1
|
Cheng H, Lyu Y, Liu Z, Li C, Qu K, Li S, Ahmed Z, Ma W, Qi X, Chen N, Lei C. A Whole-Genome Scan Revealed Genomic Features and Selection Footprints of Mengshan Cattle. Genes (Basel) 2024; 15:1113. [PMID: 39336704 PMCID: PMC11431585 DOI: 10.3390/genes15091113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/21/2024] [Accepted: 08/21/2024] [Indexed: 09/30/2024] Open
Abstract
(1) Background: Mengshan cattle from the Yimeng mountainous region in China stand out as a unique genetic resource, known for their adaptive traits and environmental resilience. However, these cattle are currently endangered and comprehensive genomic characterization remains largely unexplored. This study aims to address this gap by investigating the genomic features and selection signals in Mengshan cattle. (2) Methods: Utilizing whole-genome resequencing data from 122 cattle, including 37 newly sequenced Mengshan cattle, we investigated population structure, genetic diversity, and selection signals. (3) Results: Our analyses revealed that current Mengshan cattle primarily exhibit European taurine cattle ancestry, with distinct genetic characteristics indicative of adaptive traits. We identified candidate genes associated with immune response, growth traits, meat quality, and neurodevelopment, shedding light on the genomic features underlying the unique attributes of Mengshan cattle. Enrichment analysis highlighted pathways related to insulin secretion, calcium signaling, and dopamine synapse, further elucidating the genetic basis of their phenotypic traits. (4) Conclusions: Our results provide valuable insights for further research and conservation efforts aimed at preserving this endangered genetic resource. This study enhances the understanding of population genetics and underscores the importance of genomic research in informing genetic resources and conservation initiatives for indigenous cattle breeds.
Collapse
Affiliation(s)
- Haijian Cheng
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China; (H.C.); (Y.L.); (Z.L.); (C.L.); (S.L.); (N.C.)
- Shandong Key Lab of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Yang Lyu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China; (H.C.); (Y.L.); (Z.L.); (C.L.); (S.L.); (N.C.)
| | - Ziao Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China; (H.C.); (Y.L.); (Z.L.); (C.L.); (S.L.); (N.C.)
| | - Chuanqing Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China; (H.C.); (Y.L.); (Z.L.); (C.L.); (S.L.); (N.C.)
| | - Kaixing Qu
- Academy of Science and Technology, Chuxiong Normal University, Chuxiong 675099, China;
| | - Shuang Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China; (H.C.); (Y.L.); (Z.L.); (C.L.); (S.L.); (N.C.)
| | - Zulfiqar Ahmed
- Department of Livestock and Poultry Production, Faculty of Veterinary and Animal Sciences, University of Poonch Rawalakot, Rawalakot 12350, Pakistan;
| | - Weidong Ma
- Shaanxi Province Agriculture & Husbandry Breeding Farm, Baoji 722203, China;
| | - Xingshan Qi
- Animal Husbandry Bureau in Biyang County, Zhumadian 463700, China;
| | - Ningbo Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China; (H.C.); (Y.L.); (Z.L.); (C.L.); (S.L.); (N.C.)
| | - Chuzhao Lei
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China; (H.C.); (Y.L.); (Z.L.); (C.L.); (S.L.); (N.C.)
| |
Collapse
|
2
|
Revoltar M, Clarke L, Bruce H, Liew YW, Lopez GH. Anti-N antibody mimicking an antibody to a high frequency antigen in a U-negative patient. Pathology 2024; 56:581-582. [PMID: 37989629 DOI: 10.1016/j.pathol.2023.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 09/11/2023] [Indexed: 11/23/2023]
Affiliation(s)
- Maxine Revoltar
- Department of Haematology, Royal North Shore Hospital, St Leonards, NSW, Australia.
| | - Lisa Clarke
- Pathology and Clinical Governance, Australian Red Cross Lifeblood, Sydney, NSW, Australia
| | - Hayley Bruce
- Red Cell Reference Laboratory, Australian Red Cross Lifeblood, Sydney, NSW, Australia
| | - Yew Wah Liew
- Red Cell Reference Laboratory, Australian Red Cross Lifeblood, Kelvin Grove, Qld, Australia
| | - Genghis H Lopez
- Research and Development, Australian Red Cross Lifeblood, Kelvin Grove, Qld, Australia; School of Health, University of the Sunshine Coast, Sippy Downs, Qld, Australia
| |
Collapse
|
3
|
King NR, Martins Freire C, Touhami J, Sitbon M, Toye AM, Satchwell TJ. Basigin mediation of Plasmodium falciparum red blood cell invasion does not require its transmembrane domain or interaction with monocarboxylate transporter 1. PLoS Pathog 2024; 20:e1011989. [PMID: 38315723 PMCID: PMC10868855 DOI: 10.1371/journal.ppat.1011989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/15/2024] [Accepted: 01/19/2024] [Indexed: 02/07/2024] Open
Abstract
Plasmodium falciparum invasion of the red blood cell is reliant upon the essential interaction of PfRh5 with the host receptor protein basigin. Basigin exists as part of one or more multiprotein complexes, most notably through interaction with the monocarboxylate transporter MCT1. However, the potential requirement for basigin association with MCT1 and the wider role of basigin host membrane context and lateral protein associations during merozoite invasion has not been established. Using genetically manipulated in vitro derived reticulocytes, we demonstrate the ability to uncouple basigin ectodomain presentation from its transmembrane domain-mediated interactions, including with MCT1. Merozoite invasion of reticulocytes is unaffected by disruption of basigin-MCT1 interaction and by removal or replacement of the basigin transmembrane helix. Therefore, presentation of the basigin ectodomain at the red blood cell surface, independent of its native association with MCT1 or other interactions mediated by the transmembrane domain, is sufficient to facilitate merozoite invasion.
Collapse
Affiliation(s)
- Nadine R. King
- School of Biochemistry, University of Bristol, Bristol, United Kingdom
| | | | - Jawida Touhami
- Institut de Génétique Moléculaire de Montpellier, Université de Montpellier, Centre National de la Recherche Scientifique (CNRS), Montpellier, France
| | - Marc Sitbon
- Institut de Génétique Moléculaire de Montpellier, Université de Montpellier, Centre National de la Recherche Scientifique (CNRS), Montpellier, France
- Laboratory of Excellence GR-Ex, Paris, France
| | - Ashley M. Toye
- School of Biochemistry, University of Bristol, Bristol, United Kingdom
| | | |
Collapse
|
4
|
Bhide AR, Surve DH, Jindal AB. Nanocarrier based active targeting strategies against erythrocytic stage of malaria. J Control Release 2023; 362:297-308. [PMID: 37625598 DOI: 10.1016/j.jconrel.2023.08.043] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 08/03/2023] [Accepted: 08/22/2023] [Indexed: 08/27/2023]
Abstract
The Global Technical Strategy for Malaria 2016-2030 aims to achieve a 90% reduction in malaria cases, and strategic planning and execution are crucial for accomplishing this target. This review aims to understand the complex interaction between erythrocytic receptors and parasites and to use this knowledge to actively target the erythrocytic stage of malaria. The review provides insight into the malaria life cycle, which involves various receptors such as glycophorin A, B, C, and D (GPA/B/C/D), complement receptor 1, basigin, semaphorin 7a, Band 3/ GPA, Kx, and heparan sulfate proteoglycan for parasite cellular binding and ingress in the erythrocytic and exo-erythrocytic stages. Synthetic peptides mimicking P. falciparum receptor binding ligands, human serum albumin, chondroitin sulfate, synthetic polymers, and lipids have been utilized as ligands and decorated onto nanocarriers for specific targeting to parasite-infected erythrocytes. The need of the hour for treatment and prophylaxis against malaria is a broadened horizon that includes multiple targeting strategies against the entry, proliferation, and transmission stages of the parasite. Platform technologies with established pre-clinical safety and efficacy should be translated into clinical evaluation and formulation scale-up. Future development should be directed towards nanovaccines as proactive tools against malaria infection.
