary impairment after RVIs. Identifying novel and modifiable risk factors is important with the advances of novel therapeutic and preventive interventions for RVIs. SUMMARY Validation of recently identified risk factors for severe RVIs in HCT recipients is required. The development of innovative interventions along with appropriate risk stratification is critical to improve outcomes in this vulnerable population.
Collapse
Affiliation(s)
- Toshihiro Matsui
- Division of Infectious Diseases, Department of Medical Subspecialties, National Center for Child Health and Development, Tokyo, Japan
| | - Chikara Ogimi
- Division of Infectious Diseases, Department of Medical Subspecialties, National Center for Child Health and Development, Tokyo, Japan
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| |
Collapse
|
6
|
Piñana JL, Pérez A, Chorão P, Guerreiro M, García-Cadenas I, Solano C, Martino R, Navarro D. Respiratory virus infections after allogeneic stem cell transplantation: Current understanding, knowledge gaps, and recent advances. Transpl Infect Dis 2023; 25 Suppl 1:e14117. [PMID: 37585370 DOI: 10.1111/tid.14117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 07/29/2023] [Accepted: 08/01/2023] [Indexed: 08/18/2023]
Abstract
Before the COVID-19 pandemic, common community-acquired seasonal respiratory viruses (CARVs) were a significant threat to the health and well-being of allogeneic hematopoietic cell transplant (allo-HCT) recipients, often resulting in severe illness and even death. The pandemic has further highlighted the significant risk that immunosuppressed patients, including allo-HCT recipients, face when infected with SARS-CoV-2. As preventive transmission measures are relaxed and CARVs circulate again among the community, including in allo-HSCT recipients, it is crucial to understand the current state of knowledge, gaps, and recent advances regarding CARV infection in allo-HCT recipients. Urgent research is needed to identify seasonal respiratory viruses as potential drivers for future pandemics.
Collapse
Affiliation(s)
- Jose L Piñana
- Hematology Department, Hospital Clínico Universitario de Valencia, Valencia, Spain
- Fundación INCLIVA, Instituto de Investigación Sanitaria Hospital Clínico Universitario de Valencia, Valencia, Spain
| | - Ariadna Pérez
- Hematology Department, Hospital Clínico Universitario de Valencia, Valencia, Spain
- Fundación INCLIVA, Instituto de Investigación Sanitaria Hospital Clínico Universitario de Valencia, Valencia, Spain
| | - Pedro Chorão
- Hematology Division, Hospital universitario y politécnico La Fe, Valencia, Spain
- Instituto de Investigación La Fe, Hospital Universitário y Politécncio La Fe, Valencia, Spain
| | - Manuel Guerreiro
- Hematology Division, Hospital universitario y politécnico La Fe, Valencia, Spain
- Instituto de Investigación La Fe, Hospital Universitário y Politécncio La Fe, Valencia, Spain
| | | | - Carlos Solano
- Hematology Department, Hospital Clínico Universitario de Valencia, Valencia, Spain
- Fundación INCLIVA, Instituto de Investigación Sanitaria Hospital Clínico Universitario de Valencia, Valencia, Spain
| | - Rodrigo Martino
- Hematology Division, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - David Navarro
- Microbiology department, Hospital Clinico Universitario de Valencia, Spain
- Department of Medicine, School of Medicine, University of Valencia, Valencia, Spain
| |
Collapse
|
7
|
Zhang Y, Lu X, Tang LV, Xia L, Hu Y. Nanopore-Targeted Sequencing Improves the Diagnosis and Treatment of Patients with Serious Infections. mBio 2023; 14:e0305522. [PMID: 36651731 PMCID: PMC9979620 DOI: 10.1128/mbio.03055-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 12/20/2022] [Indexed: 01/19/2023] Open
Abstract
Serious infections are characterized by rapid progression, poor prognosis, and difficulty in diagnosis. Recently, a new technique known as nanopore-targeted sequencing (NTS) was developed that facilitates the rapid and accurate detection of pathogenic microorganisms and is extremely suitable for patients with serious infections. The aim of our study was to evaluate the clinical application of NTS in the diagnosis and treatment of patients with serious infections. We developed an NTS technology that could detect microorganisms within a 6-h window based on the amplification of the 16S rRNA gene of bacteria, the internal transcribed spacer region of fungi, and the rpoB gene of Mycobacterium. The NTS detection results were compared with those of blood cultures and anal swabs from 50 patients with blood diseases suffering serious infections. The patient's condition before and after NTS was compared. The response rate and the infection-related mortality after the adjustment of antibiotics based on NTS were calculated. The positivity rate of pathogens was highest in NTS (90%), followed by blood culture (32.6%) and anal swabs (14.6%). After adjusting antibiotics for bacteria and fungi detected by NTS, the patients' condition improved significantly. Moreover, the response rate of anti-infective treatment based on NTS was 93.02% (40/43), and infection-related mortality was reduced to 0. NTS is an effective method to identify pathogens in the blood specimens of patients with serious infections and can guide anti-infection treatment and reduce infection-related mortality. IMPORTANCE We introduce the application of NTS in blood samples of patients with serious infections and expound the efficiency and accuracy of NTS in detecting pathogenic microorganisms. Our work builds on the considerable interest of the scientific community in the management of serious infection. This issue is becoming more pressing, especially since the incidence of blood diseases is increasing year by year and hematopoietic stem cell transplantation (HSCT) has been widely used in benign and malignant blood diseases in recent years. The infection progression of these patients is faster, and the study further demonstrates the effectiveness of NTS in guiding the diagnosis and treatment of patients with severe infections. We firmly believe that this method will guide clinicians to adjust anti-infection strategies and bring significant benefits to patients, and our study will have implications for the future clinical application of NTS in all kinds of patients with serious infections.
