1
|
Renganathan P, Puente EOR, Sukhanova NV, Gaysina LA. Hydroponics with Microalgae and Cyanobacteria: Emerging Trends and Opportunities in Modern Agriculture. BIOTECH 2024; 13:27. [PMID: 39051342 PMCID: PMC11270261 DOI: 10.3390/biotech13030027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/09/2024] [Accepted: 07/16/2024] [Indexed: 07/27/2024] Open
Abstract
The global population is expected to reach 9.5 billion, which means that crop productivity needs to double to meet the growing population's food demand. Soil degradation and environmental factors, such as climate events, significantly threaten crop production and global food security. Furthermore, rapid urbanization has led to 55% of the world's population migrating to cities, and this proportion is expected to increase to 75% by 2050, which presents significant challenges in producing staple foods through conventional hinterland farming. Numerous studies have proposed various sustainable farming techniques to combat the shortage of farmable land and increase food security in urban areas. Soilless farming techniques such as hydroponics have gained worldwide popularity due to their resource efficiency and production of superior-quality fresh products. However, using chemical nutrients in a conventional hydroponic system can have significant environmental impacts, including eutrophication and resource depletion. Incorporating microalgae into hydroponic systems as biostimulants offers a sustainable and ecofriendly approach toward circular bioeconomy strategies. The present review summarizes the plant growth-promoting activity of microalgae as biostimulants and their mechanisms of action. We discuss their effects on plant growth parameters under different applications, emphasizing the significance of integrating microalgae into a closed-loop circular economy model to sustainably meet global food demands.
Collapse
Affiliation(s)
- Prabhaharan Renganathan
- Department of Bioecology and Biological Education, M. Akmullah Bashkir State Pedagogical University, 450000 Ufa, Russia; (P.R.); (N.V.S.)
| | - Edgar Omar Rueda Puente
- Departamento de Agricultura y Ganadería, Universidad de Sonora, Blvd. Luis Encinas y Rosales, Hermosillo 83000, Sonora, Mexico;
| | - Natalia V. Sukhanova
- Department of Bioecology and Biological Education, M. Akmullah Bashkir State Pedagogical University, 450000 Ufa, Russia; (P.R.); (N.V.S.)
| | - Lira A. Gaysina
- Department of Bioecology and Biological Education, M. Akmullah Bashkir State Pedagogical University, 450000 Ufa, Russia; (P.R.); (N.V.S.)
- All-Russian Research Institute of Phytopathology, 143050 Bolshye Vyazemy, Russia
| |
Collapse
|
2
|
Wang L, Shi Q, Pan Y, Shi L, Huang X. ROS and Ca 2+ signaling involved in important lipid changes of Chlorella pyrenoidosa under nitrogen stress conditions. PLANTA 2024; 260:39. [PMID: 38951320 DOI: 10.1007/s00425-024-04471-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 06/17/2024] [Indexed: 07/03/2024]
Abstract
MAIN CONCLUSION Nitrogen stress altered important lipid parameters and related genes in Chlorella pyrenoidosa via ROS and Ca2+ signaling. The mutual interference between ROS and Ca2+ signaling was also uncovered. The changed mechanisms of lipid parameters (especially lipid classes and unsaturation of fatty acids) in microalgae are not completely well known under nitrogen stress. Therefore, Chlorella pyrenoidosa was exposed to 0, 0.5, 1 and 1.5 g L-1 NaNO3 for 4 days. Then, the physiological and biochemical changes were measured. It was shown that the total lipid contents, neutral lipid ratios as well as their related genes (accD and DGAT) increased obviously while the polar lipid ratios, degrees of unsaturation as well as their related genes (PGP and desC) decreased significantly in nitrogen stress groups. The obvious correlations supported that gene expressions should be the necessary pathways to regulate the lipid changes in C. pyrenoidosa under nitrogen stress. The changes in ROS and Ca2+ signaling as well as their significant correlations with corresponding genes and lipid parameters were analyzed. The results suggested that ROS and Ca2+ may regulate these gene expressions and lipid changes in C. pyrenoidosa under nitrogen stress conditions. This was verified by the subordinate tests with an ROS inhibitor and calcium reagents. It also uncovered the clues of mutual interference between ROS and Ca2+ signaling. To summarize, this study revealed the signaling pathways of important lipid changes in microalgae under N stress.
Collapse
Affiliation(s)
- Liufu Wang
- China-ASEAN "The Belt and Road" Joint Laboratory of Marine Culture Technology (Shanghai), Shanghai Ocean University, Shanghai, 201306, China
| | - Qiang Shi
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Yingying Pan
- China-ASEAN "The Belt and Road" Joint Laboratory of Marine Culture Technology (Shanghai), Shanghai Ocean University, Shanghai, 201306, China
| | - Liqiu Shi
- China-ASEAN "The Belt and Road" Joint Laboratory of Marine Culture Technology (Shanghai), Shanghai Ocean University, Shanghai, 201306, China
| | - Xuxiong Huang
- China-ASEAN "The Belt and Road" Joint Laboratory of Marine Culture Technology (Shanghai), Shanghai Ocean University, Shanghai, 201306, China.
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, Nanhui New City, No.999, Huchenghuan Road, Shanghai, 201306, People's Republic of China.
- National Demonstration Center for Experimental Fisheries Science Education (Shanghai Ocean University), Shanghai, 201306, China.
| |
Collapse
|
3
|
Schmidt V, Skokan R, Depaepe T, Kurtović K, Haluška S, Vosolsobě S, Vaculíková R, Pil A, Dobrev PI, Motyka V, Van Der Straeten D, Petrášek J. Phytohormone profiling in an evolutionary framework. Nat Commun 2024; 15:3875. [PMID: 38719800 PMCID: PMC11079000 DOI: 10.1038/s41467-024-47753-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 04/09/2024] [Indexed: 05/12/2024] Open
Abstract
The genomes of charophyte green algae, close relatives of land plants, typically do not show signs of developmental regulation by phytohormones. However, scattered reports of endogenous phytohormone production in these organisms exist. We performed a comprehensive analysis of multiple phytohormones in Viridiplantae, focusing mainly on charophytes. We show that auxin, salicylic acid, ethylene and tRNA-derived cytokinins including cis-zeatin are found ubiquitously in Viridiplantae. By contrast, land plants but not green algae contain the trans-zeatin type cytokinins as well as auxin and cytokinin conjugates. Charophytes occasionally produce jasmonates and abscisic acid, whereas the latter is detected consistently in land plants. Several phytohormones are excreted into the culture medium, including auxin by charophytes and cytokinins and salicylic acid by Viridiplantae in general. We note that the conservation of phytohormone biosynthesis and signaling pathways known from angiosperms does not match the capacity for phytohormone biosynthesis in Viridiplantae. Our phylogenetically guided analysis of established algal cultures provides an important insight into phytohormone biosynthesis and metabolism across Streptophyta.
Collapse
Affiliation(s)
- Vojtěch Schmidt
- Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojová 263, 165 02, Prague 6, Czechia
- Department of Experimental Plant Biology, Charles University, Viničná 5, 128 44, Prague 2, Czechia
| | - Roman Skokan
- Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojová 263, 165 02, Prague 6, Czechia.
| | - Thomas Depaepe
- Laboratory of Functional Plant Biology, Ghent University, K.L. Ledeganckstraat 35, B-9000, Ghent, Belgium
| | - Katarina Kurtović
- Department of Experimental Plant Biology, Charles University, Viničná 5, 128 44, Prague 2, Czechia
| | - Samuel Haluška
- Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojová 263, 165 02, Prague 6, Czechia
- Department of Experimental Plant Biology, Charles University, Viničná 5, 128 44, Prague 2, Czechia
| | - Stanislav Vosolsobě
- Department of Experimental Plant Biology, Charles University, Viničná 5, 128 44, Prague 2, Czechia
| | - Roberta Vaculíková
- Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojová 263, 165 02, Prague 6, Czechia
| | - Anthony Pil
- Laboratory of Functional Plant Biology, Ghent University, K.L. Ledeganckstraat 35, B-9000, Ghent, Belgium
| | - Petre Ivanov Dobrev
- Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojová 263, 165 02, Prague 6, Czechia
| | - Václav Motyka
- Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojová 263, 165 02, Prague 6, Czechia
| | - Dominique Van Der Straeten
- Laboratory of Functional Plant Biology, Ghent University, K.L. Ledeganckstraat 35, B-9000, Ghent, Belgium
| | - Jan Petrášek
- Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojová 263, 165 02, Prague 6, Czechia.