Collapse
Affiliation(s)
- Atharva R Bhide
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Jhunjhunu, Rajasthan 333031, India
| | - Dhanashree H Surve
- Department of Chemical Engineering, University of Massachusetts, Amherst, MA 01003, United States
| | - Anil B Jindal
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Jhunjhunu, Rajasthan 333031, India.
| |
Collapse
|
5
|
Satchwell TJ. Generation of red blood cells from stem cells: Achievements, opportunities and perspectives for malaria research. Front Cell Infect Microbiol 2022; 12:1039520. [PMID: 36452302 PMCID: PMC9702814 DOI: 10.3389/fcimb.2022.1039520] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 10/21/2022] [Indexed: 06/22/2024] Open
Abstract
Parasites of the genus Plasmodium that cause malaria survive within humans by invasion of, and proliferation within, the most abundant cell type in the body, the red blood cell. As obligate, intracellular parasites, interactions between parasite and host red blood cell components are crucial to multiple aspects of the blood stage malaria parasite lifecycle. The requirement for, and involvement of, an array of red blood cell proteins in parasite invasion and intracellular development is well established. Nevertheless, detailed mechanistic understanding of host cell protein contributions to these processes are hampered by the genetic intractability of the anucleate red blood cell. The advent of stem cell technology and more specifically development of methods that recapitulate in vitro the process of red blood cell development known as erythropoiesis has enabled the generation of erythroid cell stages previously inaccessible in large numbers for malaria studies. What is more, the capacity for genetic manipulation of nucleated erythroid precursors that can be differentiated to generate modified red blood cells has opened new horizons for malaria research. This review summarises current methodologies that harness in vitro erythroid differentiation of stem cells for generation of cells that are susceptible to malaria parasite invasion; discusses existing and emerging approaches to generate novel red blood cell phenotypes and explores the exciting potential of in vitro derived red blood cells for improved understanding the broad role of host red blood cell proteins in malaria pathogenesis.
Collapse
|
6
|
Molina-Franky J, Patarroyo ME, Kalkum M, Patarroyo MA. The Cellular and Molecular Interaction Between Erythrocytes and Plasmodium falciparum Merozoites. Front Cell Infect Microbiol 2022; 12:816574. [PMID: 35433504 PMCID: PMC9008539 DOI: 10.3389/fcimb.2022.816574] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 02/21/2022] [Indexed: 11/13/2022] Open
Abstract
Plasmodium falciparum is the most lethal human malaria parasite, partly due to its genetic variability and ability to use multiple invasion routes via its binding to host cell surface receptors. The parasite extensively modifies infected red blood cell architecture to promote its survival which leads to increased cell membrane rigidity, adhesiveness and permeability. Merozoites are initially released from infected hepatocytes and efficiently enter red blood cells in a well-orchestrated process that involves specific interactions between parasite ligands and erythrocyte receptors; symptoms of the disease occur during the life-cycle’s blood stage due to capillary blockage and massive erythrocyte lysis. Several studies have focused on elucidating molecular merozoite/erythrocyte interactions and host cell modifications; however, further in-depth analysis is required for understanding the parasite’s biology and thus provide the fundamental tools for developing prophylactic or therapeutic alternatives to mitigate or eliminate Plasmodium falciparum-related malaria. This review focuses on the cellular and molecular events during Plasmodium falciparum merozoite invasion of red blood cells and the alterations that occur in an erythrocyte once it has become infected.
Collapse
Affiliation(s)
- Jessica Molina-Franky
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia
- Department of Immunology and Theranostics, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute of the City of Hope, Duarte, CA, United States
- PhD Programme in Biotechnology, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Manuel Elkin Patarroyo
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia
- Health Sciences Division, Universidad Santo Tomás, Bogotá, Colombia
- Faculty of Medicine, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Markus Kalkum
- Department of Immunology and Theranostics, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute of the City of Hope, Duarte, CA, United States
- *Correspondence: Markus Kalkum, ; Manuel Alfonso Patarroyo,
| | - Manuel Alfonso Patarroyo
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia
- Health Sciences Division, Universidad Santo Tomás, Bogotá, Colombia
- Faculty of Medicine, Universidad Nacional de Colombia, Bogotá, Colombia
- *Correspondence: Markus Kalkum, ; Manuel Alfonso Patarroyo,
| |
Collapse
|
7
|
Jongruamklang P, Rebetz J, Kapur R, Persson KEM, Olsson ML, Semple JW, Storry JR. Platelets inhibit erythrocyte invasion by Plasmodium falciparum at physiological platelet:erythrocyte ratios. Transfus Med 2021; 32:168-174. [PMID: 33987889 DOI: 10.1111/tme.12791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 10/05/2020] [Accepted: 12/27/2020] [Indexed: 11/27/2022]
Abstract
OBJECTIVE To evaluate the effect of platelet:erythrocyte (P:E) ratios on Plasmodium falciparum erythrocyte invasion. BACKGROUND Recent reports have shown that platelets are directly involved in the immune response towards P. falciparum during erythrocyte invasion. However, the literature both supports and conflicts with a role for platelets in limiting invasion. Also, the effect of platelet numbers on invasion (parasitemia) has not been thoroughly investigated. METHODS/MATERIALS The P. falciparum strains FCR3S1.2 and W2mef were cultured with group O erythrocytes. The cultures were synchronised and supplemented with pooled platelets at P:E ratios ranging from 1:100 to 1:2. Parasitemia was measured at 40 h by flow cytometry and by microscopy of blood smears. RESULTS A linear relationship was observed between reduced invasion and increased platelet numbers at P:E ratios ranging from 1:100 to 1:20. However, this effect was reversed at lower ratios (1:10-1:2). Microscopic evaluation revealed aggregation and attachment of platelets to erythrocytes, but not specifically to parasitised erythrocytes. CONCLUSION We have shown that under physiological P:E ratios (approx. 1:10-1:40), platelets inhibited P. falciparum invasion in a dose-dependent manner. At ratios of 1:10 and below, platelets did not further increase the inhibitory effect and, although the trend was reversed, inhibition was still maintained.
Collapse
Affiliation(s)
- Philaiphon Jongruamklang
- Department of Laboratory Medicine, Division of Hematology and Transfusion Medicine, Lund University, Lund, Sweden.,Department of Medical Technology, School of Allied Health Sciences, University of Phayao, Phayao, Thailand
| | - Johan Rebetz
- Department of Laboratory Medicine, Division of Hematology and Transfusion Medicine, Lund University, Lund, Sweden
| | - Rick Kapur
- Department of Experimental Immunohematology, Sanquin Research, Amsterdam, The Netherlands.,Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Kristina E M Persson
- Department of Laboratory Medicine, Division of Clinical Chemistry and Pharmacology, Lund University, Lund, Sweden.,Clinical Chemistry and Pharmacology, Laboratory Medicine, Office for Medical Services, Region Skåne, Lund, Sweden
| | - Martin L Olsson
- Department of Laboratory Medicine, Division of Hematology and Transfusion Medicine, Lund University, Lund, Sweden.,Clinical Immunology and Transfusion Medicine, Laboratory Medicine, Office for Medical Services, Region Skåne, Lund, Sweden
| | - John W Semple
- Department of Laboratory Medicine, Division of Hematology and Transfusion Medicine, Lund University, Lund, Sweden.,Clinical Immunology and Transfusion Medicine, Laboratory Medicine, Office for Medical Services, Region Skåne, Lund, Sweden
| | - Jill R Storry
- Department of Laboratory Medicine, Division of Hematology and Transfusion Medicine, Lund University, Lund, Sweden.,Clinical Immunology and Transfusion Medicine, Laboratory Medicine, Office for Medical Services, Region Skåne, Lund, Sweden
| |
Collapse
|
8
|
Domcke S, Hill AJ, Daza RM, Cao J, O'Day DR, Pliner HA, Aldinger KA, Pokholok D, Zhang F, Milbank JH, Zager MA, Glass IA, Steemers FJ, Doherty D, Trapnell C, Cusanovich DA, Shendure J. A human cell atlas of fetal chromatin accessibility. Science 2020; 370:eaba7612. [PMID: 33184180 PMCID: PMC7785298 DOI: 10.1126/science.aba7612] [Citation(s) in RCA: 214] [Impact Index Per Article: 53.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 09/10/2020] [Indexed: 12/12/2022]
Abstract
The chromatin landscape underlying the specification of human cell types is of fundamental interest. We generated human cell atlases of chromatin accessibility and gene expression in fetal tissues. For chromatin accessibility, we devised a three-level combinatorial indexing assay and applied it to 53 samples representing 15 organs, profiling ~800,000 single cells. We leveraged cell types defined by gene expression to annotate these data and cataloged hundreds of thousands of candidate regulatory elements that exhibit cell type-specific chromatin accessibility. We investigated the properties of lineage-specific transcription factors (such as POU2F1 in neurons), organ-specific specializations of broadly distributed cell types (such as blood and endothelial), and cell type-specific enrichments of complex trait heritability. These data represent a rich resource for the exploration of in vivo human gene regulation in diverse tissues and cell types.
