1
|
Epigenetic Changes Occurring in Plant Inbreeding. Int J Mol Sci 2023; 24:ijms24065407. [PMID: 36982483 PMCID: PMC10048984 DOI: 10.3390/ijms24065407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 03/01/2023] [Accepted: 03/10/2023] [Indexed: 03/18/2023] Open
Abstract
Inbreeding is the crossing of closely related individuals in nature or a plantation or self-pollinating plants, which produces plants with high homozygosity. This process can reduce genetic diversity in the offspring and decrease heterozygosity, whereas inbred depression (ID) can often reduce viability. Inbred depression is common in plants and animals and has played a significant role in evolution. In the review, we aim to show that inbreeding can, through the action of epigenetic mechanisms, affect gene expression, resulting in changes in the metabolism and phenotype of organisms. This is particularly important in plant breeding because epigenetic profiles can be linked to the deterioration or improvement of agriculturally important characteristics.
Collapse
|
2
|
Laurich JR, Reid CG, Biel C, Wu T, Knox C, Frederickson ME. Genetic architecture of multiple mutualisms and mating system in Turnera ulmifolia. J Evol Biol 2023; 36:280-295. [PMID: 36196911 DOI: 10.1111/jeb.14098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 07/08/2022] [Accepted: 07/15/2022] [Indexed: 01/11/2023]
Abstract
Plants often associate with multiple arthropod mutualists. These partners provide important services to their hosts, but multiple interactions can constrain a plant's ability to respond to complex, multivariate selection. Here, we quantified patterns of genetic variance and covariance among rewards for pollination, biotic defence and seed dispersal mutualisms in multiple populations of Turnera ulmifolia to better understand how the genetic architecture of multiple mutualisms might influence their evolution. We phenotyped plants cultivated from 17 Jamaican populations for several mutualism and mating system-related traits. We then fit genetic variance-covariance (G) matrices for the island metapopulation and the five largest individual populations. At the metapopulation level, we observed significant positive genetic correlations among stigma-anther separation, floral nectar production and extrafloral nectar production. These correlations have the potential to significantly constrain or facilitate the evolution of multiple mutualisms in T. ulmifolia and suggest that pollination, seed dispersal and defence mutualisms do not evolve independently. In particular, we found that positive genetic correlations between floral and extrafloral nectar production may help explain their stable coexistence in the face of physiological trade-offs and negative interactions between pollinators and ant bodyguards. Locally, we found only small differences in G among our T. ulmifolia populations, suggesting that geographic variation in G may not shape the evolution of multiple mutualisms.
Collapse
Affiliation(s)
- Jason R Laurich
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
| | - Christopher G Reid
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
| | - Caroline Biel
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
| | - Tianbi Wu
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada.,Faculty of the Environment, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Christopher Knox
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
| | - Megan E Frederickson
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
3
|
Nihranz CT, Helms AM, Tooker JF, Mescher MC, De Moraes CM, Stephenson AG. Adverse effects of inbreeding on the transgenerational expression of herbivore-induced defense traits in Solanum carolinense. PLoS One 2022; 17:e0274920. [PMID: 36282832 PMCID: PMC9595541 DOI: 10.1371/journal.pone.0274920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 09/06/2022] [Indexed: 01/24/2023] Open
Abstract
In addition to directly inducing physical and chemical defenses, herbivory experienced by plants in one generation can influence the expression of defensive traits in offspring. Plant defense phenotypes can be compromised by inbreeding, and there is some evidence that such adverse effects can extend to the transgenerational expression of induced resistance. We explored how the inbreeding status of maternal Solanum carolinense plants influenced the transgenerational effects of herbivory on the defensive traits and herbivore resistance of offspring. Manduca sexta caterpillars were used to damage inbred and outbred S. carolinense maternal plants and cross pollinations were performed to produced seeds from herbivore-damaged and undamaged, inbred and outbred maternal plants. Seeds were grown in the greenhouse to assess offspring defense-related traits (i.e., leaf trichomes, internode spines, volatile organic compounds) and resistance to herbivores. We found that feeding by M. sexta caterpillars on maternal plants had a positive influence on trichome and spine production in offspring and that caterpillar development on offspring of herbivore-damaged maternal plants was delayed relative to that on offspring of undamaged plants. Offspring of inbred maternal plants had reduced spine production, compared to those of outbred maternal plants, and caterpillars performed better on the offspring of inbred plants. Both herbivory and inbreeding in the maternal generation altered volatile emissions of offspring. In general, maternal plant inbreeding dampened transgenerational effects of herbivory on offspring defensive traits and herbivore resistance. Taken together, this study demonstrates that inducible defenses in S. carolinense can persist across generations and that inbreeding compromises transgenerational resistance in S. carolinense.