- Department of Experimental Plant Biology, Charles University, Viničná 5, 128 44, Prague 2, Czechia.
| |
Collapse
|
4
|
Stirk WA, Bálint P, Široká J, Novák O, Rétfalvi T, Berzsenyi Z, Notterpek J, Varga Z, Maróti G, van Staden J, Strnad M, Ördög V. Comparison of plant biostimulating properties of Chlorella sorokiniana biomass produced in batch and semi-continuous systems supplemented with pig manure or acetate. J Biotechnol 2024; 381:27-35. [PMID: 38190851 DOI: 10.1016/j.jbiotec.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 12/11/2023] [Accepted: 01/01/2024] [Indexed: 01/10/2024]
Abstract
Microalgae-derived biostimulants provide an eco-friendly biotechnology for improving crop productivity. The strategy of circular economy includes reducing biomass production costs of new and robust microalgae strains grown in nutrient-rich wastewater and mixotrophic culture where media is enriched with organic carbon. In this study, Chlorella sorokiniana was grown in 100 l bioreactors under sub-optimal conditions in a greenhouse. A combination of batch and semi-continuous cultivation was used to investigate the growth, plant hormone and biostimulating effect of biomass grown in diluted pig manure and in nutrient medium supplemented with Na-acetate. C. sorokiniana tolerated the low light (sum of PAR 0.99 ± 0.18 mol/photons/(m2/day)) and temperature (3.7-23.7° C) conditions to maintain a positive growth rate and daily biomass productivity (up to 149 mg/l/day and 69 mg/l/day dry matter production in pig manure and Na-acetate supplemented cultures respectively). The protein and lipid content was significantly higher in the biomass generated in batch culture and dilute pig manure (1.4x higher protein and 2x higher lipid) compared to the Na-acetate enriched culture. Auxins indole-3-acetic acid (IAA) and 2-oxindole-3-acetic acid (oxIAA) and salicylic acid (SA) were present in the biomass with significantly higher auxin content in the biomass generated using pig manure (> 350 pmol/g DW IAA and > 84 pmol/g DW oxIAA) compared to cultures enriched with Na-acetate and batch cultures (< 200 pmol/g DW IAA and < 27 pmol/g DW oxIAA). No abscisic acid and jasmonates were detected. All samples had plant biostimulating activity measured in the mungbean rooting bioassay with the Na-acetate supplemented biomass eliciting higher rooting activity (equivalent to 1-2 mg/l IBA) compared to the pig manure (equivalent to 0.5-1 mg/l IBA) and batch culture (equivalent to water control) generated biomass. Thus C. sorokiniana MACC-728 is a robust new strain for biotechnology, tolerating low light and temperature conditions. The strain can adapt to alternative nutrient (pig manure) and carbon (acetate) sources with the generated biomass having a high auxin concentration and plant biostimulating activity detected with the mungbean rooting bioassay.
Collapse
Affiliation(s)
- Wendy A Stirk
- Research Centre for Plant Growth and Development, School of Life Sciences, University of KwaZulu-Natal, Pietermaritzburg, P/Bag X01, Scottsville 3209, South Africa.
| | - Péter Bálint
- Department of Plant Sciences, Albert Kázmér Mosonmagyaróvár Faculty, Széchenyi István University, Vár Square 2, Mosonmagyaróvár H-9200, Hungary
| | - Jitka Široká
- Laboratory of Growth Regulators, Faculty of Science, Palacký University and Institute of Experimental Botany ASCR, Šlechtitelů 27, Olomouc 78371, Czech Republic
| | - Ondřej Novák
- Laboratory of Growth Regulators, Faculty of Science, Palacký University and Institute of Experimental Botany ASCR, Šlechtitelů 27, Olomouc 78371, Czech Republic
| | - Tamás Rétfalvi
- Institute of Environmental Protection and Nature Conservation, Faculty of Forestry, University of Sopron, Bajcsy-Zsilinszky str., Sopron 4H-9400, Hungary
| | - Zoltán Berzsenyi
- Institute of Agronomy, Kaposvár Campus, Hungarian University of Agriculture and Life Sciences, Guba Sándor Str. 40, Kaposvár H-7400, Hungary
| | - Jácint Notterpek
- Department of Plant Sciences, Albert Kázmér Mosonmagyaróvár Faculty, Széchenyi István University, Vár Square 2, Mosonmagyaróvár H-9200, Hungary
| | - Zoltán Varga
- Department of Water and Environmental Sciences, Albert Kázmér Mosonmagyaróvár Faculty, Széchenyi István University, Vár Square 2, Mosonmagyaróvár H-9200, Hungary
| | - Gergely Maróti
- Institute of Plant Biology, HUN-REN Biological Research Centre, Szeged 6726, Hungary; Faculty of Water Sciences, University of Public Service, Baja 6500, Hungary
| | - Johannes van Staden
- Research Centre for Plant Growth and Development, School of Life Sciences, University of KwaZulu-Natal, Pietermaritzburg, P/Bag X01, Scottsville 3209, South Africa
| | - Miroslav Strnad
- Laboratory of Growth Regulators, Faculty of Science, Palacký University and Institute of Experimental Botany ASCR, Šlechtitelů 27, Olomouc 78371, Czech Republic
| | - Vince Ördög
- Research Centre for Plant Growth and Development, School of Life Sciences, University of KwaZulu-Natal, Pietermaritzburg, P/Bag X01, Scottsville 3209, South Africa; Department of Plant Sciences, Albert Kázmér Mosonmagyaróvár Faculty, Széchenyi István University, Vár Square 2, Mosonmagyaróvár H-9200, Hungary
| |
Collapse
|
5
|
Kolackova M, Janova A, Dobesova M, Zvalova M, Chaloupsky P, Krystofova O, Adam V, Huska D. Role of secondary metabolites in distressed microalgae. ENVIRONMENTAL RESEARCH 2023; 224:115392. [PMID: 36746204 DOI: 10.1016/j.envres.2023.115392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/09/2023] [Accepted: 01/28/2023] [Indexed: 06/18/2023]
Abstract
Proficient photosynthetic microalgae/cyanobacteria produce a remarkable amount of various biomolecules. Secondary metabolites (SM) represent high value products for global biotrend application. Production improvement can be achieved by nutritional, environmental, and physiological stress as a first line tools for their stimulation. In recent decade, an increasing interest in algal stress biology and omics techniques have deepened knowledge in this area. However, deep understanding and connection of specific stress elucidator are missing. Hence, the present review summarizes recent evidence with an emphasis on the carotenoids, phenolic, and less-discussed compounds (glycerol, proline, mycosporins-like amino acids). Even when they are synthesized at very low concentrations, it highlights the need to expand knowledge in this area using genome-editing tools and omics approaches.