Collapse
Affiliation(s)
- Silvia Domcke
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Andrew J Hill
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Riza M Daza
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Junyue Cao
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Diana R O'Day
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, USA
| | - Hannah A Pliner
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
| | - Kimberly A Aldinger
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, USA
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA
| | | | | | - Jennifer H Milbank
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Michael A Zager
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
- Center for Data Visualization, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Ian A Glass
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, USA
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA
| | | | - Dan Doherty
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, USA
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Cole Trapnell
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA.
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
- Allen Discovery Center for Cell Lineage Tracing, Seattle, WA, USA
| | - Darren A Cusanovich
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA.
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, USA
- Asthma and Airway Disease Research Center, University of Arizona, Tucson, AZ, USA
| | - Jay Shendure
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA.
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
- Allen Discovery Center for Cell Lineage Tracing, Seattle, WA, USA
- Howard Hughes Medical Institute, Seattle, WA, USA
| |
Collapse
|
9
|
A novel platform for peptide-mediated affinity capture and LC-MS/MS identification of host receptors involved in Plasmodium invasion. J Proteomics 2020; 231:104002. [PMID: 33045431 DOI: 10.1016/j.jprot.2020.104002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 03/12/2020] [Accepted: 09/30/2020] [Indexed: 11/21/2022]
Abstract
Successful Plasmodium falciparum invasion of red blood cells includes the orderly execution of highly specific receptor-ligand molecular interactions between the parasite's proteins and the red blood cell membrane proteins. There is a growing need for elucidating receptor-ligand pairings, which will help in understanding the parasite's biology and provide the fundamental basis for developing prophylactic or therapeutic alternatives leading to mitigating or eliminating this type of malaria. We have thus used Plasmodium falciparum RH5 - derived peptides and ghost red blood cell proteins in synthetic peptide affinity capture assays to identify important host receptors used by Plasmodium spp. in the invasion of red blood cells. LC-MS/MS analysis confirmed the extensively described interaction between PfRH5 and the basigin receptor on the red blood cell membrane. As shown here, tagged synthetic peptides displaying high binding ability to erythrocytes can be used to identify receptors present in protein extracts from ghost red blood cells via affinity capture and LC-MS/MS. SIGNIFICANCE: The article describes a novel approach for identifying red blood cell receptors based on the ability of synthetic peptides having high red blood cell binding capacity to capture Plasmodium spp. receptors on proteins extracted from ghost red blood cells. Specifically, novel methods to identify Plasmodium falciparum reticulocyte binding protein homolog 5 PfRH5 and basigin interaction using a combination of affinity capture and LC-MS/MS assays is described. Identification of these host RBC receptors interacting with malarial parasite proteins is of utmost importance in studying the disease's pathogenesis and will provide crucial information in understanding the parasite's biology. In addition, data from these studies can be used to identify potential therapeutic target(s) to mitigate or eliminate this debilitating disease.
Collapse
|
10
|
Hotspots in Plasmodium and RBC Receptor-Ligand Interactions: Key Pieces for Inhibiting Malarial Parasite Invasion. Int J Mol Sci 2020; 21:ijms21134729. [PMID: 32630804 PMCID: PMC7370042 DOI: 10.3390/ijms21134729] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 05/15/2020] [Accepted: 05/24/2020] [Indexed: 11/17/2022] Open
Abstract
Protein-protein interactions (IPP) play an essential role in practically all biological processes, including those related to microorganism invasion of their host cells. It has been found that a broad repertoire of receptor-ligand interactions takes place in the binding interphase with host cells in malaria, these being vital interactions for successful parasite invasion. Several trials have been conducted for elucidating the molecular interface of interactions between some Plasmodium falciparum and Plasmodium vivax antigens with receptors on erythrocytes and/or reticulocytes. Structural information concerning these complexes is available; however, deeper analysis is required for correlating structural, functional (binding, invasion, and inhibition), and polymorphism data for elucidating new interaction hotspots to which malaria control methods can be directed. This review describes and discusses recent structural and functional details regarding three relevant interactions during erythrocyte invasion: Duffy-binding protein 1 (DBP1)–Duffy antigen receptor for chemokines (DARC); reticulocyte-binding protein homolog 5 (PfRh5)-basigin, and erythrocyte binding antigen 175 (EBA175)-glycophorin A (GPA).
Collapse
|
11
|
Investigating a Plasmodium falciparum erythrocyte invasion phenotype switch at the whole transcriptome level. Sci Rep 2020; 10:245. [PMID: 31937828 PMCID: PMC6959351 DOI: 10.1038/s41598-019-56386-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 12/11/2019] [Indexed: 12/14/2022] Open
Abstract
The central role that erythrocyte invasion plays in Plasmodium falciparum survival and reproduction makes this process an attractive target for therapeutic or vaccine development. However, multiple invasion-related genes with complementary and overlapping functions afford the parasite the plasticity to vary ligands used for invasion, leading to phenotypic variation and immune evasion. Overcoming the challenge posed by redundant ligands requires a deeper understanding of conditions that select for variant phenotypes and the molecular mediators. While host factors including receptor heterogeneity and acquired immune responses may drive parasite phenotypic variation, we have previously shown that host-independent changes in invasion phenotype can be achieved by continuous culturing of the W2mef and Dd2 P. falciparum strains in moving suspension as opposed to static conditions. Here, we have used a highly biologically replicated whole transcriptome sequencing approach to identify the molecular signatures of variation associated with the phenotype switch. The data show increased expression of particular invasion-related genes in switched parasites, as well as a large number of genes encoding proteins that are either exported or form part of the export machinery. The genes with most markedly increased expression included members of the erythrocyte binding antigens (EBA), reticulocyte binding homologues (RH), surface associated interspersed proteins (SURFIN), exported protein family 1 (EPF1) and Plasmodium Helical Interspersed Sub-Telomeric (PHIST) gene families. The data indicate changes in expression of a repertoire of genes not previously associated with erythrocyte invasion phenotypes, suggesting the possibility that moving suspension culture may also select for other traits.
Collapse
|
12
|
Sanasam BD, Kumar S. In-silico structural modeling and epitope prediction of highly conserved Plasmodium falciparum protein AMR1. Mol Immunol 2019; 116:131-139. [PMID: 31648168 DOI: 10.1016/j.molimm.2019.10.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 09/29/2019] [Accepted: 10/01/2019] [Indexed: 11/17/2022]
Abstract
Malaria caused by Plasmodium falciparum is the most deadly and a major health issue worldwide. In spite of several control programs, there hasn't been much improvement in keeping the disease under control. The appearance of drug resistant strains of Plasmodium in addition to insecticide resistance of the Anopheles vector has been a hurdle. Therefore, it is highly desirable to identify new potential candidates that can be targeted for therapeutic intervention. The present study identifies AMR1, a highly conserved essential protein of Plasmodium falciparum, as a potential candidate for vaccine development. AMR1 is an exposed surface protein with high antigenic property and conservancy among other species of the parasite. Reverse vaccinology approach (RV) is adopted to determine the best epitopes of AMR1 protein. The protein was further evaluated for several important physiochemical parameters. The study revealed the 3D structure of AMR1, as well as the best B cell and helper T-cell epitopes of the protein. These resulted epitopes might be of great importance in the development of an effective vaccine to combat the deadly disease.
Collapse
Affiliation(s)
- Bijara Devi Sanasam
- Department of Life science & Bioinformatics, Assam University, Silchar, 788011, India
| | - Sanjeev Kumar
- Department of Life science & Bioinformatics, Assam University, Silchar, 788011, India.
| |
Collapse
|
13
|
Infectivity and Screening of Anti-piperaquine Genes in Mice Infected with Piperaquine-Sensitive and Piperaquine-Resistant Plasmodium berghei. Acta Parasitol 2019; 64:670-678. [PMID: 31321598 DOI: 10.2478/s11686-019-00100-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 06/17/2019] [Indexed: 11/20/2022]
Abstract
BACKGROUND Piperaquine (PQ) is one of the major components of artemisinin-based combination therapy for malaria. However, the mechanism of PQ resistance has remained unclear. METHODS In this study, we infected mice with PQ-resistant Plasmodium berghei ANKA strain line (PbPQR) or PQ-sensitive P. berghei ANKA strain line (PbPQS) and their survival rates, parasitemia, and spleen sizes were compared. In addition, we constructed genomic DNA subtractive library of spleens from the infected mice, and screened the potential PQ-resistant related genes from genomic DNA of PbPQR line using the representational difference analysis (RDA) method. Clones of the subtractive library were screened by PCR, and related genes were sequenced and analyzed using BLAST software of NCBI. RESULTS Compared to PbPQS-infected mice, PbPQR-infected mice survived significantly longer, and had significantly lowered parasitemia rate and significantly increased splenomegaly. Among the total of 502 clones picked, 494 were sequenced and 96 unique PCR fragments were obtained; in which 24 DNA fragments were homologous to chromosomes related to immune function of mice. ORF Finder blasting showed that at the protein level, 26 encoded proteins were homologous to 18 hypothetical PbANKA proteins and 13 encoded proteins were homologous to "ferlin-like protein" family of PbANKA. In addition, there were more immune-related DNA molecules, ubiquitous PbANKA homology at the ORF fragment level, and enriched ferlin-like protein families identified from PbPQR-infected mice than those from PbPQS-infected mice. CONCLUSION These findings suggest that PbPQR may induce stronger protective immune response than that of PbPQS in infected mice.