Collapse
Affiliation(s)
- Chad T. Nihranz
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
- School of Integrative Plant Sciences, Cornell University, Ithaca, New York, United States of America
| | - Anjel M. Helms
- Department of Entomology, Texas A&M University, College Station, Texas, United States of America
| | - John F. Tooker
- Department of Entomology, The Pennsylvania State University, University Park, PA, United States of America
| | - Mark C. Mescher
- Department of Environmental Systems Science, Swiss Federal Institute of Technology, Zurich, Switzerland
| | - Consuelo M. De Moraes
- Department of Environmental Systems Science, Swiss Federal Institute of Technology, Zurich, Switzerland
| | - Andrew G. Stephenson
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| |
Collapse
|
4
|
Monson RK, Trowbridge AM, Lindroth RL, Lerdau MT. Coordinated resource allocation to plant growth-defense tradeoffs. THE NEW PHYTOLOGIST 2022; 233:1051-1066. [PMID: 34614214 DOI: 10.1111/nph.17773] [Citation(s) in RCA: 62] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 09/09/2021] [Indexed: 06/13/2023]
Abstract
Plant resource allocation patterns often reveal tradeoffs that favor growth (G) over defense (D), or vice versa. Ecologists most often explain G-D tradeoffs through principles of economic optimality, in which negative trait correlations are attributed to the reconciliation of fitness costs. Recently, researchers in molecular biology have developed 'big data' resources including multi-omic (e.g. transcriptomic, proteomic and metabolomic) studies that describe the cellular processes controlling gene expression in model species. In this synthesis, we bridge ecological theory with discoveries in multi-omics biology to better understand how selection has shaped the mechanisms of G-D tradeoffs. Multi-omic studies reveal strategically coordinated patterns in resource allocation that are enabled by phytohormone crosstalk and transcriptional signal cascades. Coordinated resource allocation justifies the framework of optimality theory, while providing mechanistic insight into the feedbacks and control hubs that calibrate G-D tradeoff commitments. We use the existing literature to describe the coordinated resource allocation hypothesis (CoRAH) that accounts for balanced cellular controls during the expression of G-D tradeoffs, while sustaining stored resource pools to buffer the impacts of future stresses. The integrative mechanisms of the CoRAH unify the supply- and demand-side perspectives of previous G-D tradeoff theories.
Collapse
Affiliation(s)
- Russell K Monson
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, 80309, USA
| | - Amy M Trowbridge
- Department of Entomology, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Richard L Lindroth
- Department of Entomology, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Manuel T Lerdau
- Department of Environmental Sciences, University of Virginia, Charlottesville, VA, 22904, USA
| |
Collapse
|
5
|
Stresses affect inbreeding depression in complex ways: disentangling stress-specific genetic effects from effects of initial size in plants. Heredity (Edinb) 2021; 127:347-356. [PMID: 34188195 PMCID: PMC8478953 DOI: 10.1038/s41437-021-00454-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 06/17/2021] [Accepted: 06/18/2021] [Indexed: 02/07/2023] Open
Abstract
The magnitude of inbreeding depression (ID) varies unpredictably among environments. ID often increases in stressful environments suggesting that these expose more deleterious alleles to selection or increase their effects. More simply, ID could increase under conditions that amplify phenotypic variation (CV²), e.g., by accentuating size hierarchies among plants. These mechanisms are difficult to distinguish when stress increases both ID and phenotypic variation. We grew in- and outbred progeny of Mimulus guttatus under six abiotic stress treatments (control, waterlogging, drought, nutrient deficiency, copper addition, and clipping) with and without competition by the grass Poa palustris. ID differed greatly among stress treatments with δ varying from 7% (control) to 61% (waterlogging) but did not consistently increase with stress intensity. Poa competition increased ID under nutrient deficiency but not other stresses. Analyzing effects of initial size on performance of outbred plants suggests that under some conditions (low N, clipping) competition increased ID by amplifying initial size differences. In other cases (e.g., high ID under waterlogging), particular environments amplified the deleterious genetic effects of inbreeding suggesting differential gene expression. Interestingly, conditions that increased the phenotypic variability of inbred progeny regularly increased ID whereas variability among outbred progeny showed no relationship to ID. Our study reconciles the stress- and phenotypic variability hypotheses by demonstrating how specific conditions (rather than stress per se) act to increase ID. Analyzing CV² separately in inbred and outbred progeny while including effects of initial plant size improve our ability to predict how ID and gene expression vary across environments.