Collapse
Affiliation(s)
- Martina Kolackova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00, Brno, Czech Republic
| | - Anna Janova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00, Brno, Czech Republic
| | - Marketa Dobesova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00, Brno, Czech Republic
| | - Monika Zvalova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00, Brno, Czech Republic
| | - Pavel Chaloupsky
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00, Brno, Czech Republic
| | - Olga Krystofova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00, Brno, Czech Republic
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00, Brno, Czech Republic
| | - Dalibor Huska
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00, Brno, Czech Republic.
| |
Collapse
|
6
|
Parmar P, Kumar R, Neha Y, Srivatsan V. Microalgae as next generation plant growth additives: Functions, applications, challenges and circular bioeconomy based solutions. FRONTIERS IN PLANT SCIENCE 2023; 14:1073546. [PMID: 37063190 PMCID: PMC10101342 DOI: 10.3389/fpls.2023.1073546] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 01/05/2023] [Indexed: 06/19/2023]
Abstract
Sustainable agriculture practices involve the application of environment-friendly plant growth promoters and additives that do not negatively impact the health of the ecosystem. Stringent regulatory frameworks restricting the use of synthetic agrochemicals and the increase in demand for organically grown crops have paved the way for the development of novel bio-based plant growth promoters. In this context, microalgae biomass and derived agrochemicals offer novel sources of plant growth promotors that enhance crop productivity and impart disease resistance. These beneficial effects could be attributed to the presence of wide range of biomolecules such as soluble amino acid (AA), micronutrients, polysaccharides, phytohormones and other signaling molecules in microalgae biomass. In addition, their phototrophic nature, high photosynthetic efficiency, and wide environmental adaptability make them an attractive source of biostimulants, biofertilizers and biopesticides. The present review aims to describe the various plant growth promoting metabolites produced by microalgae and their effects on plant growth and productivity. Further, the effects elicited by microalgae biostimulants with respect to different modes of applications such as seed treatments, foliar spray and soil/root drenching is reviewed in detail. In addition, the ability of microalgae metabolites to impart tolerance against various abiotic and biotic stressors along with the mechanism of action is discussed in this paper. Although the use of microalgae based biofertilizers and biostimulants is gaining popularity, the high nutrient and water requirements and energy intensive downstream processes makes microalgae based technology commercially unsustainable. Addressing this challenge, we propose a circular economy model of microalgae mediated bioremediation coupled with biorefinery approaches of generating high value metabolites along with biofertilizer applications. We discuss and review new trends in enhancing the sustainability of microalgae biomass production by co-cultivation of algae with hydroponics and utilization of agriculture effluents.
Collapse
Affiliation(s)
- Priyanka Parmar
- Applied Phycology and Food Technology Laboratory, Council of Scientific and Industrial Research (CSIR)- Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Council of Scientific and Industrial Research -Human Resource Development Centre (CSIR-HRDC), Ghaziabad, Uttar Pradesh, India
| | - Raman Kumar
- Applied Phycology and Food Technology Laboratory, Council of Scientific and Industrial Research (CSIR)- Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Council of Scientific and Industrial Research -Human Resource Development Centre (CSIR-HRDC), Ghaziabad, Uttar Pradesh, India
| | - Yograj Neha
- Applied Phycology and Food Technology Laboratory, Council of Scientific and Industrial Research (CSIR)- Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
| | - Vidyashankar Srivatsan
- Applied Phycology and Food Technology Laboratory, Council of Scientific and Industrial Research (CSIR)- Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Council of Scientific and Industrial Research -Human Resource Development Centre (CSIR-HRDC), Ghaziabad, Uttar Pradesh, India
| |
Collapse
|
7
|
Emergence of an Auxin Sensing Domain in Plant-Associated Bacteria. mBio 2023; 14:e0336322. [PMID: 36602305 PMCID: PMC9973260 DOI: 10.1128/mbio.03363-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Bacteria have evolved a sophisticated array of signal transduction systems that allow them to adapt their physiology and metabolism to changing environmental conditions. Typically, these systems recognize signals through dedicated ligand binding domains (LBDs) to ultimately trigger a diversity of physiological responses. Nonetheless, an increasing number of reports reveal that signal transduction receptors also bind antagonists to inhibit responses mediated by agonists. The mechanisms by which antagonists block the downstream signaling cascade remain largely unknown. To advance our knowledge in this field, we used the LysR-type transcriptional regulator AdmX as a model. AdmX activates the expression of an antibiotic biosynthetic cluster in the rhizobacterium Serratia plymuthica. AdmX specifically recognizes the auxin phytohormone indole-3-acetic acid (IAA) and its biosynthetic intermediate indole-3-pyruvic acid (IPA) as signals. However, only IAA, but not IPA, was shown to regulate antibiotic production in S. plymuthica. Here, we report the high-resolution structures of the LBD of AdmX in complex with IAA and IPA. We found that IAA and IPA compete for binding to AdmX. Although IAA and IPA binding does not alter the oligomeric state of AdmX, IPA binding causes a higher degree of compactness in the protein structure. Molecular dynamics simulations revealed significant differences in the binding modes of IAA and IPA by AdmX, and the inspection of the three-dimensional structures evidenced differential agonist- and antagonist-mediated structural changes. Key residues for auxin binding were identified and an auxin recognition motif defined. Phylogenetic clustering supports the recent evolutionary emergence of this motif specifically in plant-associated enterobacteria. IMPORTANCE Although antagonists were found to bind different bacterial signal transduction receptors, we are still at the early stages of understanding the molecular details by which these molecules exert their inhibitory effects. Here, we provide insight into the structural changes resulting from the binding of an agonist and an antagonist to a sensor protein. Our data indicate that agonist and antagonist recognition is characterized by small conformational differences in the LBDs that can be efficiently transmitted to the output domain to modulate the final response. LBDs are subject to strong selective pressures and are rapidly evolving domains. An increasing number of reports support the idea that environmental factors drive the evolution of sensor domains. Given the recent evolutionary history of AdmX homologs, as well as their narrow phyletic distribution within plant-associated bacteria, our results are in accordance with a plant-mediated evolutionary process that resulted in the emergence of receptor proteins that specifically sense auxin phytohormones.
Collapse
|
8
|
Sun J, Jiang S, Yang L, Chu H, Peng BY, Xiao S, Wang Y, Zhou X, Zhang Y. Microalgal wastewater recycling: Suitability of harvesting methods and influence on growth mechanisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 859:160237. [PMID: 36402329 DOI: 10.1016/j.scitotenv.2022.160237] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/01/2022] [Accepted: 11/13/2022] [Indexed: 06/16/2023]
Abstract
Wastewater recycling helps address the challenge of microalgae biomass commercialization by allowing for efficient resource recovery. In this study, three conventional harvesting methods, including centrifugation, microfiltration, and flocculation sedimentation, were investigated to explore the effects of harvesting methods on the characteristics of recycled wastewater and the growth of microalgae to select a suitable harvesting method for the microalgal wastewater recycling system. During the wastewater recycling process, the least amount of accumulated substances was exhibited in the wastewater recycled by microfiltration, followed by centrifugation, and the most by flocculation sedimentation. After 4 batches of cultivation, microalgal biomass harvested from centrifugation wastewater and microfiltration wastewater was 21.26 % and 13.54 % higher than that from flocculation wastewater, respectively. Lipids, carbohydrates and pigments were all increased by varying degrees. Additionally, flocculation sedimentation was not suitable for the microalgal wastewater recycling process since the low residual nutrients, high salinity, and excessive algal organic matter severely inhibited the growth of microalgae. Under the regulation of phytohormones, microalgae increased their energy reserves, enhanced photosynthesis, and improved their defense capability to resist the increasing abiotic stress. This study provides scientific support for the selection of suitable harvesting technology during the microalgal wastewater recycling process.