Collapse
|
14
|
Satchwell TJ, Wright KE, Haydn-Smith KL, Sánchez-Román Terán F, Moura PL, Hawksworth J, Frayne J, Toye AM, Baum J. Genetic manipulation of cell line derived reticulocytes enables dissection of host malaria invasion requirements. Nat Commun 2019; 10:3806. [PMID: 31444345 PMCID: PMC6707200 DOI: 10.1038/s41467-019-11790-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 08/05/2019] [Indexed: 12/12/2022] Open
Abstract
Investigating the role that host erythrocyte proteins play in malaria infection is hampered by the genetic intractability of this anucleate cell. Here we report that reticulocytes derived through in vitro differentiation of an enucleation-competent immortalized erythroblast cell line (BEL-A) support both successful invasion and intracellular development of the malaria parasite Plasmodium falciparum. Using CRISPR-mediated gene knockout and subsequent complementation, we validate an essential role for the erythrocyte receptor basigin in P. falciparum invasion and demonstrate rescue of invasive susceptibility by receptor re-expression. Successful invasion of reticulocytes complemented with a truncated mutant excludes a functional role for the basigin cytoplasmic domain during invasion. Contrastingly, knockout of cyclophilin B, reported to participate in invasion and interact with basigin, did not impact invasive susceptibility of reticulocytes. These data establish the use of reticulocytes derived from immortalized erythroblasts as a powerful model system to explore hypotheses regarding host receptor requirements for P. falciparum invasion.
Collapse
Affiliation(s)
- Timothy J Satchwell
- School of Biochemistry, University of Bristol, Bristol, UK.
- NIHR Blood and Transplant Research Unit, University of Bristol, Bristol, UK.
- Bristol Institute for Transfusion Sciences, National Health Service Blood and Transplant (NHSBT), Bristol, UK.
| | - Katherine E Wright
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, United Kingdom.
| | - Katy L Haydn-Smith
- School of Biochemistry, University of Bristol, Bristol, UK
- NIHR Blood and Transplant Research Unit, University of Bristol, Bristol, UK
- Bristol Institute for Transfusion Sciences, National Health Service Blood and Transplant (NHSBT), Bristol, UK
| | | | - Pedro L Moura
- School of Biochemistry, University of Bristol, Bristol, UK
| | | | - Jan Frayne
- School of Biochemistry, University of Bristol, Bristol, UK
- NIHR Blood and Transplant Research Unit, University of Bristol, Bristol, UK
| | - Ashley M Toye
- School of Biochemistry, University of Bristol, Bristol, UK
- NIHR Blood and Transplant Research Unit, University of Bristol, Bristol, UK
- Bristol Institute for Transfusion Sciences, National Health Service Blood and Transplant (NHSBT), Bristol, UK
| | - Jake Baum
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, United Kingdom.
| |
Collapse
|
15
|
Jaskiewicz E, Jodłowska M, Kaczmarek R, Zerka A. Erythrocyte glycophorins as receptors for Plasmodium merozoites. Parasit Vectors 2019; 12:317. [PMID: 31234897 PMCID: PMC6591965 DOI: 10.1186/s13071-019-3575-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 06/19/2019] [Indexed: 02/02/2023] Open
Abstract
Glycophorins are heavily glycosylated sialoglycoproteins of human and animal erythrocytes. In humans, there are four glycophorins: A, B, C and D. Glycophorins play an important role in the invasion of red blood cells (RBCs) by malaria parasites, which involves several ligands binding to RBC receptors. Four Plasmodium falciparum merozoite EBL ligands have been identified: erythrocyte-binding antigen-175 (EBA-175), erythrocyte-binding antigen-181 (EBA-181), erythrocyte-binding ligand-1 (EBL-1) and erythrocyte-binding antigen-140 (EBA-140). It is generally accepted that glycophorin A (GPA) is the receptor for P. falciparum EBA-175 ligand. It has been shown that α(2,3) sialic acid residues of GPA O-glycans form conformation-dependent clusters on GPA polypeptide chain which facilitate binding. P. falciparum can also invade erythrocytes using glycophorin B (GPB), which is structurally similar to GPA. It has been shown that P. falciparum EBL-1 ligand binds to GPB. Interestingly, a hybrid GPB-GPA molecule called Dantu is associated with a reduced risk of severe malaria and ameliorates malaria-related morbidity. Glycophorin C (GPC) is a receptor for P. falciparum EBA-140 ligand. Likewise, successful binding of EBA-140 depends on sialic acid residues of N- and O-linked oligosaccharides of GPC, which form a cluster or a conformational structure depending on the presence of peptide fragment encompassing amino acids (aa) 36–63. Evaluation of the homologous P. reichenowi EBA-140 unexpectedly revealed that the chimpanzee homolog of human glycophorin D (GPD) is probably the receptor for this ligand. In this review, we concentrate on the role of glycophorins as erythrocyte receptors for Plasmodium parasites. The presented data support the long-lasting idea of high evolutionary pressure exerted by Plasmodium on the human glycophorins, which emerge as important receptors for these parasites.
Collapse
Affiliation(s)
- Ewa Jaskiewicz
- Laboratory of Glikobiology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolfa Weigla 12, 53-114, Wroclaw, Poland. .,Faculty of Biological Sciences, University of Zielona Góra, Szafrana 1, 65-516, Zielona Góra, Poland.
| | - Marlena Jodłowska
- Laboratory of Glikobiology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolfa Weigla 12, 53-114, Wroclaw, Poland
| | - Radosław Kaczmarek
- Laboratory of Glikobiology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolfa Weigla 12, 53-114, Wroclaw, Poland
| | - Agata Zerka
- Laboratory of Glikobiology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolfa Weigla 12, 53-114, Wroclaw, Poland
| |
Collapse
|
16
|
Modelling pathogen load dynamics to elucidate mechanistic determinants of host-Plasmodium falciparum interactions. Nat Microbiol 2019; 4:1592-1602. [PMID: 31209307 PMCID: PMC6708439 DOI: 10.1038/s41564-019-0474-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 04/30/2019] [Indexed: 12/21/2022]
Abstract
During infection, increasing pathogen load stimulates both protective and
harmful aspects of the host response. The dynamics of this interaction are hard
to quantify in humans, but doing so could improve understanding of mechanisms of
disease and protection. We sought to model the contributions of parasite
multiplication rate and host response to observed parasite load in individual
subjects with Plasmodium falciparum malaria, using only data
obtained at the time of clinical presentation, and then to identify their
mechanistic correlates. We predicted higher parasite multiplication rates and
lower host responsiveness in severe malaria cases, with severe anemia being more
insidious than cerebral malaria. We predicted that parasite growth-inhibition
was associated with platelet consumption, lower expression of
CXCL10 and type-1 interferon-associated genes, but
increased cathepsin G and matrix metallopeptidase 9 expression. We found that
cathepsin G and matrix metallopeptidase 9 directly inhibit parasite invasion
into erythrocytes. Parasite multiplication rate was associated with host iron
availability and higher complement factor H levels, lower expression of
gametocyte-associated genes but higher expression of translation-associated
genes in the parasite. Our findings demonstrate the potential of using explicit
modelling of pathogen load dynamics to deepen understanding of host-pathogen
interactions and identify mechanistic correlates of protection.