Collapse
|
6
|
Skaien CL, Arcese P. Local adaptation in island populations of Plectritis congesta that differ in historic exposure to ungulate browsers. Ecology 2020; 101:e03054. [PMID: 32239504 DOI: 10.1002/ecy.3054] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 02/07/2020] [Accepted: 02/24/2020] [Indexed: 11/07/2022]
Abstract
Spatial variation in the occurrence of browsing ungulates can drive local adaptation in plant traits but also lead to trade-offs among traits potentially enhancing competitive ability versus resistance or tolerance to browsing. Plectritis congesta populations co-occurring on islands with and without ungulates offer striking examples of population-level variation in traits, such as plant height and fruit morphology, which may also affect fitness. We monitored split-plot common gardens exposed to and protected from browsing ungulates for 5 yr to test for local adaptation (local vs. foreign comparison) in P. congesta by comparing the survival and fecundity of 4,392 sown fruits from six island populations where ungulates were present ("historically exposed") and six where they were absent ("historically naïve"). Our results indicate that local adaptation to browsing in P. congesta favored rosette formation, delayed flowering, reduced height, and the production of wingless fruits, all of which appeared to enhance survival, fecundity, and population growth in plants from populations historically exposed to ungulate browsers, as compared to plants from historically naïve populations. In contrast, plants from historically naïve populations displayed higher relative fitness in the absence of ungulates, increased in height, flowered earlier, and produced fewer but larger, winged fruits, often in large terminal inflorescences. Our results support the hypothesis that variation in the occurrence of ungulate browsers has led to (1) spatial heterogeneity in natural selection and rapid adaptation in P. congesta populations on islands, and (2) context-dependent trade-offs in the fitness value of traits linked to the resistance or tolerance of browsing versus success in competition for light, pollinators, or other resources. Because patterns of selection in plant communities will vary with the introduction or extirpation of top predators or browsers, we suggest historical context, local adaptation, and the capacity for rapid adaptation should be a focal concern of those aiming to maximize or predict population persistence under environmental change in conservation plans.