Collapse
Affiliation(s)
- Jingjing Sun
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Shuhong Jiang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Libin Yang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| | - Huaqiang Chu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| | - Bo-Yu Peng
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Shaoze Xiao
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Yayi Wang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Xuefei Zhou
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Yalei Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| |
Collapse
|
9
|
Ajeng AA, Rosli NSM, Abdullah R, Yaacob JS, Qi NC, Loke SP. Resource recovery from hydroponic wastewaters using microalgae-based biorefineries: A circular bioeconomy perspective. J Biotechnol 2022; 360:11-22. [PMID: 36272573 DOI: 10.1016/j.jbiotec.2022.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 10/09/2022] [Accepted: 10/17/2022] [Indexed: 11/07/2022]
Abstract
As the world's population grows, it is necessary to rethink how countries throughout the world produce food in order to replace the conventional and unsustainable agricultural techniques. Microalgae cultivation using a nutrient-rich solution from hydroponic systems not only presents a novel approach to solving problems pertaining to the impact of the discharges on the natural environment but also provides a plethora of other biotechnological applications particularly in the productions of high value-added products and plants growth stimulants, which can be potentially assimilated into the circular bioeconomy (CBE) in the hydroponic sector. In this review, the potential and practicability of microalgae to be merged into hydroponics CBE are reviewed. Overall, the integration of microalgal biorefineries in hydroponics systems can be realized after considering their Technology Readiness Level and System Readiness Level beforehand. Several suggestions on strains and hydroponics system improvement using existing biotechnological tools, Artificial Intelligence (AI) and nanobiotechnology in support of the CBE will be covered.
Collapse
Affiliation(s)
- Aaronn Avit Ajeng
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, 50603 Kuala Lumpur, Malaysia.
| | - Noor Sharina Mohd Rosli
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, 50603 Kuala Lumpur, Malaysia.
| | - Rosazlin Abdullah
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, 50603 Kuala Lumpur, Malaysia; Centre for Research in Biotechnology for Agriculture (CEBAR), Institute of Biological Sciences, Faculty of Science, Universiti Malaya, 50603 Kuala Lumpur, Malaysia.
| | - Jamilah Syafawati Yaacob
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, 50603 Kuala Lumpur, Malaysia; Centre for Research in Biotechnology for Agriculture (CEBAR), Institute of Biological Sciences, Faculty of Science, Universiti Malaya, 50603 Kuala Lumpur, Malaysia.
| | - Ng Cai Qi
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, 50603 Kuala Lumpur, Malaysia.
| | - Show Pau Loke
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500 Semenyih, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
10
|
Wu D, Yang L, Gu J, Tarkowska D, Deng X, Gan Q, Zhou W, Strnad M, Lu Y. A Functional Genomics View of Gibberellin Metabolism in the Cnidarian Symbiont Breviolum minutum. FRONTIERS IN PLANT SCIENCE 2022; 13:927200. [PMID: 36172550 PMCID: PMC9510744 DOI: 10.3389/fpls.2022.927200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 06/07/2022] [Indexed: 06/16/2023]
Abstract
Dinoflagellate inhabitants of the reef-building corals exchange nutrients and signals with host cells, which often benefit the growth of both partners. Phytohormones serve as central hubs for signal integration between symbiotic microbes and their hosts, allowing appropriate modulation of plant growth and defense in response to various stresses. However, the presence and function of phytohormones in photosynthetic dinoflagellates and their function in the holobionts remain elusive. We hypothesized that endosymbiotic dinoflagellates may produce and employ phytohormones for stress responses. Using the endosymbiont of reef corals Breviolum minutum as model, this study aims to exam whether the alga employ analogous signaling systems by an integrated multiomics approach. We show that key gibberellin (GA) biosynthetic genes are widely present in the genomes of the selected dinoflagellate algae. The non-13-hydroxylation pathway is the predominant route for GA biosynthesis and the multifunctional GA dioxygenase in B. minutum has distinct substrate preference from high plants. GA biosynthesis is modulated by the investigated bleaching-stimulating stresses at both transcriptional and metabolic levels and the exogenously applied GAs improve the thermal tolerance of the dinoflagellate. Our results demonstrate the innate ability of a selected Symbiodiniaceae to produce the important phytohormone and the active involvement of GAs in the coordination and the integration of the stress response.
Collapse
Affiliation(s)
- Dan Wu
- State Key Laboratory of Marine Resource Utilization in South China Sea, College of Oceanology, Hainan University, Haikou, China
| | - Lin Yang
- State Key Laboratory of Marine Resource Utilization in South China Sea, College of Oceanology, Hainan University, Haikou, China
| | - Jiahua Gu
- State Key Laboratory of Marine Resource Utilization in South China Sea, College of Oceanology, Hainan University, Haikou, China
| | - Danuse Tarkowska
- Laboratory of Growth Regulators, Palacký University and Institute of Experimental Botany Czech Academy of Sciences, Olomouc, Czechia
| | - Xiangzi Deng
- State Key Laboratory of Marine Resource Utilization in South China Sea, College of Oceanology, Hainan University, Haikou, China
| | - Qinhua Gan
- State Key Laboratory of Marine Resource Utilization in South China Sea, College of Oceanology, Hainan University, Haikou, China
| | - Wenxu Zhou
- State Key Laboratory of Marine Resource Utilization in South China Sea, College of Oceanology, Hainan University, Haikou, China
| | - Miroslav Strnad
- Laboratory of Growth Regulators, Palacký University and Institute of Experimental Botany Czech Academy of Sciences, Olomouc, Czechia
| | - Yandu Lu
- State Key Laboratory of Marine Resource Utilization in South China Sea, College of Oceanology, Hainan University, Haikou, China
| |
Collapse
|
11
|
Shah S, Li X, Jiang Z, Fahad S, Hassan S. Exploration of the phytohormone regulation of energy storage compound accumulation in microalgae. Food Energy Secur 2022. [DOI: 10.1002/fes3.418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- Saud Shah
- College of Life Science, Linyi University Linyi City Shandong China
| | - Xiuling Li
- College of Life Science, Linyi University Linyi City Shandong China
| | - Zhaoyu Jiang
- College of Life Science, Linyi University Linyi City Shandong China
| | - Shah Fahad
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource College of Tropical Crops, Hainan University Haikou Hainan China
- Department of Agronomy University of Haripur Haripur Khyber Pakhtunkhwa Pakistan
| | - Shah Hassan
- Department of Agriculture Extenstion The University of Agriculture Peshawar Haripur Khyber Pakhtunkhwa Pakistan
| |
Collapse
|
12
|
Chen L, Jameson GB, Guo Y, Song J, Jameson PE. The LONELY GUY gene family: from mosses to wheat, the key to the formation of active cytokinins in plants. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:625-645. [PMID: 35108444 PMCID: PMC8989509 DOI: 10.1111/pbi.13783] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 01/06/2022] [Accepted: 01/13/2022] [Indexed: 05/19/2023]
Abstract
LONELY GUY (LOG) was first identified in a screen of rice mutants with defects in meristem maintenance. In plants, LOG codes for cytokinin riboside 5'-monophosphate phosphoribohydrolase, which converts inactive cytokinin nucleotides directly to the active free bases. Many enzymes with the PGGxGTxxE motif have been misannotated as lysine decarboxylases; conversely not all enzymes containing this motif are cytokinin-specific LOGs. As LOG mutants clearly impact yield in rice, we investigated the LOG gene family in bread wheat. By interrogating the wheat (Triticum aestivum) genome database, we show that wheat has multiple LOGs. The close alignment of TaLOG1, TaLOG2 and TaLOG6 with the X-ray structures of two functional Arabidopsis thaliana LOGs allows us to infer that the wheat LOGs 1-11 are functional LOGs. Using RNA-seq data sets, we assessed TaLOG expression across 70 tissue types, their responses to various stressors, the pattern of cis-regulatory elements (CREs) and intron/exon patterns. TaLOG gene family members are expressed variously across tissue types. When the TaLOG CREs are compared with those of the cytokinin dehydrogenases (CKX) and glucosyltransferases (CGT), there is close alignment of CREs between TaLOGs and TaCKXs reflecting the key role of CKX in maintaining cytokinin homeostasis. However, we suggest that the main homeostatic mechanism controlling cytokinin levels in response to biotic and abiotic challenge resides in the CGTs, rather than LOG or CKX. However, LOG transgenics and identified mutants in rice variously impact yield, providing interesting avenues for investigation in wheat.