Collapse
Affiliation(s)
- Yi Zhang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xuan Lu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liang V. Tang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Linghui Xia
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Hu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
8
|
Exposure to antibiotics with anaerobic activity before respiratory viral infection is associated with respiratory disease progression after hematopoietic cell transplant. Bone Marrow Transplant 2022; 57:1765-1773. [PMID: 36064752 DOI: 10.1038/s41409-022-01790-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 08/09/2022] [Accepted: 08/11/2022] [Indexed: 11/08/2022]
Abstract
We examined associations between specific antibiotic exposures and progression to lower respiratory tract disease (LRTD) following individual respiratory viral infections (RVIs) after hematopoietic cell transplantation (HCT). We analyzed allogeneic HCT recipients of all ages with their first RVI during the first 100 days post-HCT. For the 21 days before RVI onset, we recorded any receipt of specific groups of antibiotics, and the cumulative sum of the number of antibiotics received for each day (antibiotic-days). We used Cox proportional hazards models to assess the relationship between antibiotic exposure and progression to LRTD. Among 469 patients with RVI, 124 progressed to LRTD. Compared to no antibiotics, use of antibiotics with broad anaerobic activity in the prior 21 days was associated with progression to LRTD after adjusting for age, virus type, hypoalbuminemia, neutropenia, steroid use, and monocytopenia (HR 2.2, 95% CI 1.1-4.1). Greater use of those antibiotics (≥7 antibiotic days) was also associated with LRTD in adjusted models (HR 2.2, 95% CI 1.1-4.3). Results were similar after adjusting for lymphopenia instead of monocytopenia. Antibiotic use is associated with LRTD after RVI across different viruses in HCT recipients. Prospective studies using anaerobe-sparing antibiotics should be explored to assess impact on LRTD in patients undergoing HCT.
Collapse
|
9
|
Schaffrath J, Brummer C, Wolff D, Holtick U, Kröger N, Bornhäuser M, Kraus S, Hilgendorf I, Blau IW, Penack O, Wittke C, Steiner N, Nachbaur D, Thurner L, Hindah H, Zeiser R, Maier CP, Bethge W, Müller LP. High mortality of COVID-19 early after allogeneic stem cell transplantation – a retrospective multicenter analysis on behalf of the German Cooperative Transplant Study Group. Transplant Cell Ther 2022; 28:337.e1-337.e10. [PMID: 35296445 PMCID: PMC8918088 DOI: 10.1016/j.jtct.2022.03.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 03/08/2022] [Accepted: 03/09/2022] [Indexed: 11/29/2022]
Abstract
Recipients of allogeneic stem cell transplantation (alloSCT) are at high risk for contracting infectious diseases with high morbidity and mortality. Coronavirus disease 2019 (COVID-19) is a viral respiratory disease that can lead to severe pneumonia and acute respiratory distress syndrome, with a potentially fatal outcome. In this retrospective study conducted on behalf of the German Cooperative Transplant Study Group, we aimed to analyze risk factors, disease course, and outcomes of COVID-19 in patients who underwent alloSCT. AlloSCT recipients who became infected with SARS-CoV-2 at German and Austrian transplant centers between February 2020 and July 2021 were included. Classification of COVID-19 severity into mild, moderate-severe, or critical disease and division of the course of the pandemic into 4 phases were done according to the German Robert Koch Institute. The main endpoint was overall mortality at the end of follow-up. We further analyzed the need for treatment in an intensive care unit (ICU) and the severity of disease. Risk factors were evaluated using univariate and multivariate analyses, and survival analysis was performed using Kaplan-Meier method. The study cohort comprised 130 patients from 14 transplant centers, with a median age at diagnosis of COVID-19 of 59 years (range, 20 to 81 years) and a median interval between alloSCT and COVID-19 of 787 days (range, 19 to 8138 days). The most common underlying diseases were acute myeloid leukemia (45.4%) and lymphoma (10.8%). The majority of patients (84.9%) were infected in the later phases of the pandemic; 20.8% had moderate-severe disease, 12.3% had critical disease, and 19.2% were treated in an ICU. After a median follow-up of 127 days, overall mortality was 16.2%, 52.0% among patients treated in an ICU. Risk factors for mortality in multivariate analysis were active disease (odds ratio [OR], 4.46), infection with SARS-CoV-2 ≤365 days after alloSCT (OR, 5.60), age >60 years (OR, 5.39), and ongoing immunosuppression with cyclosporine (OR, 8.55). Risk factors for developing moderate-severe or critical disease were concurrent immunosuppression (OR, 4.06) and age >40 years (OR, 4.08). Patients after alloSCT exhibit a substantially increased mortality risk after COVID-19 infection compared with the normal population, without considerable improvement over the course of the pandemic. Risk factors include age, early infection post-alloSCT, and active immunosuppression. Further studies are needed to improve prevention and treatment in this high-risk patient group.
Collapse
|
10
|
Piñana JL, López‐Corral L, Martino R, Montoro J, Vazquez L, Pérez A, Martin‐Martin G, Facal‐Malvar A, Ferrer E, Pascual M, Sanz‐Linares G, Gago B, Sanchez‐Salinas A, Villalon L, Conesa‐Garcia V, Olave MT, López‐Jimenez J, Marcos‐Corrales S, García‐Blázquez M, Garcia‐Gutiérrez V, Hernández‐Rivas JÁ, Saus A, Espigado I, Alonso C, Hernani R, Solano C, Ferrer‐Lores B, Guerreiro M, Ruiz‐García M, Muñoz‐Bellido JL, Navarro D, Cedillo A, Sureda A. SARS-CoV-2-reactive antibody detection after SARS-CoV-2 vaccination in hematopoietic stem cell transplant recipients: Prospective survey from the Spanish Hematopoietic Stem Cell Transplantation and Cell Therapy Group. Am J Hematol 2022; 97:30-42. [PMID: 34695229 PMCID: PMC8646900 DOI: 10.1002/ajh.26385] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 10/17/2021] [Accepted: 10/20/2021] [Indexed: 02/06/2023]
Abstract
This is a multicenter prospective observational study that included a large cohort (n = 397) of allogeneic (allo‐HSCT; (n = 311) and autologous (ASCT) hematopoietic stem cell transplant (n = 86) recipients who were monitored for antibody detection within 3–6 weeks after complete severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) vaccination from February 1, 2021, to July 20, 2021. Most patients (n = 387, 97.4%) received mRNA‐based vaccines. Most of the recipients (93%) were vaccinated more than 1 year after transplant. Detectable SARS‐CoV‐2‐reactive antibodies were observed in 242 (78%) of allo‐HSCT and in 73 (85%) of ASCT recipients. Multivariate analysis in allo‐HSCT recipients identified lymphopenia < 1 × 109/ml (odds ratio [OR] 0.33, 95% confidence interval [95% CI] 0.16–0.69, p = .003), active graft versus host disease (GvHD; OR 0.51, 95% CI 0.27–0.98, p = .04) and vaccination within the first year of transplant (OR 0.3, 95% CI 0.15–0.9, p = .04) associated with lower antibody detection whereas. In ASCT, non‐Hodgkin's lymphoma (NHL; OR 0.09, 95% CI 0.02–0.44, p = .003) and active corticosteroid therapy (OR 0.2, 95% CI 0.02–0.87, p = .03) were associated with lower detection rate. We report an encouraging rate of SARS‐CoV‐2‐reactive antibodies detection in these severe immunocompromised patients. Lymphopenia, GvHD, the timing of vaccine, and NHL and corticosteroids therapy should be considered in allo‐HSCT and ASCT, respectively, to identify candidates for SARS‐CoV‐2 antibodies monitoring.