Collapse
Affiliation(s)
- Cora L Skaien
- Department of Forest and Conservation Sciences, Faculty of Forestry, University of British Columbia, 2424 Main Mall, Vancouver, British Columbia, V6T 1Z4, Canada
| | - Peter Arcese
- Department of Forest and Conservation Sciences, Faculty of Forestry, University of British Columbia, 2424 Main Mall, Vancouver, British Columbia, V6T 1Z4, Canada
| |
Collapse
|
7
|
Nihranz CT, Walker WS, Brown SJ, Mescher MC, De Moraes CM, Stephenson AG. Transgenerational impacts of herbivory and inbreeding on reproductive output in Solanum carolinense. AMERICAN JOURNAL OF BOTANY 2020; 107:286-297. [PMID: 31944272 PMCID: PMC7064912 DOI: 10.1002/ajb2.1402] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 09/13/2019] [Indexed: 05/22/2023]
Abstract
PREMISE Plant maternal effects on offspring phenotypes are well documented. However, little is known about how herbivory on maternal plants affects offspring fitness. Furthermore, while inbreeding is known to reduce plant reproductive output, previous studies have not explored whether and how such effects may extend across generations. Here, we addressed the transgenerational consequences of herbivory and maternal plant inbreeding on the reproduction of Solanum carolinense offspring. METHODS Manduca sexta caterpillars were used to inflict weekly damage on inbred and outbred S. carolinense maternal plants. Cross-pollinations were performed by hand to produce seed from herbivore-damaged outbred plants, herbivore-damaged inbred plants, undamaged outbred plants, and undamaged inbred plants. The resulting seeds were grown in the greenhouse to assess emergence rate and flower production in the absence of herbivores. We also grew offspring in the field to examine reproductive output under natural conditions. RESULTS We found transgenerational effects of herbivory and maternal plant inbreeding on seedling emergence and reproductive output. Offspring of herbivore-damaged plants had greater emergence, flowered earlier, and produced more flowers and seeds than offspring of undamaged plants. Offspring of outbred maternal plants also had greater seedling emergence and reproductive output than offspring of inbred maternal plants, even though all offspring were outbred. Moreover, the effects of maternal plant inbreeding were more severe when plant offspring were grown in field conditions. CONCLUSIONS This study demonstrates that both herbivory and inbreeding have fitness consequences that extend across generations even in outbred progeny.
Collapse
Affiliation(s)
- Chad T. Nihranz
- Intercollege Graduate Program in EcologyPennsylvania State UniversityUniversity ParkPA16802USA
- Department of BiologyPennsylvania State UniversityUniversity ParkPA16802USA
| | - William S. Walker
- Department of BiologyPennsylvania State UniversityUniversity ParkPA16802USA
| | - Steven J. Brown
- Department of BiologyPennsylvania State UniversityUniversity ParkPA16802USA
| | - Mark C. Mescher
- Department of Environmental Systems ScienceSwiss Federal Institute of Technology (ETH Zurich)CH‐8092ZurichSwitzerland
| | - Consuelo M. De Moraes
- Department of Environmental Systems ScienceSwiss Federal Institute of Technology (ETH Zurich)CH‐8092ZurichSwitzerland
| | - Andrew G. Stephenson
- Intercollege Graduate Program in EcologyPennsylvania State UniversityUniversity ParkPA16802USA
- Department of BiologyPennsylvania State UniversityUniversity ParkPA16802USA
| |
Collapse
|
8
|
Herbivory and inbreeding affect growth, reproduction, and resistance in the rhizomatous offshoots of Solanum carolinense (Solanaceae). Evol Ecol 2019. [DOI: 10.1007/s10682-019-09997-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
9
|
Schrieber K, Wolf S, Wypior C, Höhlig D, Keller SR, Hensen I, Lachmuth S. Release from natural enemies mitigates inbreeding depression in native and invasive Silene latifolia populations. Ecol Evol 2019; 9:3564-3576. [PMID: 30962911 PMCID: PMC6434559 DOI: 10.1002/ece3.4990] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 01/12/2019] [Accepted: 01/26/2019] [Indexed: 01/01/2023] Open
Abstract
Inbreeding and enemy infestation are common in plants and can synergistically reduce their performance. This inbreeding ×environment (I × E) interaction may be of particular importance for the success of plant invasions if introduced populations experience a release from attack by natural enemies relative to their native conspecifics. Here, we investigate whether inbreeding affects plant infestation damage, whether inbreeding depression in growth and reproduction is mitigated by enemy release, and whether this effect is more pronounced in invasive than native plant populations. We used the invader Silene latifolia and its natural enemies as a study system. We performed two generations of experimental out- and inbreeding within eight native (European) and eight invasive (North American) populations under controlled conditions using field-collected seeds. Subsequently, we exposed the offspring to an enemy exclusion and inclusion treatment in a common garden in the species' native range to assess the interactive effects of population origin (range), breeding treatment, and enemy treatment on infestation damage, growth, and reproduction. Inbreeding increased flower and leaf infestation damage in plants from both ranges, but had opposing effects on fruit damage in native versus invasive plants. Inbreeding significantly reduced plant fitness; whereby, inbreeding depression in fruit number was higher in enemy inclusions than exclusions. This effect was equally pronounced in populations from both distribution ranges. Moreover, the magnitude of inbreeding depression in fruit number was lower in invasive than native populations. These results support that inbreeding has the potential to reduce plant defenses in S. latifolia, which magnifies inbreeding depression in the presence of enemies. However, future studies are necessary to further explore whether enemy release in the invaded habitat has actually decreased inbreeding depression and thus facilitated the persistence of inbred founder populations and invasion success.