Collapse
Affiliation(s)
- Lei Chen
- School of Life SciencesYantai UniversityYantaiChina
| | | | - Yichu Guo
- School of Life SciencesYantai UniversityYantaiChina
| | - Jiancheng Song
- School of Life SciencesYantai UniversityYantaiChina
- Yantai Jien Biological Science & Technology LtdYEDAYantaiChina
| | - Paula E. Jameson
- School of Life SciencesYantai UniversityYantaiChina
- School of Biological SciencesUniversity of CanterburyChristchurchNew Zealand
| |
Collapse
|
13
|
Ajayan KV, Saranya K, Harilal CC. Indole-3-butyric acid mediated growth and biochemical enhancement in three Selenastracean green microalgae under limited supply of nitrogen source. J Biotechnol 2022; 351:60-73. [DOI: 10.1016/j.jbiotec.2022.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 04/12/2022] [Accepted: 04/26/2022] [Indexed: 11/29/2022]
|
14
|
Phloroglucinol promotes fucoxanthin synthesis by activating the cis-zeatin and brassinolide pathways in Thalassiosira pseudonana. Appl Environ Microbiol 2022; 88:e0216021. [PMID: 35108066 DOI: 10.1128/aem.02160-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Phloroglucinol improves shoot formation and somatic embryogenesis in several horticultural and grain crops, but its function in microalgae remains unclear. Here, we found that sufficiently high concentrations of phloroglucinol significantly increased fucoxanthin synthesis, growth, and photosynthetic efficiency in the microalga Thalassiosira pseudonana. These results suggested that the role of phloroglucinol is conserved across higher plants and microalgae. Further analysis showed that, after phloroglucinol treatment, the contents of cis-zeatin and brassinolide in T. pseudonana increased significantly, while the contents of trans-zeatin, iP, auxin, or gibberellin were unaffected. Indeed, functional studies showed that the effects of cis-zeatin and brassinolide in T. pseudonana were similar to those of phloroglucinol. Knockout of key enzyme genes in the cis-zeatin synthesis pathway of T. pseudonana or treatment of T. pseudonana with a brassinolide synthesis inhibitor (brassinazole) significantly reduced growth and fucoxanthin content in T. pseudonana, and phloroglucinol treatment partially alleviated these inhibitory effects. However, phloroglucinol treatment was ineffective when the cis-zeatin and brassinolide pathways were simultaneously inhibited. These results suggested that the cis-zeatin and brassinolide signaling pathways are independent regulators of fucoxanthin synthesis in T. pseudonana, and that phloroglucinol affects both pathways. Thus, this study not only characterizes the mechanism by which phloroglucinol promotes fucoxanthin synthesis, but also demonstrates the roles of cis-zeatin and brassinolide in T. pseudonana. IMPORTANCE Here, we demonstrate that phloroglucinol, a growth promoter in higher plants, also increases growth and fucoxanthin synthesis in the microalga Thalassiosira pseudonana, and therefore may have substantial practical application for industrial fucoxanthin production. Phloroglucinol treatment also induced the synthesis of cis-zeatin and brassinolide in T. pseudonana, and the cis-zeatin and brassinolide signaling pathways were implicated in the phloroglucinol-driven increases in T. pseudonana growth and fucoxanthin synthesis. Thus, our work clarified the molecular mechanism of phloroglucinol promoting the growth and fucoxanthin synthesis of Thalassiosira pseudonana, and suggested that cis-zeatin and brassinolide, in addition to phloroglucinol, had potential utility as inducers of increased microalgal fucoxanthin production.
Collapse
|
15
|
Liu X, Wang L, Wu S, Zhou L, Gao S, Xie X, Wang L, Gu W, Wang G. Formation of resting cells is accompanied with enrichment of ferritin in marine diatom Phaeodactylum tricornutum. ALGAL RES 2022. [DOI: 10.1016/j.algal.2021.102567] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
16
|
Wang C, Qi M, Guo J, Zhou C, Yan X, Ruan R, Cheng P. The Active Phytohormone in Microalgae: The Characteristics, Efficient Detection, and Their Adversity Resistance Applications. Molecules 2021; 27:46. [PMID: 35011277 PMCID: PMC8746318 DOI: 10.3390/molecules27010046] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/16/2021] [Accepted: 12/20/2021] [Indexed: 01/12/2023] Open
Abstract
Phytohormones are a class of small organic molecules that are widely used in higher plants and microalgae as chemical messengers. Phytohormones play a regulatory role in the physiological metabolism of cells, including promoting cell division, increasing stress tolerance, and improving photosynthetic efficiency, and thereby increasing biomass, oil, chlorophyll, and protein content. However, traditional abiotic stress methods for inducing the accumulation of energy storage substances in microalgae, such as high light intensity, high salinity, and heavy metals, will affect the growth of microalgae and will ultimately limit the efficient accumulation of energy storage substances. Therefore, the addition of phytohormones not only helps to reduce production costs but also improves the efficiency of biofuel utilization. However, accurate and sensitive phytohormones determination and analytical methods are the basis for plant hormone research. In this study, the characteristics of phytohormones in microalgae and research progress for regulating the accumulation of energy storage substances in microalgae by exogenous phytohormones, combined with abiotic stress conditions at home and abroad, are summarized. The possible metabolic mechanism of phytohormones in microalgae is discussed, and possible future research directions are put forward, which provide a theoretical basis for the application of phytohormones in microalgae.
Collapse
Affiliation(s)
- Chun Wang
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, China; (C.W.); (M.Q.); (J.G.); (C.Z.)
| | - Mei Qi
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, China; (C.W.); (M.Q.); (J.G.); (C.Z.)
| | - Jiameng Guo
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, China; (C.W.); (M.Q.); (J.G.); (C.Z.)
| | - Chengxu Zhou
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, China; (C.W.); (M.Q.); (J.G.); (C.Z.)
| | - Xiaojun Yan
- Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo 315211, China
| | - Roger Ruan
- Center for Biorefining and Department of Bioproducts and Biosystems Engineering, University of Minnesota-Twin Cities, Saint Paul, MN 55108, USA;
| | - Pengfei Cheng
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, China; (C.W.); (M.Q.); (J.G.); (C.Z.)
- Center for Biorefining and Department of Bioproducts and Biosystems Engineering, University of Minnesota-Twin Cities, Saint Paul, MN 55108, USA;
| |
Collapse
|
17
|
Behera B, Venkata Supraja K, Paramasivan B. Integrated microalgal biorefinery for the production and application of biostimulants in circular bioeconomy. BIORESOURCE TECHNOLOGY 2021; 339:125588. [PMID: 34298244 DOI: 10.1016/j.biortech.2021.125588] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 07/10/2021] [Accepted: 07/13/2021] [Indexed: 05/13/2023]
Abstract
Adverse detrimental impacts of environmental pollution over the health regimen of people has driven a shift in lifestyle towards cleaner and natural resources, especially in the aspects of food production and consumption. Microalgae are considered a rich source of high value metabolites to be utilized as plant growth biostimulants. These organisms however, are underrated compared to other microbial counterparts, due to inappropriate knowledge on the technical, enviro-economical constrains leading to low market credibility. Thus, to avert these issues, the present review comprehensively discusses the biostimulatory potential of microalgae interactively combined with circular bio-economy perspectives. The biochemical content and intracellular action mechanism of microalgal biostimulants were described. Furthermore, detailed country-wise market trends along with the description of the existing regulatory policies are included. Enviro-techno-economic challenges are discussed, and the consensus need for shift to biorefinery and circular bio-economy concept are emphasized to achieve sustainable impacts during the commercialization of microalgal biostimulants.