Collapse
|
17
|
Ndila CM, Uyoga S, Macharia AW, Nyutu G, Peshu N, Ojal J, Shebe M, Awuondo KO, Mturi N, Tsofa B, Sepúlveda N, Clark TG, Band G, Clarke G, Rowlands K, Hubbart C, Jeffreys A, Kariuki S, Marsh K, Mackinnon M, Maitland K, Kwiatkowski DP, Rockett KA, Williams TN, Abathina A, Abubakar I, Achidi E, Agbenyega T, Aiyegbo M, Akoto A, Allen A, Allen S, Amenga-Etego L, Amodu F, Amodu O, Anchang-Kimbi J, Ansah N, Ansah P, Ansong D, Antwi S, Anyorigiya T, Apinjoh T, Asafo-Agyei E, Asoala V, Atuguba F, Auburn S, Bah A, Bamba K, Bancone G, Band G, Barnwell D, Barry A, Bauni E, Besingi R, Bojang K, Bougouma E, Bull S, Busby G, Camara A, Camara L, Campino S, Carter R, Carucci D, Casals-Pascual C, Ceesay N, Ceesay P, Chau T, Chuong L, Clark T, Clarke G, Cole-Ceesay R, Conway D, Cook K, Cook O, Cornelius V, Corran P, Correa S, Cox S, Craik R, Danso B, Davis T, Day N, Deloukas P, Dembele A, deVries J, Dewasurendra R, Diakite M, Diarra E, Dibba Y, Diss A, Djimdé A, Dolo A, Doumbo O, Doyle A, Drakeley C, Drury E, Duffy P, Dunstan S, Ebonyi A, Elhassan A, Elhassan I, Elzein A, Enimil A, Esangbedo P, Evans J, Evans J, Farrar J, Fernando D, Fitzpatrick K, Fullah J, Garcia J, Ghansah A, Gottleib M, Green A, Hart L, Hennsman M, Hien T, Hieu N, Hilton E, Hodgson A, Horstmann R, Hubbart C, Hughes C, Hussein A, Hutton R, Ibrahim M, Ishengoma D, Jaiteh J, Jallow M, Jallow M, Jammeh K, Jasseh M, Jeffreys A, Jobarteh A, Johnson K, Joseph S, Jyothi D, Kachala D, Kamuya D, Kanyi H, Karunajeewa H, Karunaweera N, Keita M, Kerasidou A, Khan A, Kivinen K, Kokwaro G, Konate A, Konate S, Koram K, Kwiatkowski D, Laman M, Le S, Leffler E, Lemnge M, Lin E, Ly A, Macharia A, MacInnis B, Mai N, Makani J, Malangone C, Mangano V, Manjurano A, Manneh L, Manning L, Manske M, Marsh K, Marsh V, Maslen G, Maxwell C, Mbunwe E, McCreight M, Mead D, Mendy A, Mendy A, Mensah N, Michon P, Miles A, Miotto O, Modiano D, Mohamed H, Molloy S, Molyneux M, Molyneux S, Moore M, Moyes C, Mtei F, Mtove G, Mueller I, Mugri R, Munthali A, Mutabingwa T, Nadjm B, Ndi A, Ndila C, Newton C, Niangaly A, Njie H, Njie J, Njie M, Njie M, Njie S, Njiragoma L, Nkrumah F, Ntunthama N, Nyika A, Nyirongo V, O'Brien J, Obu H, Oduro A, Ofori A, Olaniyan S, Olaosebikan R, Oluoch T, Omotade O, Oni O, Onykwelu E, Opi D, Orimadegun A, O'Riordan S, Ouedraogo I, Oyola S, Parker M, Pearson R, Pensulo P, Peshu N, Phiri A, Phu N, Pinder M, Pirinen M, Plowe C, Potter C, Poudiougou B, Puijalon O, Quyen N, Ragoussis I, Ragoussis J, Rasheed O, Reeder J, Reyburn H, Riley E, Risley P, Rockett K, Rodford J, Rogers J, Rogers W, Rowlands K, Ruano-Rubio V, Sabally-Ceesay K, Sadiq A, Saidy-Khan M, Saine H, Sakuntabhai A, Sall A, Sambian D, Sambou I, SanJoaquin M, Sepúlveda N, Shah S, Shelton J, Siba P, Silva N, Simmons C, Simpore J, Singhasivanon P, Sinh D, Sirima S, Sirugo G, Sisay-Joof F, Sissoko S, Small K, Somaskantharajah E, Spencer C, Stalker J, Stevens M, Suriyaphol P, Sylverken J, Taal B, Tall A, Taylor T, Teo Y, Thai C, Thera M, Titanji V, Toure O, Troye-Blomberg M, Usen S, Uyoga S, Vanderwal A, Wangai H, Watson R, Williams T, Wilson M, Wrigley R, Yafi C, Yamoah L. Human candidate gene polymorphisms and risk of severe malaria in children in Kilifi, Kenya: a case-control association study. Lancet Haematol 2018; 5:e333-e345. [PMID: 30033078 PMCID: PMC6069675 DOI: 10.1016/s2352-3026(18)30107-8] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 06/27/2018] [Accepted: 06/28/2018] [Indexed: 12/21/2022]
Abstract
BACKGROUND Human genetic factors are important determinants of malaria risk. We investigated associations between multiple candidate polymorphisms-many related to the structure or function of red blood cells-and risk for severe Plasmodium falciparum malaria and its specific phenotypes, including cerebral malaria, severe malaria anaemia, and respiratory distress. METHODS We did a case-control study in Kilifi County, Kenya. We recruited as cases children presenting with severe malaria to the high-dependency ward of Kilifi County Hospital. We included as controls infants born in the local community between Aug 1, 2006, and Sept 30, 2010, who were part of a genetics study. We tested for associations between a range of candidate malaria-protective genes and risk for severe malaria and its specific phenotypes. We used a permutation approach to account for multiple comparisons between polymorphisms and severe malaria. We judged p values less than 0·005 significant for the primary analysis of the association between candidate genes and severe malaria. FINDINGS Between June 11, 1995, and June 12, 2008, 2244 children with severe malaria were recruited to the study, and 3949 infants were included as controls. Overall, 263 (12%) of 2244 children with severe malaria died in hospital, including 196 (16%) of 1233 with cerebral malaria. We investigated 121 polymorphisms in 70 candidate severe malaria-associated genes. We found significant associations between risk for severe malaria overall and polymorphisms in 15 genes or locations, of which most were related to red blood cells: ABO, ATP2B4, ARL14, CD40LG, FREM3, INPP4B, G6PD, HBA (both HBA1 and HBA2), HBB, IL10, LPHN2 (also known as ADGRL2), LOC727982, RPS6KL1, CAND1, and GNAS. Combined, these genetic associations accounted for 5·2% of the variance in risk for developing severe malaria among individuals in the general population. We confirmed established associations between severe malaria and sickle-cell trait (odds ratio [OR] 0·15, 95% CI 0·11-0·20; p=2·61 × 10-58), blood group O (0·74, 0·66-0·82; p=6·26 × 10-8), and -α3·7-thalassaemia (0·83, 0·76-0·90; p=2·06 × 10-6). We also found strong associations between overall risk of severe malaria and polymorphisms in both ATP2B4 (OR 0·76, 95% CI 0·63-0·92; p=0·001) and FREM3 (0·64, 0·53-0·79; p=3·18 × 10-14). The association with FREM3 could be accounted for by linkage disequilibrium with a complex structural mutation within the glycophorin gene region (comprising GYPA, GYPB, and GYPE) that encodes for the rare Dantu blood group antigen. Heterozygosity for Dantu was associated with risk for severe malaria (OR 0·57, 95% CI 0·49-0·68; p=3·22 × 10-11), as was homozygosity (0·26, 0·11-0·62; p=0·002). INTERPRETATION Both ATP2B4 and the Dantu blood group antigen are associated with the structure and function of red blood cells. ATP2B4 codes for plasma membrane calcium-transporting ATPase 4 (the major calcium pump on red blood cells) and the glycophorins are ligands for parasites to invade red blood cells. Future work should aim at uncovering the mechanisms by which these polymorphisms can result in severe malaria protection and investigate the implications of these associations for wider health. FUNDING Wellcome Trust, UK Medical Research Council, European Union, and Foundation for the National Institutes of Health as part of the Bill & Melinda Gates Grand Challenges in Global Health Initiative.
Collapse
|
18
|
Genetic approach towards a vaccine against malaria. Eur J Clin Microbiol Infect Dis 2018; 37:1829-1839. [PMID: 29956023 DOI: 10.1007/s10096-018-3313-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 06/20/2018] [Indexed: 10/28/2022]
Abstract
Malaria is a major concern for international health authorities. Millions of people contract it every year in the world due to a parasite of the Plasmodium genus. Due to the complexity of the parasite biology and genetics, there is currently no vaccine against the disease. However, due to the great resistance both to the medicines and to the insecticides used to combat the disease, it has become essential to obtain a vaccine as the necessary tool to prevent transmission and eliminate the disease. The bibliometric data indicate that interest in vaccines has been growing steadily since the 1980s. But nowadays, a powerful tool is used: the Plasmodium genome. This allows us to improve the fight against the disease. Knowing the sequences of the genes that favor the appearance of drug resistance, or those that encode for proteins with greater antigenic response, is a tool that can become fundamental. This article reviews the state of the art on vaccines and genetics, in the fight against malaria, and analyzes the fixed photo that the worldwide research on the disease poses.