Collapse
Affiliation(s)
- José Luis Piñana
- Hematology Department Hospital Clínico Universitario de Valencia Valencia Spain
- Fundación INCLIVA, Instituto de Investigación Sanitaria Hospital Clínico Universitario de Valencia Valencia Spain
| | | | - Rodrigo Martino
- Hematology Division Hospital de la Santa Creu i Sant Pau Barcelona Spain
| | - Juan Montoro
- Hematology Division Hospital universitario y politécnico La Fe Valencia Spain
| | - Lourdes Vazquez
- Hematology Division Hospital Universitario de Salamanca Salamanca Spain
| | - Ariadna Pérez
- Hematology Department Hospital Clínico Universitario de Valencia Valencia Spain
- Fundación INCLIVA, Instituto de Investigación Sanitaria Hospital Clínico Universitario de Valencia Valencia Spain
| | | | - Ana Facal‐Malvar
- Hematology Division Hospital universitario y politécnico La Fe Valencia Spain
| | - Elena Ferrer
- Hematology Department Hospital Clínico Universitario de Valencia Valencia Spain
| | - María‐Jesús Pascual
- Hematology Division Hospital Regional Universitario Carlos Haya Malaga Spain
| | - Gabriela Sanz‐Linares
- Hematology Division Institut Català Oncologia‐Hospital Duran i reynals Barcelona Spain
| | - Beatriz Gago
- Hematology Division Hospital Regional Universitario Carlos Haya Malaga Spain
| | | | - Lucia Villalon
- Hematology Division Hospital Universitario Fundación Alcorcón Madrid Spain
| | | | - Maria T. Olave
- Hematology Division Hospital Clínico Universitario Lozano Blesa IIS Aragon, Zaragoza Spain
| | | | | | | | | | | | - Ana Saus
- Hematology Department Hospital Clínico Universitario de Valencia Valencia Spain
- Fundación INCLIVA, Instituto de Investigación Sanitaria Hospital Clínico Universitario de Valencia Valencia Spain
| | - Ildefonso Espigado
- Hematology Division Universidad de Sevilla, Hospital Universitario Virgen Macarena‐Hospital Universitario Virgen del Rocío, IBiS/CSIC Sevilla Spain
| | - Carmen Alonso
- Hematology Division Hospital Arnau de Vilanova Valencia Spain
| | - Rafael Hernani
- Hematology Department Hospital Clínico Universitario de Valencia Valencia Spain
- Fundación INCLIVA, Instituto de Investigación Sanitaria Hospital Clínico Universitario de Valencia Valencia Spain
| | - Carlos Solano
- Hematology Department Hospital Clínico Universitario de Valencia Valencia Spain
- Fundación INCLIVA, Instituto de Investigación Sanitaria Hospital Clínico Universitario de Valencia Valencia Spain
- Department of Medicine, School of Medicine University of Valencia Valencia Spain
| | - Blanca Ferrer‐Lores
- Hematology Department Hospital Clínico Universitario de Valencia Valencia Spain
- Fundación INCLIVA, Instituto de Investigación Sanitaria Hospital Clínico Universitario de Valencia Valencia Spain
| | - Manuel Guerreiro
- Hematology Division Hospital universitario y politécnico La Fe Valencia Spain
| | | | | | - David Navarro
- Fundación INCLIVA, Instituto de Investigación Sanitaria Hospital Clínico Universitario de Valencia Valencia Spain
- Microbiology department Hospital Clinico Universitario de Valencia Valencia Spain
| | - Angel Cedillo
- Hematopoietic Stem Cell Transplantation and Cell Therapy Group (GETH) Madrid Spain
| | - Anna Sureda
- Hematology Division Institut Català Oncologia‐Hospital Duran i reynals Barcelona Spain
| | | |
Collapse
|
11
|
Houist AL, Bondeelle L, Salmona M, LeGoff J, de Latour RP, Rivière F, Soler C, Houdouin V, Dalle JH, Robin C, Fourati S, Griscelli F, Coman T, Chevret S, Bergeron A. Evaluation of prognostic scores for respiratory syncytial virus infection in a French multicentre cohort of allogeneic haematopoietic stem cell transplantation recipients. Bone Marrow Transplant 2021; 56:3032-3041. [PMID: 34548625 PMCID: PMC8454013 DOI: 10.1038/s41409-021-01462-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 08/19/2021] [Accepted: 09/01/2021] [Indexed: 11/09/2022]
Abstract
Haematopoietic stem cell transplantation (HSCT) recipients are at risk for severe respiratory syncytial virus (RSV) infection. Two prognostic scores have been proposed to predict the risk of progression from upper respiratory tract infection (URTI) to lower respiratory tract infection (LRTI) and death. This was a multicentre study of allogeneic HSCT recipients diagnosed with an RSV infection between 2010 and 2019 who were retrospectively stratified by the immunodeficiency scoring index (ISI) and the severe immunodeficiency (SID) score. Endpoints were overall survival, RSV-attributable mortality and progression to LRTI after URTI. Prognostic analyses were performed using Cox regression models. We included 147 consecutive patients, including 94 (63.9%) initially diagnosed with URTI and 53 (36.1%) with LRTI. At 90 days, 14 patients had died (survival rate, 90.5%; 95% CI: 85.9-95.3), and nine deaths were attributable to RSV (attributable mortality rate, 5.4%; 95% CI: 2.5-10.0). The cumulative 90-day incidence of LRTI after URTI was 13.8% (95% CI: 7.8-21.6). Neither score showed prognostic value for mortality, while the ISI allowed the prediction of progression to LRTI (p = 0.0008). Our results do not fully replicate the results previously reported in cohorts of HSCT recipients. This may reflect the recent epidemiology of RSV infections in this HSCT cohort.