Collapse
Affiliation(s)
- Karin Schrieber
- Department of Chemical Ecology, Faculty of BiologyBielefeld UniversityBielefeldGermany
- Geobotany & Botanical Garden, Institute of BiologyMartin‐Luther‐University Halle‐WittenbergHalle (Saale)Germany
| | - Sabrina Wolf
- Geobotany & Botanical Garden, Institute of BiologyMartin‐Luther‐University Halle‐WittenbergHalle (Saale)Germany
| | - Catherina Wypior
- Geobotany & Botanical Garden, Institute of BiologyMartin‐Luther‐University Halle‐WittenbergHalle (Saale)Germany
| | - Diana Höhlig
- Geobotany & Botanical Garden, Institute of BiologyMartin‐Luther‐University Halle‐WittenbergHalle (Saale)Germany
| | | | - Isabell Hensen
- Geobotany & Botanical Garden, Institute of BiologyMartin‐Luther‐University Halle‐WittenbergHalle (Saale)Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐LeipzigLeipzigGermany
| | - Susanne Lachmuth
- Geobotany & Botanical Garden, Institute of BiologyMartin‐Luther‐University Halle‐WittenbergHalle (Saale)Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐LeipzigLeipzigGermany
| |
Collapse
|
10
|
Rehling F, Matthies D, Sandner TM. Responses of a legume to inbreeding and the intensity of novel and familiar stresses. Ecol Evol 2019; 9:1255-1267. [PMID: 30805157 PMCID: PMC6374648 DOI: 10.1002/ece3.4831] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 11/14/2018] [Indexed: 01/17/2023] Open
Abstract
It is often assumed that the negative effects of inbreeding on fitness (inbreeding depression, ID) are particularly strong under stressful conditions. However, ID may be relatively mild under types of stress that plant populations have experienced for a long time, because environment-specific deleterious alleles may already have been purged. We examined the performance of open- and self-pollinated progeny of the short-lived calcareous grassland plant Anthyllis vulneraria under three intensities of each of five types of stress. Drought, nutrient deficiency, and defoliation were chosen as stresses typical for the habitat of origin, while shade and waterlogging were expected to be novel, unfamiliar stresses for A. vulneraria. The stresses reduced plant biomass by up to 91%, and the responses of the plants were mostly in line with the functional equilibrium hypothesis. There was significant ID in biomass (δ = 0.17), leaf chlorophyll content, and the number of root nodules of the legume, but the magnitude of ID was independent of the stress treatments. In particular, there was no significant interaction between inbreeding and the intensity of any stress type, and ID was not higher under novel than under familiar stresses. In addition, phenotypic plasticity in biomass allocation, leaf functional traits and in root nodulation of the legume to the various stress treatments was not influenced by inbreeding. Our findings do not support the common hypothesis of stronger ID under stressful environments, not even if the stresses are novel to the plants.
Collapse
Affiliation(s)
- Finn Rehling
- Department of Nature Conservation, Faculty of BiologyPhilipps‐University MarburgMarburgGermany
- Department of Ecology, Faculty of BiologyPhilipps‐University MarburgMarburgGermany
| | - Diethart Matthies
- Department of Ecology, Faculty of BiologyPhilipps‐University MarburgMarburgGermany
| | | |
Collapse
|
11
|
Kessler A, Kalske A. Plant Secondary Metabolite Diversity and Species Interactions. ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2018. [DOI: 10.1146/annurev-ecolsys-110617-062406] [Citation(s) in RCA: 152] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Ever since the first plant secondary metabolites (PSMs) were isolated and identified, questions about their ecological functions and diversity have been raised. Recent advances in analytical chemistry and complex data computation, as well as progress in chemical ecology from mechanistic to functional and evolutionary questions, open a new box of hypotheses. Addressing these hypotheses includes the measurement of complex traits, such as chemodiversity, in a context-dependent manner and allows for a deeper understanding of the multifunctionality and functional redundancy of PSMs. Here we review a hypothesis framework that addresses PSM diversity on multiple ecological levels (α, β, and γ chemodiversity), its variation in space and time, and the potential agents of natural selection. We use the concept of chemical information transfer as mediator of antagonistic and mutualistic interaction to interpret functional and microevolutionary studies and create a hypothesis framework for understanding chemodiversity as a factor driving ecological processes.