Collapse
|
19
|
Ye L, Zhao F, Yang Q, Zhang J, Li Q, Wang C, Guo Z, Yang Y, Zhu Z. OK/basigin expression on red blood cells varies between blood donors and correlates with binding of recombinant Plasmodium falciparum reticulocyte-binding protein homolog 5. Transfusion 2018; 58:2046-2053. [PMID: 29707789 DOI: 10.1111/trf.14635] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 02/27/2018] [Accepted: 03/02/2018] [Indexed: 12/12/2022]
Abstract
BACKGROUND Recently, basigin (BSG), which carries OK antigens on red blood cells (RBCs), was reported to be the receptor of the Plasmodium falciparum reticulocyte-binding protein homolog 5 (PfRh5). BSG-PfRh5 is the only essential receptor-ligand pair in P. falciparum invasion that is known to date. However, the kind of OK/BSG polymorphism involved in the selection pressure caused by P. falciparum malaria has not been determined. STUDY DESIGN AND METHODS Blood samples were collected to detect the expression of OK/BSG. The coding region of PfRh5 was cloned and expressed. Enzyme-linked immunosorbent assay-based erythrocyte binding assay was used to measure the recombinant PfRh5 (rPfRh5) binding of RBCs with different OK/BSG expressions. Sequencing of the BSG gene and quantification of the BSG mRNA were performed for selected samples. The candidate microRNAs (miRNAs), which might target the BSG gene, were obtained by miRNA sequencing. Dual-Luciferase reporter assay and overexpression of identified miRNAs were performed in K562 cells. RESULTS The rPfRh5 was successfully expressed and verified. The OK/BSG expression levels varied among blood donors and were strongly associated with rPfRh5 binding. No single-nucleotide polymorphism was related to the OK/BSG expression. A potential BSG regulator, miR-501-3p, was identified by miRNA sequencing and Dual-Luciferase assay, but was not proven to regulate the expression of BSG in K562 cells. CONCLUSION Although the mechanism of OK/BSG expression and regulation on RBCs has not been fully clarified, our findings suggest that the OK/BSG expression levels on RBCs might be related to P. falciparum invasion. Moreover, posttranscriptional regulation might play a role in controlling the OK/BSG expression.
Collapse
Affiliation(s)
- Luyi Ye
- Immunohematology Lab, Shanghai Institute of Blood Transfusion, Shanghai Blood Center, Shanghai, China
| | - Fengyong Zhao
- Immunohematology Lab, Shanghai Institute of Blood Transfusion, Shanghai Blood Center, Shanghai, China
| | - Qixiu Yang
- Immunohematology Lab, Shanghai Institute of Blood Transfusion, Shanghai Blood Center, Shanghai, China
| | - Jiamin Zhang
- Immunohematology Lab, Shanghai Institute of Blood Transfusion, Shanghai Blood Center, Shanghai, China
| | - Qin Li
- Immunohematology Lab, Shanghai Institute of Blood Transfusion, Shanghai Blood Center, Shanghai, China
| | - Chen Wang
- Immunohematology Lab, Shanghai Institute of Blood Transfusion, Shanghai Blood Center, Shanghai, China
| | - Zhonghui Guo
- Immunohematology Lab, Shanghai Institute of Blood Transfusion, Shanghai Blood Center, Shanghai, China
| | - Ying Yang
- Immunohematology Lab, Shanghai Institute of Blood Transfusion, Shanghai Blood Center, Shanghai, China
| | - Ziyan Zhu
- Immunohematology Lab, Shanghai Institute of Blood Transfusion, Shanghai Blood Center, Shanghai, China
| |
Collapse
|
20
|
Jongruamklang P, Gassner C, Meyer S, Kummasook A, Darlison M, Boonlum C, Chanta S, Frey BM, Olsson ML, Storry JR. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry analysis of 36 blood group alleles among 396 Thai samples reveals region-specific variants. Transfusion 2018; 58:1752-1762. [PMID: 29656499 DOI: 10.1111/trf.14624] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 02/24/2018] [Accepted: 02/26/2018] [Indexed: 12/18/2022]
Abstract
BACKGROUND Blood group phenotype variation has been attributed to potential resistance to pathogen invasion. Variation was mapped in blood donors from Lampang (northern region) and Saraburi (central region), Thailand, where malaria is endemic. The previously unknown blood group allele profiles were characterized and the data were correlated with phenotypes. The high incidence of the Vel-negative phenotype previously reported in Thais was investigated. STUDY DESIGN AND METHODS DNA from 396 blood donors was analyzed by matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry. Outliers were investigated by serology and DNA sequencing. Allele discrimination assays for SMIM1 rs1175550A/G and ACKR1 rs118062001C/T were performed and correlated with antigen expression. RESULTS All samples were phenotyped for Rh, MNS, and K. Genotyping/phenotyping for RhD, K, and S/s showed 100% concordance. Investigation of three RHCE outliers revealed an e-variant antigen encoded by RHCE*02.22. Screening for rs147357308 (RHCE c.667T) revealed a frequency of 3.3%. MN typing discrepancies in 41 samples revealed glycophorin variants, of which 40 of 41 were due to Mia . Nine samples (2.3%) were heterozygous for FY*01W.01 (c.265C > T), and six samples (1.5%) were heterozygous for JK*02N.01. All samples were wildtype SMIM1 homozygotes with 97% homozygosity for rs1175550A. CONCLUSIONS Matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry is an efficient method for rapid routine genotyping and investigation of outliers identified novel variation among our samples. The expected high prevalence of the Mi(a+) phenotype was observed from both regions. Of potential clinical relevance in a region where transfusion-dependent thalassemia is common, we identified two RHCE*02 alleles known to encode an e-variant antigen.
Collapse
Affiliation(s)
- Philaiphon Jongruamklang
- Hematology and Transfusion Medicine, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Christoph Gassner
- Molecular Diagnostics & Research (MOC), Blood Transfusion Service Zürich, Zürich-Schlieren, Switzerland
| | - Stefan Meyer
- Molecular Diagnostics & Research (MOC), Blood Transfusion Service Zürich, Zürich-Schlieren, Switzerland
| | - Aksarakorn Kummasook
- Department of Medical Technology, School of Allied Health Sciences, University of Phayao, Phayao, Thailand
| | - Marion Darlison
- Hematology and Transfusion Medicine, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Chayanun Boonlum
- Transfusion Medicine, Department of Medical Technology and Clinical Laboratory, Saraburi Hospital, Saraburi, Thailand
| | - Surin Chanta
- Transfusion Medicine, Department of Medical Technology and Clinical Laboratory, Lampang Hospital, Lampang, Thailand
| | - Beat M Frey
- Molecular Diagnostics & Research (MOC), Blood Transfusion Service Zürich, Zürich-Schlieren, Switzerland
| | - Martin L Olsson
- Hematology and Transfusion Medicine, Department of Laboratory Medicine, Lund University, Lund, Sweden.,Clinical Immunology and Transfusion Medicine, Laboratory Medicine, Office of Medical Services, Lund, Sweden
| | - Jill R Storry
- Hematology and Transfusion Medicine, Department of Laboratory Medicine, Lund University, Lund, Sweden.,Clinical Immunology and Transfusion Medicine, Laboratory Medicine, Office of Medical Services, Lund, Sweden
| |
Collapse
|
21
|
Jaskiewicz E, Peyrard T, Kaczmarek R, Zerka A, Jodlowska M, Czerwinski M. The Gerbich blood group system: old knowledge, new importance. Transfus Med Rev 2018. [PMID: 29540278 DOI: 10.1016/j.tmrv.2018.02.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Antigens of the Gerbich blood group system are expressed on glycophorin C (GPC) and glycophorin D (GPD), minor sialoglycoproteins of human erythrocytes. GPC and GPD help maintain erythrocyte shape of and contributes to the stability of its membrane. There are six high-prevalence Gerbich antigens: Ge2, Ge3, Ge4, GEPL (GE10), GEAT (GE11), GETI (GE12) and five low-prevalence Gerbich antigens: Wb (GE5), Lsa (GE6), Ana (GE7), Dha (GE8), GEIS (GE9). Some Gerbich antigens (Ge4, Wb, Dha, GEAT) are expressed only on GPC, two (Ge2, Ana) are expressed only on GPD, while others (Ge3, Lsa, GEIS, GEPL, GETI) are expressed on both GPC and GPD. Antibodies recognizing GPC/GPD may arise naturally (so-called "naturally-occurring RBC antibodies") or as the result of alloimmunization, and some of them may be clinically relevant. Gerbich antibodies usually do not cause serious hemolytic transfusion reactions (HTR); autoantibodies of anti-Ge2- or anti-Ge3 specificity can cause autoimmune hemolytic anemia (AIHA).