Collapse
Affiliation(s)
| | - Louise Bondeelle
- Université de Paris, Service de Pneumologie, Hôpital Saint-Louis, AP-HP -, Paris, France
| | - Maud Salmona
- Université de Paris, Service de Virologie, Hôpital Saint-Louis, AP-HP -, Paris, France
| | - Jérôme LeGoff
- Université de Paris, Service de Virologie, Hôpital Saint-Louis, AP-HP -, Paris, France
| | | | - Frédéric Rivière
- Service de Pneumologie, Hôpital d'instruction des armées Percy -, Clamart, France
| | - Charles Soler
- Service de Microbiologie, Hôpital d'instruction des armées Percy -, Clamart, France
| | - Véronique Houdouin
- Université de Paris, Service de Pneumologie-Pédiatrie, Hôpital Robert Debré, AP-HP -, Paris, France
| | - Jean-Hugues Dalle
- Université de Paris, Service d'Hématologie pédiatrique, Hôpital Robert Debré, AP-HP -, Paris, France
| | - Christine Robin
- Service d'Hématologie, Hôpital Henri Mondor, Université Paris-Est, AP-HP -, Créteil, France
| | - Slim Fourati
- Département de Bactériologie-Virologie, Hôpital Henri Mondor, Université Paris-Est, AP-HP -, Créteil, France
| | - Franck Griscelli
- Département de Biologie et de Pathologies médicales, Institut Gustave-Roussy -, Villejuif, France
| | - Tereza Coman
- Service d'Hématologie, Institut Gustave-Roussy -, Villejuif, France
| | - Sylvie Chevret
- Université de Paris, Département de Biostatistique et Informatique Médicale, Hôpital Saint Louis, AP-HP -, Paris, France.,Université de Paris, ECSTRRA Team, Inserm, UMR 1153 CRESS, F-75010, Paris, France
| | - Anne Bergeron
- Université de Paris, Service de Pneumologie, Hôpital Saint-Louis, AP-HP -, Paris, France. .,Université de Paris, ECSTRRA Team, Inserm, UMR 1153 CRESS, F-75010, Paris, France.
| |
Collapse
|
12
|
Hanisch BR, Cohen W, Jacobsohn D, Song X. Impact of hospital acquired infections on post-transplant one year mortality in pediatric bone marrow transplant patients. Am J Infect Control 2021; 49:179-183. [PMID: 32682014 DOI: 10.1016/j.ajic.2020.07.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/10/2020] [Accepted: 07/13/2020] [Indexed: 10/23/2022]
Abstract
OBJECTIVE Children undergoing hematopoietic stem cell transplant (HSCT) are prone to infections, especially when hospitalized for the transplant or additional medical care. These infections are perceived to increase patient's mortality risk, but data are lacking. We conducted this study to assess the burden and the impact of hospital acquired infections (HAI) on mortality risk among pediatric HSCT patients. METHODS This retrospective study included 169 patients that received allogeneic HSCT between January 1 2011 and July 6 2017 at Children's National Hospital, a tertiary referral center. Clinical and laboratory data were reviewed for 1 year after transplant to determine HAI and survival status. The HAI incident rates stratified by bloodstream, respiratory, and gastrointestinal infections were then compared between deceased patients and survivors. RESULTS Including transplant, 169 patients sustained 499 hospital admissions for total of 10,523 patient days and 112 HAI episodes, resulting in a HAI rate of 10.6 per 1,000 patient-days. Within 1-year after transplant, 38 (22%) patient died, 30 (17.5%) with nonrelapse-related causes. Unadjusted univariate analysis revealed mortality correlated with cell source (p=0.035), donor type (p = 0.002), respiratory viral infections (P = .015), and central line associated blood stream infection (CLABSIs; P < .001). Adjusted analysis revealed CLABSI and respiratory adenovirus infection independently increased mortality risk by 3-fold (hazard ratio: 3.22, 95% confidence interval:1.30-8.00) and (hazard ratio: 3.32, 95% confidence interval: 1.22-9.06), respectively. CONCLUSIONS In light of the high frequency of multiple factors contributing to mortality we are unable to determine the degree HAI contributed mortality. However, our findings suggest preventing CLABSIs and respiratory adenovirus infections are crucial to improve the 1-year survival among pediatric HSCT patients.
Collapse
|
13
|
Bacigalupo A, Metafuni E, Amato V, Marquez Algaba E, Pagano L. Reducing infectious complications after allogeneic stem cell transplant. Expert Rev Hematol 2020; 13:1235-1251. [PMID: 32996342 DOI: 10.1080/17474086.2020.1831382] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
INTRODUCTION Infections remain a significant problem, in patients undergoing an allogeneic hematopoietic stem-cell transplant (HSCT) and efforts have been made over the years, to reduce the incidence, morbidity and mortality of infectious complications. AREAS COVERED This manuscript is focused on the epidemiology, risk factors and prevention of infections after allogeneic HSCT. A systematic literature review was performed using the PubMed database, between November 2019 and January 2020, with the following MeSH terms: stem-cell transplantation, infection, fungal, bacterial, viral, prophylaxis, vaccines, prevention. The authors reviewed all the publications, and following a common revision, a summary report was made and results were divided in three sections: bacterial, fungal and viral infections. EXPERT OPINION Different infections occur in the early, intermediate and late post-transplant period, due to distinct risk factors. Improved diagnostic techniques, pre-emtive therapy and better prophylaxis of immunologic complications, have reduced the morbidity and mortality of infections. The role of the gut microbiota is under careful scrutiny and may further help us to identify high-risk patients.
Collapse
Affiliation(s)
- Andrea Bacigalupo
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario Agostino Gemelli- IRCCS , Rome, Italy
| | - Elisabetta Metafuni
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario Agostino Gemelli- IRCCS , Rome, Italy
| | - Viviana Amato
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario Agostino Gemelli- IRCCS , Rome, Italy
| | - Ester Marquez Algaba
- Infectious Diseases Department, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona , Barcelona, Spain
| | - Livio Pagano
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario Agostino Gemelli- IRCCS , Rome, Italy.,Sezione di Ematologia, Dipartimento di Scienze Radiologiche ed Ematologiche, Università Cattolica Del Sacro Cuore , Rome, Italy
| |
Collapse
|
14
|
Patterns of infection and infectious-related mortality in patients receiving post-transplant high dose cyclophosphamide as graft-versus-host-disease prophylaxis: impact of HLA donor matching. Bone Marrow Transplant 2020; 56:818-827. [PMID: 33106541 PMCID: PMC7587539 DOI: 10.1038/s41409-020-01092-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 10/06/2020] [Accepted: 10/08/2020] [Indexed: 12/14/2022]
Abstract
Post-transplant cyclophosphamide (PTCy) has become a promising option after allo-SCT, but infections may be more common than in traditional protocols. We herein report 117 consecutive adults who received PTCy-based alloSCT in our hospital: HaploSCT (34%), MRD (19%), and VUD (47%), respectively. The 18-month incidence of severe bacterial, viral, and IFI was 56%, 69%, and 8.7%, without differences between donor type, except for CMV infection and viral hemorrhagic cystitis, which had a higher incidence in the haploSCT cohort (58% vs. 43% and 30% vs. 8% on day +90, p < 0.05). Late infections by conventional respiratory viruses were common in all groups [33/87 (38%)]. The 2-year survival was 72% and did not differ by donor type. IRM at day 30, day 100, and 18 months was 1.7%, 4.4%, and 12%, without differences by donor type (p = 0.7). The primary cause of IRM was bacterial infection (42%). Grade 2–4 acute GvHD was the only independent predictor of IRM. Donor type had no impact on IRM or on survival. In our study, severe infections were common in all donor types using PTCy, with higher rates of early post-engraftment CMV-I and viral HC in haploSCT recipients, although lethal infections were uncommon and similar in all donor types.