Collapse
Affiliation(s)
- Bunushree Behera
- Agricultural & Environmental Biotechnology Group, Department of Biotechnology & Medical Engineering, National Institute of Technology Rourkela, Odisha 769008, India
| | - Kolli Venkata Supraja
- Agricultural & Environmental Biotechnology Group, Department of Biotechnology & Medical Engineering, National Institute of Technology Rourkela, Odisha 769008, India
| | - Balasubramanian Paramasivan
- Agricultural & Environmental Biotechnology Group, Department of Biotechnology & Medical Engineering, National Institute of Technology Rourkela, Odisha 769008, India.
| |
Collapse
|
18
|
Mc Gee D, Archer L, Parkes R, Fleming GTA, Santos HM, Touzet N. The role of methyl jasmonate in enhancing biomass yields and bioactive metabolites in Stauroneis sp. (Bacillariophyceae) revealed by proteome and biochemical profiling. J Proteomics 2021; 249:104381. [PMID: 34536592 DOI: 10.1016/j.jprot.2021.104381] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 09/10/2021] [Accepted: 09/11/2021] [Indexed: 12/17/2022]
Abstract
The diatom Stauroneis sp. was previously identified as a promising source of fucoxanthin and omega-3 oils. Methyl jasmonate (MJ) supplementation is known to enhance metabolite yields in this species without impacting on growth or photosynthesis. Therefore, a label-free proteomics approach was undertaken to further evaluate the functional role of MJ on the diatom's physiology. Of the twenty cultivation regimes were screened, Uf/2 medium with green+white LED's induced the greatest metabolic response when exposed to 10 μM MJ treatment. These conditions significantly enhanced the pigment and total cellular lipids contents. The increase in fucoxanthin correlating with a 20% increase in Trolox reducing equivalent in the total antioxidant assay, indicating a non-enzymatic antioxidant role of fucoxanthin to mitigate the detrimental effects of a redox imbalance within chloroplasts. The proteomics identified 197 proteins up-regulated 48 h after MJ exposure including cell signalling cascades, photosynthetic processes, carbohydrate metabolism, lipid biosynthesis and chloroplast biogenesis. MJ strengthened the dark reactions of photosynthesis to support growth and metabolite fluxes. The MJ-induced ER stress protein triggered lipid body production, facilitating metabolite turnover and trafficking between cellular organelles. Plastid terminal oxidase and glutamate 1-semialdehyde 2,1-aminomutase may act as MJ-induced ROS responsive regulatory switch to support chloroplast biosynthesis. SIGNIFICANCE STATEMENT: Phytohormones represents a promising tool to enhance the high-value metabolite yields in plants and algae, however little is known of the role of methyl jasmonate in diatoms at a molecular level. A shotgun proteomics approach was undertaken to determine the influence of MJ on the diatom's cellular physiology in the marine diatom Stauroneis sp., revealing a signal transduction cascade leading to increased lipid and pigment content and identified promising targets for genetic engineering.
Collapse
Affiliation(s)
- Dónal Mc Gee
- Centre for Environmental Research, Sustainability and Innovation (CERIS), School of Science, Department of Environmental Science, Institute of Technology Sligo, Sligo, Ireland.
| | - Lorraine Archer
- Centre for Environmental Research, Sustainability and Innovation (CERIS), School of Science, Department of Environmental Science, Institute of Technology Sligo, Sligo, Ireland
| | - Rachel Parkes
- Centre for Environmental Research, Sustainability and Innovation (CERIS), School of Science, Department of Environmental Science, Institute of Technology Sligo, Sligo, Ireland
| | - Gerard T A Fleming
- Microbiology Department, School of Natural Sciences, National University of Ireland, Galway, Ireland
| | - Hugo M Santos
- Bioscope Research Group, Department of Chemistry, Faculty of Science and Technology, Universidade NOVA de Lisboa, 2829_516 Caparica, Portugal
| | - Nicolas Touzet
- Centre for Environmental Research, Sustainability and Innovation (CERIS), School of Science, Department of Environmental Science, Institute of Technology Sligo, Sligo, Ireland
| |
Collapse
|
19
|
Microalgal Co-Cultivation Prospecting to Modulate Vitamin and Bioactive Compounds Production. Antioxidants (Basel) 2021; 10:antiox10091360. [PMID: 34572991 PMCID: PMC8468856 DOI: 10.3390/antiox10091360] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 08/16/2021] [Accepted: 08/23/2021] [Indexed: 12/15/2022] Open
Abstract
Microalgal biotechnology is gaining importance. However, key issues in the pipeline from species selection towards large biomass production still require improvements to maximize the yield and lower the microalgal production costs. This study explores a co-cultivation strategy to improve the bioactive compounds richness of the harvested microalgal biomass. Based on their biotechnological potential, two diatoms (Skeletonema marinoi, Cyclotella cryptica) and one eustigmatophyte (Nannochloropsis oceanica) were grown alone or in combination. Concentrations of ten vitamins (A, B1, B2, B6, B12, C, D2, D3, E and H), carotenoids and polyphenols, together with total flavonoids, sterols, lipids, proteins and carbohydrates, were compared. Moreover, antioxidant capacity and chemopreventive potential in terms inhibiting four human tumor-derived and normal cell lines proliferation were evaluated. Co-cultivation can engender biomass with emergent properties regarding bioactivity or bioactive chemical profile, depending on the combined species. The high vitamin content of C. cryptica or N. oceanica further enhanced (until 10% more) when co-cultivated, explaining the two-fold increase of the antioxidant capacity of the combined C. cryptica and N. oceanica biomass. Differently, the chemopreventive activity was valuably enhanced when coupling the two diatoms C. cryptica and S. marinoi. The results obtained in this pilot study promote microalgal co-cultivation as a valuable strategy aiming to boost their application in eco-sustainable biotechnology.
Collapse
|
20
|
Lu X, Cui Y, Chen Y, Xiao Y, Song X, Gao F, Xiang Y, Hou C, Wang J, Gan Q, Zheng X, Lu Y. Sustainable development of microalgal biotechnology in coastal zone for aquaculture and food. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 780:146369. [PMID: 33773342 DOI: 10.1016/j.scitotenv.2021.146369] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 03/05/2021] [Accepted: 03/05/2021] [Indexed: 06/12/2023]
Abstract
Region-specific Research and Development (R&D) of microalga-derived product systems are crucial if "biotech's green gold" is to be explored in a rational and economically viable way. Coastal zones, particularly the locations around the equator, are typically considered to be optimum cultivation sites due to stable annual temperature, light, and ready availability of seawater. However, a 'cradle-to-grave' assessment of the development of microalgal biotechnology in these areas, not only under the laboratory conditions, but also in the fields has not yet been demonstrated. In this study, to evaluate the viability of microalga-derived multi-product technology, we showed the development of microalgal biotechnology in coastal zones for aquaculture and food. By creating and screening a (sub)tropical microalgal collection, a Chlorella strain MEM25 with a robust growth in a wide range of salinities, temperatures, and light intensities was identified. Evaluation of the economic viability and performance of different scale cultivation system designs (500 L and 5000 L closed photobioreactors and 60,000 L open race ponds, ORPs) at coastal zones under geographically specific conditions showed the stable and robust characteristics of MEM25 across different production system designs and various spatial and temporal scales. It produces high amounts of proteins and polyunsaturated fatty acids (PUFAs) in various conditions. Feeding experiments reveal the nutritional merits of MEM25 as food additives where PUFAs and essential amino acids are enriched and the algal diet improves consumers' growth. Economic evaluation highlights an appreciable profitability of MEM25 production as human or animal food using ORP systems. Therefore, despite the pros and cons, sound opportunities exist for the development of market-ready multiple-product systems by employing region-specific R&D strategies for microalgal biotechnology.