Collapse
Affiliation(s)
- Ewa Jaskiewicz
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland; Faculty of Biological Sciences, University of Zielona Góra, Zielona Góra, Poland.
| | - Thierry Peyrard
- Institut National de la Transfusion Sanguine (INTS), Département Centre National de Référence pour les Groupes Sanguins (CNRGS), Paris, France; UMR_S1134 Inserm Université Paris Diderot, Paris, France; Laboratoire d'Excellence GR-Ex, Institut Imagine, Paris, France
| | - Radoslaw Kaczmarek
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Agata Zerka
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Marlena Jodlowska
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Marcin Czerwinski
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland; Faculty of Physiotherapy and Physical Education, Opole University of Technology, Opole, Poland
| |
Collapse
|
22
|
Moreno-Pérez DA, Baquero LA, Bermúdez M, Gómez-Muñoz LA, Varela Y, Patarroyo MA. Easy and fast method for expression and native extraction of Plasmodium vivax Duffy binding protein fragments. Malar J 2018; 17:76. [PMID: 29422046 PMCID: PMC5806264 DOI: 10.1186/s12936-018-2216-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 01/30/2018] [Indexed: 11/13/2022] Open
Abstract
Background The Plasmodium vivax Duffy binding protein (PvDBP) has been the most studied ligand binding human reticulocytes to date. This molecule has a cysteine-rich domain in region II (RII) which has been used as control for evaluating the target cell binding activity of several parasite molecules. However, obtaining rPvDBP-RII in a soluble form using the Escherichia coli expression system usually requires laborious and time-consuming steps for recovering the molecule’s structure and function, considering it is extracted from inclusion bodies. The present study describes an easy and fast method for expressing and obtaining several PvDBP fragments which should prove ideal for use in protein–cell interaction assays. Results Two PvDBP encoding regions (rii and riii/v) were cloned in pEXP5-CT vector and expressed in E. coli and extracted from the soluble fraction (rPvDBP-RIIS and rPvDBP-RIII/VS) using a simple freezing/thawing protocol. After the purification, dichroism analysis enabled verifying high rPvDBP-RIIS and rPvDBP-RIII/VS secondary structure α-helix content, which was lowered when molecules were extracted from inclusion bodies (rPvDBP-RIIIB and rPvDBP-RIII/VIB) using a denaturing step. Interestingly, rPvDBP-RIIS, but not rPvDBP-RIIIB, bound to human reticulocytes, while rPvDBP-RIII/VS and rPvDBP-RIII/VIB bound to such cells in a similar way to negative control (cells incubated without recombinant proteins). Conclusions This research has shown for the first time how rPvDBP-RII can be expressed and obtained in soluble form using the E. coli system and avoiding the denaturation and refolding steps commonly used. The results highlight the usefulness of the rPvDBP-RIII/VS fragment as a non-binding control for protein-cell target interaction assays. The soluble extraction protocol described is a good alternative to obtain fully functional P. vivax proteins in a fast and easy way, which will surely prove useful to laboratories working in studying this parasite’s biology.
Collapse
Affiliation(s)
- Darwin Andrés Moreno-Pérez
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Carrera 50 No. 26-20, Bogotá, DC, Colombia.,Livestock Sciences Faculty, Universidad de Ciencias Aplicadas y Ambientales (U.D.C.A), Calle 222 No. 55-37, Bogotá, DC, Colombia
| | - Luis Alfredo Baquero
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Carrera 50 No. 26-20, Bogotá, DC, Colombia
| | - Maritza Bermúdez
- Receptor-Ligand Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Carrera 50, No. 26-20, Bogotá, Colombia
| | - Laura Alejandra Gómez-Muñoz
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Carrera 50 No. 26-20, Bogotá, DC, Colombia
| | - Yahson Varela
- Chemical Synthesis Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Carrera 50 No. 26-20, Bogotá, DC, Colombia
| | - Manuel Alfonso Patarroyo
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Carrera 50 No. 26-20, Bogotá, DC, Colombia. .,Basic Sciences Department, School of Medicine and Health Sciences, Universidad del Rosario, Carrera 24 No. 63C-69, Bogotá, DC, Colombia.
| |
Collapse
|
23
|
Hematologic Aspects of Parasitic Diseases. Hematology 2018. [DOI: 10.1016/b978-0-323-35762-3.00158-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023] Open
|
24
|
Coelho CH, Doritchamou JYA, Zaidi I, Duffy PE. Advances in malaria vaccine development: report from the 2017 malaria vaccine symposium. NPJ Vaccines 2017. [PMID: 29522056 PMCID: PMC5709382 DOI: 10.1038/s41541-017-0035-3] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The Malaria Vaccine Symposium occurred at Johns Hopkins University in Baltimore, MD, USA on April 25th, 2017, coinciding with World Malaria Day and the WHO announcement that the RTS,S malaria vaccine would begin pilot implementation programs in Ghana, Kenya, and Malawi in 2018. Scientists from several disciplines reported progress on an array of malaria vaccine concepts and product candidates, including pre-erythrocytic vaccines that prevent infection, blood-stage vaccines that limit infection and disease, and transmission-blocking vaccines that interrupt the spread of infection. Other speakers highlighted the immunological and genetic considerations that must be addressed by vaccinologists to yield the most efficacious vaccines. Here, we highlight the advances in malaria vaccinology that were reported at the symposium.
Collapse
Affiliation(s)
- Camila Henriques Coelho
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD USA
| | - Justin Yai Alamou Doritchamou
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD USA
| | - Irfan Zaidi
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD USA
| | - Patrick E Duffy
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD USA
| |
Collapse
|
25
|
Roberts DJ. Expanding access to Transfusion Medicine and improving practice: guidelines, patient blood management, protocols and products. Transfus Med 2017; 27 Suppl 5:315-317. [PMID: 29076249 DOI: 10.1111/tme.12484] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- D J Roberts
- National Health Service Blood and Transplant, University of Oxford, John Radcliffe Hospital, Oxford, UK
| |
Collapse
|
26
|
Genetic Evidence for Erythrocyte Receptor Glycophorin B Expression Levels Defining a Dominant Plasmodium falciparum Invasion Pathway into Human Erythrocytes. Infect Immun 2017; 85:IAI.00074-17. [PMID: 28760933 PMCID: PMC5607420 DOI: 10.1128/iai.00074-17] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 07/17/2017] [Indexed: 01/18/2023] Open
Abstract
Plasmodium falciparum, the parasite that causes the deadliest form of malaria, has evolved multiple proteins known as invasion ligands that bind to specific erythrocyte receptors to facilitate invasion of human erythrocytes. The EBA-175/glycophorin A (GPA) and Rh5/basigin ligand-receptor interactions, referred to as invasion pathways, have been the subject of intense study. In this study, we focused on the less-characterized sialic acid-containing receptors glycophorin B (GPB) and glycophorin C (GPC). Through bioinformatic analysis, we identified extensive variation in glycophorin B (GYPB) transcript levels in individuals from Benin, suggesting selection from malaria pressure. To elucidate the importance of the GPB and GPC receptors relative to the well-described EBA-175/GPA invasion pathway, we used an ex vivo erythrocyte culture system to decrease expression of GPA, GPB, or GPC via lentiviral short hairpin RNA transduction of erythroid progenitor cells, with global surface proteomic profiling. We assessed the efficiency of parasite invasion into knockdown cells using a panel of wild-type P. falciparum laboratory strains and invasion ligand knockout lines, as well as P. falciparum Senegalese clinical isolates and a short-term-culture-adapted strain. For this, we optimized an invasion assay suitable for use with small numbers of erythrocytes. We found that all laboratory strains and the majority of field strains tested were dependent on GPB expression level for invasion. The collective data suggest that the GPA and GPB receptors are of greater importance than the GPC receptor, supporting a hierarchy of erythrocyte receptor usage in P. falciparum.