Collapse
|
15
|
Montoro J, Sanz J, Lorenzo I, Balaguer-Roselló A, Salavert M, Gómez MD, Guerreiro M, González Barberá EM, Aguado C, Tofán L, Sanz GF, Sanz MA, Piñana JL. Community acquired respiratory virus infections in adult patients undergoing umbilical cord blood transplantation. Bone Marrow Transplant 2020; 55:2261-2269. [PMID: 32415227 PMCID: PMC7227453 DOI: 10.1038/s41409-020-0943-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 04/28/2020] [Accepted: 05/01/2020] [Indexed: 01/24/2023]
Abstract
Characteristics and risk factors (RFs) of community-acquired respiratory virus (CARV) infections after umbilical cord blood transplantation (UCBT) are lacking. We retrospectively analyzed CARV infections in 216 single-unit myeloablative UCBT recipients. One-hundred and fourteen episodes of CARV infections were diagnosed in 62 (29%) patients. Upper respiratory tract disease (URTD) occurred in 61 (54%) whereas lower respiratory tract disease (LRTD) in 53 (46%). The 5-year cumulative incidence of CARV infection was 29%. RFs for developing CARV infections were: prednisone-based graft-versus-host disease (GVHD) prophylaxis and grade II–IV acute GVHD. RFs analysis of CARV progression to LRTD identified 2007–2009 period and absolute lymphocyte count (ALC) < 0.5 × 109/L. ALC < 0.5 × 109/L had a negative impact on day 60 mortality in both overall CARV and those with LRTD, whereas proven LRTD was associated with higher day 60 mortality. CARV infections had a negative effect on non-relapse mortality. Overall survival at day 60 after CARV detection was significantly lower in recipients with LRTD compared with URTD (74% vs. 93%, respectively). In conclusion, CARV infections after UCBT are frequent and may have a negative effect in the outcomes, in particular in the context of lymphocytopenia.
Collapse
Affiliation(s)
- Juan Montoro
- Department of Hematology, University Hospital La Fe, Valencia, Spain
| | - Jaime Sanz
- Department of Hematology, University Hospital La Fe, Valencia, Spain.,CIBERONC, Instituto Carlos III, Madrid, Spain
| | - Ignacio Lorenzo
- Department of Hematology, University Hospital La Fe, Valencia, Spain
| | | | - Miguel Salavert
- Department of Infectious Diseases, University Hospital La Fe, Valencia, Spain
| | | | - Manuel Guerreiro
- Department of Hematology, University Hospital La Fe, Valencia, Spain
| | | | - Cristina Aguado
- Department of Laboratory Medicine, University Hospital La Fe, Valencia, Spain
| | - Luiza Tofán
- Department of Laboratory Medicine, University Hospital La Fe, Valencia, Spain
| | - Guillermo F Sanz
- Department of Hematology, University Hospital La Fe, Valencia, Spain.,CIBERONC, Instituto Carlos III, Madrid, Spain
| | - Miguel A Sanz
- Department of Hematology, University Hospital La Fe, Valencia, Spain.,CIBERONC, Instituto Carlos III, Madrid, Spain.,Department of Medicine, University of Valencia, Valencia, Spain
| | - José Luis Piñana
- Department of Hematology, University Hospital La Fe, Valencia, Spain. .,CIBERONC, Instituto Carlos III, Madrid, Spain.
| |
Collapse
|
16
|
Akhmedov M, Wais V, Sala E, Neagoie A, Nguyen TM, Gantner A, Harsdorf S, Kuchenbauer F, Schubert A, Michel D, Döhner H, Bunjes D. Respiratory syncytial virus and human metapneumovirus after allogeneic hematopoietic stem cell transplantation: Impact of the immunodeficiency scoring index, viral load, and ribavirin treatment on the outcomes. Transpl Infect Dis 2020; 22:e13276. [DOI: 10.1111/tid.13276] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 02/20/2020] [Accepted: 03/07/2020] [Indexed: 02/01/2023]
Affiliation(s)
- Mobil Akhmedov
- Department of Internal Medicine III University Hospital of Ulm Ulm Germany
| | - Verena Wais
- Department of Internal Medicine III University Hospital of Ulm Ulm Germany
| | - Elisa Sala
- Department of Internal Medicine III University Hospital of Ulm Ulm Germany
| | - Adela Neagoie
- Department of Internal Medicine III University Hospital of Ulm Ulm Germany
| | - Thanh Mai Nguyen
- Department of Internal Medicine III University Hospital of Ulm Ulm Germany
| | - Andrea Gantner
- Department of Internal Medicine III University Hospital of Ulm Ulm Germany
| | - Stephanie Harsdorf
- Department of Internal Medicine III University Hospital of Ulm Ulm Germany
| | | | - Axel Schubert
- Department of Virology University Hospital of Ulm Ulm Germany
| | - Detlef Michel
- Department of Virology University Hospital of Ulm Ulm Germany
| | - Hartmut Döhner
- Department of Internal Medicine III University Hospital of Ulm Ulm Germany
| | - Donald Bunjes
- Department of Internal Medicine III University Hospital of Ulm Ulm Germany
| |
Collapse
|
17
|
Marinelli T, Wee LYA, Rowe E, Chhetri R, Friel O, Higgins G, Bardy P, Singhal D, Pradhan A, Crawford L, Hiwase DK. Respiratory Viruses Cause Late Morbidity in Recipients of Hematopoietic Stem Cell Transplantation. Biol Blood Marrow Transplant 2019; 26:782-788. [PMID: 31866345 DOI: 10.1016/j.bbmt.2019.12.724] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 12/04/2019] [Accepted: 12/16/2019] [Indexed: 02/07/2023]
Abstract
Common respiratory viral infections (CRVIs) frequently complicate hematopoietic stem cell transplantation (HSCT). We conducted a retrospective, single-center, observational cohort study to determine the incidence of CRVI in patients who received an allogeneic (allo) or autologous (auto) HSCT at the Royal Adelaide Hospital between 2009 and 2017. The median follow-up was 8.9 and 4.5 years for auto- and allo-HSCT recipients, respectively. There were 149 CRVI episodes in 74 patients, with rhinovirus being the most commonly isolated virus (n = 81, 47%). The majority of CRVIs (113/149, 75.8%) occurred more than 100 days post-HSCT and 67% were diagnosed in the outpatient setting. There was evidence of lower respiratory tract infection (LRTI) in 45.6% (68/149) of CRVIs. On multivariate logistic regression analysis, coviral infections and cytomegalovirus viremia were independent risk factors for progression of CRVI to LRTI. Ten (6.7%) CRVI episodes resulted in admission to intensive care for ventilatory support and 8 (5.4%) patients died within 30 days of CRVI diagnosis. In our study, 10.4% of HSCT recipients experienced a CRVI post-transplant, primarily causing late morbidity and potentially mortality. Prevention with strict infection control practices, vaccination, and patient education is essential.