Collapse
Affiliation(s)
- Xiangning Lu
- State Key Laboratory of Marine Resource Utilization in South China Sea, College of Oceanology, Hainan University, Haikou, Hainan 570228, China
| | - Yulin Cui
- Key Laboratory of Coastal Biology and Biological Resource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, Shandong Province, China
| | - Yuting Chen
- State Key Laboratory of Marine Resource Utilization in South China Sea, College of Oceanology, Hainan University, Haikou, Hainan 570228, China
| | - Yupeng Xiao
- Hainan GreenEnergy Microalgal Biotechnology Co., Ltd, Danzhou 571700, Hainan Province, China
| | - Xiaojin Song
- Shandong Provincial Key Laboratory of Energy Genetics, CAS Key Laboratory of Biofuels, Qingdao Engineering Laboratory of Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, Shandong, China
| | - Fengzheng Gao
- Bioprocess Engineering, Wageningen University and Research, 6708PB Wageningen, Netherlands
| | - Yun Xiang
- State Key Laboratory of Marine Resource Utilization in South China Sea, College of Oceanology, Hainan University, Haikou, Hainan 570228, China
| | - Congcong Hou
- State Key Laboratory of Marine Resource Utilization in South China Sea, College of Oceanology, Hainan University, Haikou, Hainan 570228, China; State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361005, Fujian Province, China
| | - Jun Wang
- State Key Laboratory of Marine Resource Utilization in South China Sea, College of Oceanology, Hainan University, Haikou, Hainan 570228, China
| | - Qinhua Gan
- State Key Laboratory of Marine Resource Utilization in South China Sea, College of Oceanology, Hainan University, Haikou, Hainan 570228, China
| | - Xing Zheng
- Hainan GreenEnergy Microalgal Biotechnology Co., Ltd, Danzhou 571700, Hainan Province, China
| | - Yandu Lu
- State Key Laboratory of Marine Resource Utilization in South China Sea, College of Oceanology, Hainan University, Haikou, Hainan 570228, China.
| |
Collapse
|
21
|
Lu Y, Gu X, Lin H, Melis A. Engineering microalgae: transition from empirical design to programmable cells. Crit Rev Biotechnol 2021; 41:1233-1256. [PMID: 34130561 DOI: 10.1080/07388551.2021.1917507] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Domesticated microalgae hold great promise for the sustainable provision of various bioresources for human domestic and industrial consumption. Efforts to exploit their potential are far from being fully realized due to limitations in the know-how of microalgal engineering. The associated technologies are not as well developed as those for heterotrophic microbes, cyanobacteria, and plants. However, recent studies on microalgal metabolic engineering, genome editing, and synthetic biology have immensely helped to enhance transformation efficiencies and are bringing new insights into this field. Therefore, this article, summarizes recent developments in microalgal biotechnology and examines the prospects for generating specialty and commodity products through the processes of metabolic engineering and synthetic biology. After a brief examination of empirical engineering methods and vector design, this article focuses on quantitative transformation cassette design, elaborates on target editing methods and emerging digital design of algal cellular metabolism to arrive at high yields of valuable products. These advances have enabled a transition of manners in microalgal engineering from single-gene and enzyme-based metabolic engineering to systems-level precision engineering, from cells created with genetically modified (GM) tags to that without GM tags, and ultimately from proof of concept to tangible industrial applications. Finally, future trends are proposed in microalgal engineering, aiming to establish individualized transformation systems in newly identified species for strain-specific specialty and commodity products, while developing sophisticated universal toolkits in model algal species.
Collapse
Affiliation(s)
- Yandu Lu
- State Key Laboratory of Marine Resource Utilization in the South China Sea, College of Oceanology, Hainan University, Haikou, China.,Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA
| | - Xinping Gu
- State Key Laboratory of Marine Resource Utilization in the South China Sea, College of Oceanology, Hainan University, Haikou, China
| | - Hanzhi Lin
- Institute of Marine & Environmental Technology, Center for Environmental Science, University of Maryland, College Park, MD, USA
| | - Anastasios Melis
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA
| |
Collapse
|
22
|
Zanchetta E, Damergi E, Patel B, Borgmeyer T, Pick H, Pulgarin A, Ludwig C. Algal cellulose, production and potential use in plastics: Challenges and opportunities. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102288] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
23
|
Anam GB, Guda DR, Ahn YH. Hormones induce the metabolic growth and cytotoxin production of Microcystis aeruginosa under terpinolene stress. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 769:145083. [PMID: 33736237 DOI: 10.1016/j.scitotenv.2021.145083] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 12/23/2020] [Accepted: 01/05/2021] [Indexed: 06/12/2023]
Abstract
Several organic compounds released into the aquatic environment have a detrimental impact on humans and other organisms. There is a lack of knowledge about natural hormones and herbicides on non-target organisms, including cyanobacteria. In this study, the response of Microcystis aeruginosa to four phytohormones, indole-3-acetic acid (IAA; 10-5), zeatin (ZT; 10-5), abscisic acid (ABA; 10-7), and brassinolide (BRL; 10-9 mol/L), exposed to terpinolene (TPN; (0.44, 0.88, 1.17, or 1.62 mmol/L) at the cellular and genetic levels were investigated. The results showed that TPN could inhibit the growth and photosynthetic activities and stimulate microcystins (MCs) of M. aeruginosa at various levels through the co-occurrence of oxidative stress, antioxidant defense activities, and an imbalance of the antioxidative system. Hormones played critical roles in the growth promotion and photosynthetic activity by enhancing the antioxidant defense mechanisms and MCs production of M. aeruginosa under TPN stress in both hormone and TPN dose-dependent manner. The growth performance and photosynthetic activities of M. aeruginosa were significant with IAA (p < 0.01) and BSL (p < 0.05) compared to ZT and ABA, as TPN concentrations increased. Hormones stimulated the MCs production significantly BSL (p < 0.05) at various levels and protected the cells against TPN-induced oxidative stress and expression of mcyB and mcyD genes involve in MCs synthesis. Our results indicated that hormone contamination in eutrophic lakes might increase the risk of Microcystis aeruginosa bloom and microcystin production with the TPN association.