Collapse
|
27
|
Leffler EM, Band G, Busby GBJ, Kivinen K, Le QS, Clarke GM, Bojang KA, Conway DJ, Jallow M, Sisay-Joof F, Bougouma EC, Mangano VD, Modiano D, Sirima SB, Achidi E, Apinjoh TO, Marsh K, Ndila CM, Peshu N, Williams TN, Drakeley C, Manjurano A, Reyburn H, Riley E, Kachala D, Molyneux M, Nyirongo V, Taylor T, Thornton N, Tilley L, Grimsley S, Drury E, Stalker J, Cornelius V, Hubbart C, Jeffreys AE, Rowlands K, Rockett KA, Spencer CCA, Kwiatkowski DP. Resistance to malaria through structural variation of red blood cell invasion receptors. Science 2017; 356:science.aam6393. [PMID: 28522690 DOI: 10.1126/science.aam6393] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 05/08/2017] [Indexed: 12/29/2022]
Abstract
The malaria parasite Plasmodium falciparum invades human red blood cells by a series of interactions between host and parasite surface proteins. By analyzing genome sequence data from human populations, including 1269 individuals from sub-Saharan Africa, we identify a diverse array of large copy-number variants affecting the host invasion receptor genes GYPA and GYPB We find that a nearby association with severe malaria is explained by a complex structural rearrangement involving the loss of GYPB and gain of two GYPB-A hybrid genes, which encode a serologically distinct blood group antigen known as Dantu. This variant reduces the risk of severe malaria by 40% and has recently increased in frequency in parts of Kenya, yet it appears to be absent from west Africa. These findings link structural variation of red blood cell invasion receptors with natural resistance to severe malaria.
Collapse
Affiliation(s)
- Ellen M Leffler
- Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK.,Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK
| | - Gavin Band
- Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK.,Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK
| | - George B J Busby
- Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Katja Kivinen
- Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK
| | - Quang Si Le
- Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Geraldine M Clarke
- Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Kalifa A Bojang
- Medical Research Council Unit, Atlantic Boulevard, Fajara, Post Office Box 273, The Gambia
| | - David J Conway
- Medical Research Council Unit, Atlantic Boulevard, Fajara, Post Office Box 273, The Gambia.,Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| | - Muminatou Jallow
- Medical Research Council Unit, Atlantic Boulevard, Fajara, Post Office Box 273, The Gambia.,Royal Victoria Teaching Hospital, Independence Drive, Post Office Box 1515, Banjul, The Gambia
| | - Fatoumatta Sisay-Joof
- Medical Research Council Unit, Atlantic Boulevard, Fajara, Post Office Box 273, The Gambia
| | - Edith C Bougouma
- Centre National de Recherche et de Formation sur le Paludisme (CNRFP), 01 BP 2208 Ouagadougou 01, Burkina Faso
| | | | - David Modiano
- University of Rome La Sapienza, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Sodiomon B Sirima
- Centre National de Recherche et de Formation sur le Paludisme (CNRFP), 01 BP 2208 Ouagadougou 01, Burkina Faso
| | - Eric Achidi
- Department of Medical Laboratory Sciences, University of Buea, Post Office Box 63, Buea, South West Region, Cameroon
| | - Tobias O Apinjoh
- Department of Biochemistry and Molecular Biology, University of Buea, Post Office Box 63, Buea, South West Region, Cameroon
| | - Kevin Marsh
- Kenyan Medical Research Institute (KEMRI)-Wellcome Trust Research Programme, Post Office Box 230-80108, Kilifi, Kenya.,Nuffield Department of Medicine, NDM Research Building, Roosevelt Drive, Headington, Oxford OX3 7FZ, UK
| | - Carolyne M Ndila
- Kenyan Medical Research Institute (KEMRI)-Wellcome Trust Research Programme, Post Office Box 230-80108, Kilifi, Kenya
| | - Norbert Peshu
- Kenyan Medical Research Institute (KEMRI)-Wellcome Trust Research Programme, Post Office Box 230-80108, Kilifi, Kenya
| | - Thomas N Williams
- Kenyan Medical Research Institute (KEMRI)-Wellcome Trust Research Programme, Post Office Box 230-80108, Kilifi, Kenya.,Faculty of Medicine, Department of Medicine, Imperial College, Exhibition Road, London SW7 2AZ, UK
| | - Chris Drakeley
- Joint Malaria Programme, Kilimanjaro Christian Medical Centre, Post Office Box 2228, Moshi, Tanzania.,Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| | - Alphaxard Manjurano
- Joint Malaria Programme, Kilimanjaro Christian Medical Centre, Post Office Box 2228, Moshi, Tanzania.,Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK.,National Institute for Medical Research, Mwanza Research Centre, Mwanza City, Tanzania
| | - Hugh Reyburn
- Joint Malaria Programme, Kilimanjaro Christian Medical Centre, Post Office Box 2228, Moshi, Tanzania.,Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| | - Eleanor Riley
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| | - David Kachala
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Queen Elizabeth Central Hospital, College of Medicine, Post Office Box 30096, Chichiri, Blantyre 3, Malawi
| | - Malcolm Molyneux
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Queen Elizabeth Central Hospital, College of Medicine, Post Office Box 30096, Chichiri, Blantyre 3, Malawi.,Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
| | - Vysaul Nyirongo
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Queen Elizabeth Central Hospital, College of Medicine, Post Office Box 30096, Chichiri, Blantyre 3, Malawi
| | - Terrie Taylor
- Blantyre Malaria Project, Queen Elizabeth Central Hospital, College of Medicine, Post Office Box 30096, Chichiri, Blantyre 3, Malawi.,College of Osteopathic Medicine, Michigan State University, East Lansing, MI 48824, USA
| | - Nicole Thornton
- International Blood Group Reference Laboratory, National Health Service (NHS) Blood and Transplant, 500 North Bristol Park, Filton, Bristol BS34 7QH, UK
| | - Louise Tilley
- International Blood Group Reference Laboratory, National Health Service (NHS) Blood and Transplant, 500 North Bristol Park, Filton, Bristol BS34 7QH, UK
| | - Shane Grimsley
- International Blood Group Reference Laboratory, National Health Service (NHS) Blood and Transplant, 500 North Bristol Park, Filton, Bristol BS34 7QH, UK
| | - Eleanor Drury
- Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK
| | - Jim Stalker
- Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK
| | - Victoria Cornelius
- Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Christina Hubbart
- Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Anna E Jeffreys
- Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Kate Rowlands
- Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Kirk A Rockett
- Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK.,Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK
| | - Chris C A Spencer
- Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK.
| | - Dominic P Kwiatkowski
- Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK. .,Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK
| | | |
Collapse
|
28
|
The Aotus nancymaae erythrocyte proteome and its importance for biomedical research. J Proteomics 2016; 152:131-137. [PMID: 27989940 DOI: 10.1016/j.jprot.2016.10.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 10/20/2016] [Accepted: 10/25/2016] [Indexed: 12/19/2022]
Abstract
The Aotus nancymaae species has been of great importance in researching the biology and pathogenesis of malaria, particularly for studying Plasmodium molecules for including them in effective vaccines against such microorganism. In spite of the forgoing, there has been no report to date describing the biology of parasite target cells in primates or their biomedical importance. This study was thus designed to analyse A. nancymaae erythrocyte protein composition using MS data collected during a previous study aimed at characterising the Plasmodium vivax proteome and published in the pertinent literature. Most peptides identified were similar to those belonging to 1189 Homo sapiens molecules; >95% of them had orthologues in New World primates. GO terms revealed a correlation between categories having the greatest amount of proteins and vital cell function. Integral membrane molecules were also identified which could be possible receptors facilitating interaction with Plasmodium species. The A. nancymaae erythrocyte proteome is described here for the first time, as a starting point for more in-depth/extensive studies. The data reported represents a source of invaluable information for laboratories interested in carrying out basic and applied biomedical investigation studies which involve using this primate. SIGNIFICANCE An understanding of the proteomics characteristics of A. nancymaae erythrocytes represents a fascinating area for research regarding the study of the pathogenesis of malaria since these are the main target for Plasmodium invasion. However, and even though Aotus is one of the non-human primate models considered most appropriate for biomedical research, knowledge of its proteome, particularly its erythrocytes, remains unknown. According to the above and bearing in mind the lack of information about the A. nancymaae species genome and transcriptome, this study involved a search for primate proteins for comparing their MS/MS spectra with the available information for Homo sapiens. The great similarity found between the primate's molecules and those for humans supported the use of the monkeys or their cells for continuing assays involved in studying malaria. Integral membrane receptors used by Plasmodium for invading cells were also found; this required timely characterisation for evaluating their therapeutic role. The list of erythrocyte protein composition reported here represents a useful source of basic knowledge for advancing biomedical investigation in this field.
Collapse
|