Collapse
Affiliation(s)
- Tina Marinelli
- Department of Infectious Diseases, Royal Adelaide Hospital, Central Adelaide Local Health Network, Adelaide, Australia
| | - Li Yan A Wee
- Department of Haematology, Royal Adelaide Hospital, Central Adelaide Local Health Network, Adelaide, Australia; Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Emily Rowe
- Department of Infectious Diseases, Royal Adelaide Hospital, Central Adelaide Local Health Network, Adelaide, Australia; Discipline of Medicine, Adelaide Medical School, The University of Adelaide, Adelaide, Australia
| | - Rakchha Chhetri
- Department of Haematology, Royal Adelaide Hospital, Central Adelaide Local Health Network, Adelaide, Australia; Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, Australia; Discipline of Medicine, Adelaide Medical School, The University of Adelaide, Adelaide, Australia
| | - Oisin Friel
- Department of Haematology, Royal Adelaide Hospital, Central Adelaide Local Health Network, Adelaide, Australia
| | - Geoffrey Higgins
- Department of Infectious Diseases, Royal Adelaide Hospital, Central Adelaide Local Health Network, Adelaide, Australia; SA Pathology, Central Adelaide Local Health Network, Adelaide, Australia
| | - Peter Bardy
- Department of Haematology, Royal Adelaide Hospital, Central Adelaide Local Health Network, Adelaide, Australia; Discipline of Medicine, Adelaide Medical School, The University of Adelaide, Adelaide, Australia
| | - Deepak Singhal
- Department of Haematology, Royal Adelaide Hospital, Central Adelaide Local Health Network, Adelaide, Australia; Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, Australia; Discipline of Medicine, Adelaide Medical School, The University of Adelaide, Adelaide, Australia
| | - Alyssa Pradhan
- Department of Infectious Diseases, Royal Adelaide Hospital, Central Adelaide Local Health Network, Adelaide, Australia
| | - Lucy Crawford
- Discipline of Medicine, Adelaide Medical School, The University of Adelaide, Adelaide, Australia; SA Pathology, Central Adelaide Local Health Network, Adelaide, Australia
| | - Devendra K Hiwase
- Department of Haematology, Royal Adelaide Hospital, Central Adelaide Local Health Network, Adelaide, Australia; Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, Australia; Discipline of Medicine, Adelaide Medical School, The University of Adelaide, Adelaide, Australia.
| |
Collapse
|
18
|
The effect of timing on community acquired respiratory virus infection mortality during the first year after allogeneic hematopoietic stem cell transplantation: a prospective epidemiological survey. Bone Marrow Transplant 2019; 55:431-440. [PMID: 31551521 PMCID: PMC7091566 DOI: 10.1038/s41409-019-0698-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 07/10/2019] [Accepted: 07/27/2019] [Indexed: 11/08/2022]
Abstract
The effect of timing of community acquired respiratory virus (CARV) infection after allogeneic hematopoietic stem cell transplant (allo-HCT) is an as yet unsettled issue. We evaluate this issue by including all consecutive allo-HCT recipients with molecularly-documented CARV infection during the first year after transplant. The study cohort was drawn from a prospective longitudinal survey of CARV in allo-HCT recipient having respiratory symptoms conducted from December 2013 to December 2018 at two Spanish transplant centers. Respiratory viruses in upper and/or lower respiratory specimens were tested using multiplex PCR panel assays. The study cohort comprised 233 allo-HCT recipients with 376 CARV infection episodes diagnosed during the first year after allo-HCT. Overall, 60% of CARV episodes occurred within the first 6 months (227 out of 376). Thirty patients (13%) had died at 3 months after CARV detection, of which 25 (83%) were recipients developing CARV within the first 6 months after transplant. Multivariate analysis identified four risk factors for mortality: ATG used as part of conditioning regimen [odds ratio (OR) 2.8, 95% confidence interval (C.I.) 1.21-6.4, p = 0.01], CARV lower respiratory tract disease (OR 3.4, 95% C.I. 1.4-8.4, p = 0.007), CARV infection within the first 6 months of transplant (OR 3.04, 95% C.I. 1.1-8.7, p = 0.03), and absolute lymphocyte count <0.2 × 109/L (OR 2.4, 95% C.I. 1-5.3, p = 0.04). Developing CARV infection within the first 6 months was associated with higher mortality. Our data supports that the timing of CARV development after allo-HCT could be of major interest.
Collapse
|
19
|
Ison MG, Hirsch HH. Community-Acquired Respiratory Viruses in Transplant Patients: Diversity, Impact, Unmet Clinical Needs. Clin Microbiol Rev 2019; 32:e00042-19. [PMID: 31511250 PMCID: PMC7399564 DOI: 10.1128/cmr.00042-19] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Patients undergoing solid-organ transplantation (SOT) or allogeneic hematopoietic cell transplantation (HCT) are at increased risk for infectious complications. Community-acquired respiratory viruses (CARVs) pose a particular challenge due to the frequent exposure pre-, peri-, and posttransplantation. Although influenza A and B viruses have a top priority regarding prevention and treatment, recent molecular diagnostic tests detecting an array of other CARVs in real time have dramatically expanded our knowledge about the epidemiology, diversity, and impact of CARV infections in the general population and in allogeneic HCT and SOT patients. These data have demonstrated that non-influenza CARVs independently contribute to morbidity and mortality of transplant patients. However, effective vaccination and antiviral treatment is only emerging for non-influenza CARVs, placing emphasis on infection control and supportive measures. Here, we review the current knowledge about CARVs in SOT and allogeneic HCT patients to better define the magnitude of this unmet clinical need and to discuss some of the lessons learned from human influenza virus, respiratory syncytial virus, parainfluenzavirus, rhinovirus, coronavirus, adenovirus, and bocavirus regarding diagnosis, prevention, and treatment.