Collapse
Affiliation(s)
- André Kessler
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York 14853, USA;,
| | - Aino Kalske
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York 14853, USA;,
| |
Collapse
|
12
|
Rosche C, Hensen I, Lachmuth S. Local pre-adaptation to disturbance and inbreeding-environment interactions affect colonisation abilities of diploid and tetraploid Centaurea stoebe. PLANT BIOLOGY (STUTTGART, GERMANY) 2018; 20:75-84. [PMID: 28921779 DOI: 10.1111/plb.12628] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 09/13/2017] [Indexed: 05/28/2023]
Abstract
Primary colonisation in invasive ranges most commonly occurs in disturbed habitats, where anthropogenic disturbance may cause physical damage to plants. The tolerance to such damage may differ between cytotypes and among populations as a result of differing population histories (adaptive differentiation between ruderal verus natural habitats). Moreover, founder populations often experience inbreeding depression, the effects of which may increase through physical damage due to inbreeding-environment interactions. We aimed to understand how such colonisation processes differ between diploid and tetraploid Centaurea stoebe populations, with a view to understanding why only tetraploids are invasive. We conducted a clipping experiment (frequency: zero, once or twice in the growing season) on inbred versus outbred offspring originating from 37 C. stoebe populations of varying cytotype, range and habitat type (natural versus ruderal). Aboveground biomass was harvested at the end of the vegetation period, while re-sprouting success was recorded in the following spring. Clipping reduced re-sprouting success and biomass, which was significantly more pronounced in natural than in ruderal populations. Inbreeding depression was not detected under benign conditions, but became increasingly apparent in biomass when plants were clipped. The effects of clipping and inbreeding did not differ between cytotypes. Adaptive differentiation in disturbance tolerance was higher among populations than between cytotypes, which highlights the potential of pre-adaptation in ruderal populations during early colonisation on anthropogenically disturbed sites. While the consequences of inbreeding increased through clipping-mediated stress, they were comparable between cytotypes, and consequently do not contribute to understanding the cytotype shift in the invasive range.
Collapse
Affiliation(s)
- C Rosche
- Institute of Biology/Geobotany and Botanical Garden, Martin Luther University Halle-Wittenberg, Halle, Germany
- UfU - Independent Institute for Environmental Issues, Berlin, Germany
| | - I Hensen
- Institute of Biology/Geobotany and Botanical Garden, Martin Luther University Halle-Wittenberg, Halle, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | - S Lachmuth
- Institute of Biology/Geobotany and Botanical Garden, Martin Luther University Halle-Wittenberg, Halle, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Department of Plant Biology, University of Vermont, Burlington, VT, USA
| |
Collapse
|
13
|
Johnson MT, Campbell SA, Barrett SC. Evolutionary Interactions Between Plant Reproduction and Defense Against Herbivores. ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2015. [DOI: 10.1146/annurev-ecolsys-112414-054215] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Marc T.J. Johnson
- Department of Biology, University of Toronto at Mississauga, Mississauga, Ontario, L5L 1C6 Canada;
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, M5S 3B2 Canada; ,
| | - Stuart A. Campbell
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, M5S 3B2 Canada; ,
| | - Spencer C.H. Barrett
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, M5S 3B2 Canada; ,
| |
Collapse
|
14
|
Sarazin V, Duclercq J, Mendou B, Aubanelle L, Nicolas V, Aono M, Pilard S, Guerineau F, Sangwan-Norreel B, Sangwan RS. Arabidopsis BNT1, an atypical TIR-NBS-LRR gene, acting as a regulator of the hormonal response to stress. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2015; 239:216-229. [PMID: 26398806 DOI: 10.1016/j.plantsci.2015.07.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Revised: 07/20/2015] [Accepted: 07/25/2015] [Indexed: 06/05/2023]
