1
|
Gershman SJ. Habituation as optimal filtering. iScience 2024; 27:110523. [PMID: 39175780 PMCID: PMC11340592 DOI: 10.1016/j.isci.2024.110523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/18/2024] [Accepted: 07/12/2024] [Indexed: 08/24/2024] Open
Abstract
Habituation, the reduction of responding to repetitive stimuli, is often conceptualized as a kind of attentional filter, amplifying salient signals at the expense of non-salient signals. No prior account has explicitly formalized filtering principles that can explain the major characteristics of habituation. In this paper, a simple probabilistic model is developed which permits analysis of the optimal filtering problem. This model exhibits the major characteristics of habituation, while also shedding light on other, relatively neglected, characteristics. These results demonstrate that habituation can be understood as a form of optimal filtering.
Collapse
Affiliation(s)
- Samuel J. Gershman
- Department of Psychology and Center for Brain Science, Kempner Institute for the Study of Natural and Artificial Intelligence, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
2
|
Cusack R, Ranzato M, Charvet CJ. Helpless infants are learning a foundation model. Trends Cogn Sci 2024; 28:726-738. [PMID: 38839537 PMCID: PMC11310914 DOI: 10.1016/j.tics.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 04/24/2024] [Accepted: 05/03/2024] [Indexed: 06/07/2024]
Abstract
Humans have a protracted postnatal helplessness period, typically attributed to human-specific maternal constraints causing an early birth when the brain is highly immature. By aligning neurodevelopmental events across species, however, it has been found that humans are not born with especially immature brains compared with animal species with a shorter helpless period. Consistent with this, the rapidly growing field of infant neuroimaging has found that brain connectivity and functional activation at birth share many similarities with the mature brain. Inspired by machine learning, where deep neural networks also benefit from a 'helpless period' of pre-training, we propose that human infants are learning a foundation model: a set of fundamental representations that underpin later cognition with high performance and rapid generalisation.
Collapse
|
3
|
Poli F, O'Reilly JX, Mars RB, Hunnius S. Curiosity and the dynamics of optimal exploration. Trends Cogn Sci 2024; 28:441-453. [PMID: 38413257 DOI: 10.1016/j.tics.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 02/01/2024] [Accepted: 02/01/2024] [Indexed: 02/29/2024]
Abstract
What drives our curiosity remains an elusive and hotly debated issue, with multiple hypotheses proposed but a cohesive account yet to be established. This review discusses traditional and emergent theories that frame curiosity as a desire to know and a drive to learn, respectively. We adopt a model-based approach that maps the temporal dynamics of various factors underlying curiosity-based exploration, such as uncertainty, information gain, and learning progress. In so doing, we identify the limitations of past theories and posit an integrated account that harnesses their strengths in describing curiosity as a tool for optimal environmental exploration. In our unified account, curiosity serves as a 'common currency' for exploration, which must be balanced with other drives such as safety and hunger to achieve efficient action.
Collapse
Affiliation(s)
- Francesco Poli
- Donders Institute for Brain, Cognition, and Behaviour, Radboud University, Nijmegen, The Netherlands.
| | - Jill X O'Reilly
- Wellcome Centre for Integrative Neuroimaging, Centre for Functional MRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Rogier B Mars
- Donders Institute for Brain, Cognition, and Behaviour, Radboud University, Nijmegen, The Netherlands; Wellcome Centre for Integrative Neuroimaging, Centre for Functional MRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Sabine Hunnius
- Donders Institute for Brain, Cognition, and Behaviour, Radboud University, Nijmegen, The Netherlands
| |
Collapse
|
4
|
Poli F, Ghilardi T, Beijers R, de Weerth C, Hinne M, Mars RB, Hunnius S. Individual differences in processing speed and curiosity explain infant habituation and dishabituation performance. Dev Sci 2024; 27:e13460. [PMID: 38155558 DOI: 10.1111/desc.13460] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 08/05/2023] [Accepted: 11/09/2023] [Indexed: 12/30/2023]
Abstract
Habituation and dishabituation are the most prevalent measures of infant cognitive functioning, and they have reliably been shown to predict later cognitive outcomes. Yet, the exact mechanisms underlying infant habituation and dishabituation are still unclear. To investigate them, we tested 106 8-month-old infants on a classic habituation task and a novel visual learning task. We used a hierarchical Bayesian model to identify individual differences in sustained attention, learning performance, processing speed and curiosity from the visual learning task. These factors were then related to habituation and dishabituation. We found that habituation time was related to individual differences in processing speed, while dishabituation was related to curiosity, but only for infants who did not habituate. These results offer novel insights in the mechanisms underlying habituation and serve as proof of concept for hierarchical models as an effective tool to measure individual differences in infant cognitive functioning. RESEARCH HIGHLIGHTS: We used a hierarchical Bayesian model to measure individual differences in infants' processing speed, learning performance, sustained attention, and curiosity. Faster processing speed was related to shorter habituation time. High curiosity was related to stronger dishabituation responses, but only for infants who did not habituate.
Collapse
Affiliation(s)
- Francesco Poli
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, Netherlands
| | - Tommaso Ghilardi
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, Netherlands
- Centre for Brain and Cognitive Development, School of Psychological Sciences, Birkbeck, University of London, London, United Kingdom
| | - Roseriet Beijers
- Behavioral Science Institute, Radboud University, Nijmegen, Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Department of Cognitive Neuroscience, Radboud University Medical Center, Nijmegen, Netherlands
| | - Carolina de Weerth
- Donders Institute for Brain, Cognition and Behaviour, Department of Cognitive Neuroscience, Radboud University Medical Center, Nijmegen, Netherlands
| | - Max Hinne
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, Netherlands
| | - Rogier B Mars
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, Netherlands
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK
| | - Sabine Hunnius
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, Netherlands
| |
Collapse
|