Collapse
Affiliation(s)
- Michael G Ison
- Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Hans H Hirsch
- Transplantation & Clinical Virology, Department of Biomedicine, University of Basel, Basel, Switzerland
- Clinical Virology, Laboratory Medicine, University Hospital Basel, Basel, Switzerland
- Infectious Diseases & Hospital Epidemiology, University Hospital Basel, Basel, Switzerland
| |
Collapse
|
20
|
Magira EE, Chemaly RF, Jiang Y, Tarrand J, Kontoyiannis DP. Outcomes in Invasive Pulmonary Aspergillosis Infections Complicated by Respiratory Viral Infections in Patients With Hematologic Malignancies: A Case-Control Study. Open Forum Infect Dis 2019; 6:ofz247. [PMID: 31338382 PMCID: PMC6639596 DOI: 10.1093/ofid/ofz247] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 06/05/2019] [Indexed: 01/27/2023] Open
Abstract
Background Data regarding invasive pulmonary aspergillosis (IPA) following respiratory viral infections (RVIs) in patients with leukemia and/or hematopoietic stem cell transplantation (LHSCT) are limited. Methods We conducted a retrospective case-control study of post-RVI IPA (2006–2016). Cases were patients who underwent LHSCT and had RVI due to respiratory syncytial virus (RSV), influenza virus (INF), or parainfluenza virus (PIV) followed by culture-documented IPA within 6 weeks. Controls had IPA only. Results We identified 54 cases and 142 controls. Among cases, 29 (54%) had PIV infection, 14 (26%) had INF infection, and 11 (20%) had RSV infection. The median time to IPA after RVI was 7 days. A greater percentage of cases (37 [69%]) than controls (52 [37%]) underwent allogeneic HSCT (P < .0001). Cases were more likely to be nonneutropenic (33 [61%] vs 56 [39%]; P = .009) and in hematologic remission (27 [50%] vs 39 [27%]; P = .003) before IPA. Cases were more likely to have monocytopenia (45 [83%] vs 99 [70%]; P = .05) and less likely to have severe neutropenia (21 [39%] vs 86 [61%]; P = .007) at IPA diagnosis. Prior use of an Aspergillus-active triazole was more common in cases (27 of 28 [96%] vs 50 of 74 [68%]; P = .0017). Median time to empirical antifungal therapy initiation was 2 days in both groups. Crude 42-day mortality rates did not differ between cases (22%) and controls (27%), but the 42-day mortality rate was higher among cases with IPA after RSV infection (45%) than among those with IPA following INF or PIV infection (13%; P = .05). Conclusions IPA had comparable outcomes when it followed RVI in patients who underwent LHSCT, and post-RVI IPA occurred more frequently in patients with prior allogeneic HSCT and was associated with leukemia relapse and neutropenia.
Collapse
Affiliation(s)
- Eleni E Magira
- Department of Infectious Disease, Infection Control and Employee Health
| | - Roy F Chemaly
- Department of Infectious Disease, Infection Control and Employee Health
| | - Ying Jiang
- Department of Infectious Disease, Infection Control and Employee Health
| | - Jeffrey Tarrand
- Department of Microbiology, The University of Texas MD Anderson Cancer Center, Houston
| | | |
Collapse
|
21
|
Pochon C, Voigt S. Respiratory Virus Infections in Hematopoietic Cell Transplant Recipients. Front Microbiol 2019; 9:3294. [PMID: 30687278 PMCID: PMC6333648 DOI: 10.3389/fmicb.2018.03294] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 12/18/2018] [Indexed: 12/13/2022] Open
Abstract
Highly immunocompromised pediatric and adult hematopoietic cell transplant (HCT) recipients frequently experience respiratory infections caused by viruses that are less virulent in immunocompetent individuals. Most of these infections, with the exception of rhinovirus as well as adenovirus and parainfluenza virus in tropical areas, are seasonal variable and occur before and after HCT. Infectious disease management includes sampling of respiratory specimens from nasopharyngeal washes or swabs as well as sputum and tracheal or tracheobronchial lavages. These are subjected to improved diagnostic tools including multiplex PCR assays that are routinely used allowing for expedient detection of all respiratory viruses. Disease progression along with high mortality is frequently associated with respiratory syncytial virus, parainfluenza virus, influenza virus, and metapneumovirus infections. In this review, we discuss clinical findings and the appropriate use of diagnostic measures. Additionally, we also discuss treatment options and suggest new drug formulations that might prove useful in treating respiratory viral infections. Finally, we shed light on the role of the state of immune reconstitution and on the use of immunosuppressive drugs on the outcome of infection.
Collapse
Affiliation(s)
- Cécile Pochon
- Allogeneic Hematopoietic Stem Cell Transplantation Unit, Department of Pediatric Oncohematology, Nancy University Hospital, Vandœuvre-lès-Nancy, France
| | - Sebastian Voigt
- Department of Pediatric Oncology/Hematology/Stem Cell Transplantation, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Department of Infectious Diseases, Robert Koch Institute, Berlin, Germany
| |
Collapse
|
22
|
Moroz LV, Chichirelo-Konstantynovych KD, Konstantynovych TV, Dudnyk VM. Prognostic influence of toll-like receptor 4 gene polymorphism into community-acquired pneumonia course among young patients with cytomegalovirus persistence. Lung India 2019; 36:319-323. [PMID: 31290417 PMCID: PMC6625249 DOI: 10.4103/lungindia.lungindia_355_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Objectives: The aim of this study was to determine the predictive role of TLR4 polymorphism in CAP course among young cytomegalovirus-positive patients. Subjects and Methods: One hundred and five patients with pneumonia (age range: 18–44 years) and 61 healthy respondents were observed clinically and specifically (by cytomegalovirus markers and TLR4 + 3725 G/C polymorphism). Results: Among CAP patients, there were 51 male (48.6%) and 54 female (51.4%), with average age 34.1 ± 0.8 years, and there were 19 (18.1%) patients with Pneumonia Patient Outcomes Research Team (PORT) I, 46 (43.8%) patients with PORT II, 31 (29.5%) patients with PORT III, and 9 (8.6%) patients with PORT IV. Cytomegalovirus persistence was detected in 80 (48.2%) patients and 34 (20.5%) healthy respondents (P = 0.003). G/G genotype of TLR4 signaling was found in 78 (74%) patients with pneumonia, G/C in 24 (23%) patients, and C/C in 3 (3%) patients. Among G/C patients, there were 16.2% cytomegalovirus-positive patients versus 6.7% negative patients (P < 0.05), as well as among G/G patients, and there were 59% versus 15,2%, accordingly (P < 0.01). The patients of the main group with G/G genotype were characterized by mostly mild (PORT I – 15 [14.3%]) and moderate pneumonia severity (PORT II – 32 [30.5%] and PORT III – 26 [24.8%] patients). The patients with G/C genotype were characterized by mostly PORT II (11 [10.5%] patients). All C/C genotype patients have PORT II (P < 0.05). Conclusions: Cytomegalovirus persistence worsens the pneumonia course. G/G and G/C TLR4 genotypes are associated with mild pneumonia severity.