Abstract
During their life cycle, plants have to cope with fluctuating environmental conditions. The perception of the stressful environmental conditions induces a specific stress hormone signature specifying a proper response with an efficient fitness. By reverse genetics, we isolated and characterized a novel mutation in Arabidopsis, associated with environmental stress responses, that affects the At5g11250/BURNOUT1 (BNT1) gene which encode a Toll/Interleukin1 receptor-nucleotide binding site leucine-rich repeat (TIR-NBS-LRR) protein. The knock-out bnt1 mutants displayed, in the absence of stress conditions, a multitude of growth and development defects, suchas severe dwarfism, early senescence and flower sterility, similar to those observed in vitro in wild type plants upon different biotic and/or abiotic stresses. The disruption of BNT1 causes also a drastic increase of the jasmonic, salicylic and abscisic acids as well as ethylene levels. Which was consistent with the expression pattern observed in bnt1 showing an over representation of genes involved in the hormonal response to stress? Therefore, a defect in BNT1 forced the plant to engage in an exhausting general stress response, which produced frail, weakened and poorly adapted plants expressing "burnout" syndromes. Furthermore, by in vitro phenocopying experiments, physiological, chemical and molecular analyses, we propose that BNT1 could represent a molecular link between stress perception and specific hormonal signature.
Collapse
Affiliation(s)
- Vivien Sarazin
- CNRS FRE 3498 EDYSAN (Unité Écologie et Dynamique des Systèmes Anthropisés), UPJV, Amiens, France; Laboulet Semences, Airaines, France
| | - Jérome Duclercq
- CNRS FRE 3498 EDYSAN (Unité Écologie et Dynamique des Systèmes Anthropisés), UPJV, Amiens, France
| | - Benjamin Mendou
- CNRS FRE 3498 EDYSAN (Unité Écologie et Dynamique des Systèmes Anthropisés), UPJV, Amiens, France
| | - Laurent Aubanelle
- CNRS FRE 3498 EDYSAN (Unité Écologie et Dynamique des Systèmes Anthropisés), UPJV, Amiens, France
| | - Veyres Nicolas
- CNRS FRE 3498 EDYSAN (Unité Écologie et Dynamique des Systèmes Anthropisés), UPJV, Amiens, France
| | - Mitsuko Aono
- National Institute for Environmental Studies, Environmental Biology Division, Tsukuba, Japan
| | | | | | - Brigitte Sangwan-Norreel
- CNRS FRE 3498 EDYSAN (Unité Écologie et Dynamique des Systèmes Anthropisés), UPJV, Amiens, France
| | - Rajbir S Sangwan
- CNRS FRE 3498 EDYSAN (Unité Écologie et Dynamique des Systèmes Anthropisés), UPJV, Amiens, France.
| |
Collapse
|
15
|
Campbell SA. Ecological mechanisms for the coevolution of mating systems and defence. THE NEW PHYTOLOGIST 2015; 205:1047-53. [PMID: 25729803 DOI: 10.1111/nph.13212] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The diversity of flowering plants is evident in two seemingly unrelated aspects of life history: sexual reproduction, exemplified by the stunning variation in flower form and function, and defence, often in the form of an impressive arsenal of secondary chemistry. Researchers are beginning to appreciate that plant defence and reproduction do not evolve independently, but, instead, may have reciprocal and interactive (coevolutionary) effects on each other. Understanding the mechanisms for mating-defence interactions promises to broaden our understanding of how ecological processes can generate these two rich sources of angiosperm diversity. Here, I review current research on the role of herbivory as a driver of mating system evolution, and the role of mating systems in the evolution of defence strategies. I outline different ecological mechanisms and processes that could generate these coevolutionary patterns, and summarize theoretical and empirical support for each. I provide a conceptual framework for linking plant defence with mating system theory to better integrate these two research fields.
Collapse
|