Collapse
Affiliation(s)
- Larysa V Moroz
- Department of Infectious Diseases, National Pirogov Memorial Medical University, Vinnytsia, Ukraine
| | | | - Tetyana V Konstantynovych
- Department of Propedeutics of Internal Medicine, National Pirogov Memorial Medical University, Vinnytsia, Ukraine
| | - Veronika M Dudnyk
- Department of Paediatric, National Pirogov Memorial Medical University, Vinnytsia, Ukraine
| |
Collapse
|
23
|
Piñana JL, Gómez MD, Pérez A, Madrid S, Balaguer-Roselló A, Giménez E, Montoro J, González EM, Vinuesa V, Moles P, Hernández-Boluda JC, Salavert M, Calabuig M, Sanz G, Solano C, Sanz J, Navarro D. Community-acquired respiratory virus lower respiratory tract disease in allogeneic stem cell transplantation recipient: Risk factors and mortality from pulmonary virus-bacterial mixed infections. Transpl Infect Dis 2018; 20:e12926. [PMID: 29809298 PMCID: PMC7169706 DOI: 10.1111/tid.12926] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 05/13/2018] [Accepted: 05/20/2018] [Indexed: 12/20/2022]
Abstract
Risk factors (RFs) and mortality data of community‐acquired respiratory virus (CARVs) lower respiratory tract disease (LRTD) with concurrent pulmonary co‐infections in the setting of allogeneic hematopoietic stem cell transplantation (allo‐HSCT) is scarce. From January 2011 to December 2017, we retrospectively compared the outcome of allo‐HSCT recipients diagnosed of CARVs LRTD mono‐infection (n = 52, group 1), to those with viral, bacterial, or fungal pulmonary CARVs LRTD co‐infections (n = 15, group 2; n = 20, group 3, and n = 11, group 4, respectively), and with those having bacterial pneumonia mono‐infection (n = 19, group 5). Overall survival (OS) at day 60 after bronchoalveolar lavage (BAL) was significantly higher in group 1, 2, and 4 compared to group 3 (77%, 67%, and 73% vs 35%, respectively, P = .012). Recipients of group 5 showed a trend to better OS compared to those of group 3 (62% vs 35%, P = .1). Multivariate analyses showed bacterial co‐infection as a RF for mortality (hazard ratio[HR] 2.65, 95% C.I. 1.2‐6.9, P = .017). We identified other 3 RFs for mortality: lymphocyte count <0.5 × 109/L (HR 2.6, 95% 1.1‐6.2, P = .026), the occurrence of and CMV DNAemia requiring antiviral therapy (CMV‐DNAemia‐RAT) at the time of BAL (HR 2.32, 95% C.I. 1.1‐4.9, P = .03), and the need of oxygen support (HR 8.3, 95% C.I. 2.9‐35.3, P = .004). CARV LRTD co‐infections are frequent and may have a negative effect in the outcome, in particular in the context of bacterial co‐infections.
Collapse
Affiliation(s)
- José Luis Piñana
- Hematology Department, Hospital Universitari i Politècnic La Fe, Valencia, Spain.,Instituto Carlos III, CIBERONC, Madrid, Spain
| | - María Dolores Gómez
- Microbiology Department, Hospital Universitari i Politècnic La Fe, Valencia, Spain
| | - Ariadna Pérez
- Hematology Department, Institute for Research INCLIVA, Hospital Clínico Universitario, Valencia, Spain
| | - Silvia Madrid
- Microbiology Department, Institute for Research INCLIVA, Hospital Clínico Universitario, Valencia, Spain
| | | | - Estela Giménez
- Microbiology Department, Institute for Research INCLIVA, Hospital Clínico Universitario, Valencia, Spain
| | - Juan Montoro
- Hematology Department, Hospital Universitari i Politècnic La Fe, Valencia, Spain.,Instituto Carlos III, CIBERONC, Madrid, Spain
| | - Eva María González
- Microbiology Department, Hospital Universitari i Politècnic La Fe, Valencia, Spain
| | - Víctor Vinuesa
- Microbiology Department, Institute for Research INCLIVA, Hospital Clínico Universitario, Valencia, Spain
| | - Paula Moles
- Dermatology Department, Hospital Universitari i Politècnic La Fe, Valencia, Spain
| | | | - Miguel Salavert
- Department of Infectious Diseases, Hospital Universitari i Politècnic La Fe, Valencia, Spain
| | - Marisa Calabuig
- Hematology Department, Institute for Research INCLIVA, Hospital Clínico Universitario, Valencia, Spain
| | - Guillermo Sanz
- Hematology Department, Hospital Universitari i Politècnic La Fe, Valencia, Spain.,Instituto Carlos III, CIBERONC, Madrid, Spain
| | - Carlos Solano
- Hematology Department, Institute for Research INCLIVA, Hospital Clínico Universitario, Valencia, Spain.,Department of Medicine, School of Medicine, University of Valencia, Valencia, Spain
| | - Jaime Sanz
- Hematology Department, Hospital Universitari i Politècnic La Fe, Valencia, Spain.,Instituto Carlos III, CIBERONC, Madrid, Spain
| | - David Navarro
- Microbiology Department, Institute for Research INCLIVA, Hospital Clínico Universitario, Valencia, Spain.,Department of Microbiology, School of Medicine, University of Valencia, Valencia, Spain
| |
Collapse
|