Collapse
Affiliation(s)
- Giridhar Babu Anam
- Department of Civil Engineering, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Republic of Korea
| | - Dinneswara Reddy Guda
- Korea Center for Artificial Photosynthesis and Center for Nanomaterial, Sogang University, Seoul 121-742, Republic of Korea
| | - Young-Ho Ahn
- Department of Civil Engineering, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Republic of Korea.
| |
Collapse
|
24
|
Wang Q, Gong Y, He Y, Xin Y, Lv N, Du X, Li Y, Jeong BR, Xu J. Genome engineering of Nannochloropsis with hundred-kilobase fragment deletions by Cas9 cleavages. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 106:1148-1162. [PMID: 33719095 DOI: 10.1111/tpj.15227] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 02/21/2021] [Accepted: 03/01/2021] [Indexed: 06/12/2023]
Abstract
Industrial microalgae are promising photosynthetic cell factories, yet tools for large-scale targeted genome engineering are limited. Here for the model industrial oleaginous microalga Nannochloropsis oceanica, we established a method to precisely and serially delete large genome fragments of ~100 kb from its 30.01 Mb nuclear genome. We started by identifying the 'non-essential' chromosomal regions (i.e. low expression region or LER) based on minimal gene expression under N-replete and N-depleted conditions. The largest such LER (LER1) is ~98 kb in size, located near the telomere of the 502.09-kb-long Chromosome 30 (Chr 30). We deleted 81 kb and further distal and proximal deletions of up to 110 kb (21.9% of Chr 30) in LER1 by dual targeting the boundaries with the episome-based CRISPR/Cas9 system. The telomere-deletion mutants showed normal telomeres consisting of CCCTAA repeats, revealing telomere regeneration capability after losing the distal part of Chr 30. Interestingly, the deletions caused no significant alteration in growth, lipid production or photosynthesis (transcript-abundance change for < 3% genes under N depletion). We also achieved double-deletion of both LER1 and LER2 (from Chr 9) that total ~214 kb at maximum, which can result in slightly higher growth rate and biomass productivity than the wild-type. Therefore, loss of the large, yet 'non-essential' regions does not necessarily sacrifice important traits. Such serial targeted deletions of large genomic regions had not been previously reported in microalgae, and will accelerate crafting minimal genomes as chassis for photosynthetic production.
Collapse
Affiliation(s)
- Qintao Wang
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics and Shandong Institute of Energy Research, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- Qingdao National Laboratory of Marine Science and Technology, Qingdao, 266237, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yanhai Gong
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics and Shandong Institute of Energy Research, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- Qingdao National Laboratory of Marine Science and Technology, Qingdao, 266237, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuehui He
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics and Shandong Institute of Energy Research, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- Qingdao National Laboratory of Marine Science and Technology, Qingdao, 266237, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yi Xin
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics and Shandong Institute of Energy Research, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- Qingdao National Laboratory of Marine Science and Technology, Qingdao, 266237, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Nana Lv
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics and Shandong Institute of Energy Research, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- Qingdao National Laboratory of Marine Science and Technology, Qingdao, 266237, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xuefeng Du
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics and Shandong Institute of Energy Research, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- Qingdao National Laboratory of Marine Science and Technology, Qingdao, 266237, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yun Li
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics and Shandong Institute of Energy Research, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- Qingdao National Laboratory of Marine Science and Technology, Qingdao, 266237, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Byeong-Ryool Jeong
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics and Shandong Institute of Energy Research, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology, Ulsan, 44919, Korea
| | - Jian Xu
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics and Shandong Institute of Energy Research, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- Qingdao National Laboratory of Marine Science and Technology, Qingdao, 266237, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
25
|
Kapoore RV, Wood EE, Llewellyn CA. Algae biostimulants: A critical look at microalgal biostimulants for sustainable agricultural practices. Biotechnol Adv 2021; 49:107754. [PMID: 33892124 DOI: 10.1016/j.biotechadv.2021.107754] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 03/24/2021] [Accepted: 04/16/2021] [Indexed: 12/14/2022]
Abstract
For the growing human population to be sustained during present climatic changes, enhanced quality and quantity of crops are essential to enable food security worldwide. The current consensus is that we need to make a transition from a petroleum-based to a bio-based economy via the development of a sustainable circular economy and biorefinery approaches. Both macroalgae (seaweeds) and microalgae have been long considered a rich source of plant biostimulants with an attractive business opportunity in agronomy and agro-industries. To date, macroalgae biostimulants have been well explored. In contrast, microalgal biostimulants whilst known to have positive effects on development, growth and yields of crops, their commercial implementation is constrained by lack of research and cost of production. The present review highlights the current knowledge on potential biostimulatory compounds, key sources and their quantitative information from algae. Specifically, we provide an overview on the prospects of microalgal biostimulants to advance crop production and quality. Key aspects such as specific biostimulant effects caused by extracts of microalgae, feasibility and potential of co-cultures and later co-application with other biostimulants/biofertilizers are highlighted. An overview of the current knowledge, recent advances and achievements on extraction techniques, application type, application timing, current market and regulatory aspects are also discussed. Moreover, aspects involved in circular economy and biorefinery approaches are also covered, such as: integration of waste resources and implementation of high-throughput phenotyping and -omics tools in isolating novel strains, exploring synergistic interactions and illustrating the underlying mode of microalgal biostimulant action. Overall, this review highlights the current and future potential of microalgal biostimulants, algal biochemical components behind these traits and finally bottlenecks and prospects involved in the successful commercialisation of microalgal biostimulants for sustainable agricultural practices.
Collapse
Affiliation(s)
- Rahul Vijay Kapoore
- Department of Biosciences, College of Science, Swansea University, Swansea, SA2 8PP, UK.
| | - Eleanor E Wood
- Department of Biosciences, College of Science, Swansea University, Swansea, SA2 8PP, UK
| | - Carole A Llewellyn
- Department of Biosciences, College of Science, Swansea University, Swansea, SA2 8PP, UK
| |
Collapse
|
26
|
Nayar S. Exploring the Role of a Cytokinin-Activating Enzyme LONELY GUY in Unicellular Microalga Chlorella variabilis. FRONTIERS IN PLANT SCIENCE 2021; 11:611871. [PMID: 33613586 PMCID: PMC7891180 DOI: 10.3389/fpls.2020.611871] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 12/14/2020] [Indexed: 05/29/2023]
Abstract
LONELY GUY has been previously characterized in flowering plants to be involved in the direct activation of cytokinins. In this study, the function of the only LONELY GUY gene (CvarLOG1) from unicellular green microalga Chlorella variabilis NC64A has been investigated. CvarLOG1 expressed mainly in the lag and log phases of growth and was confirmed to be a cytokinin-activating enzyme. Overexpression of CvarLOG1 in Chlorella led to extended life in culture by almost 10-20 days, creating a "stay-green" phenotype. In the transformed alga, the cell cycle was lengthened due to delayed entry into the G2/M phase contrary to the known role of cytokinins in stimulating G2/M transition possibly due to excessive levels of this hormone. However, due to the sustained growth and delayed senescence, there was an increase in cell number by 11% and in biomass by 46% at the stationary phase, indicating a potential application for the biofuel industry. The total carbohydrate and lipid yield increased by approximately 30 and 20%, respectively. RNA-Seq-based transcriptomic analysis revealed that the genes associated with light and dark reactions of photosynthesis were upregulated, which may be the reason for the increased biomass. These data show that LOG plays an essential role during the cell cycle and in the functioning of the chloroplast and that the pathway leading to direct activation of cytokinins via LOG is functional in algae.
Collapse
|
27
|
Lu Y, Gan Q, Iwai M, Alboresi A, Burlacot A, Dautermann O, Takahashi H, Crisanto T, Peltier G, Morosinotto T, Melis A, Niyogi KK. Role of an ancient light-harvesting protein of PSI in light absorption and photoprotection. Nat Commun 2021; 12:679. [PMID: 33514722 PMCID: PMC7846763 DOI: 10.1038/s41467-021-20967-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 01/05/2021] [Indexed: 12/18/2022] Open
Abstract
Diverse algae of the red lineage possess chlorophyll a-binding proteins termed LHCR, comprising the PSI light-harvesting system, which represent an ancient antenna form that evolved in red algae and was acquired through secondary endosymbiosis. However, the function and regulation of LHCR complexes remain obscure. Here we describe isolation of a Nannochloropsis oceanica LHCR mutant, named hlr1, which exhibits a greater tolerance to high-light (HL) stress compared to the wild type. We show that increased tolerance to HL of the mutant can be attributed to alterations in PSI, making it less prone to ROS production, thereby limiting oxidative damage and favoring growth in HL. HLR1 deficiency attenuates PSI light-harvesting capacity and growth of the mutant under light-limiting conditions. We conclude that HLR1, a member of a conserved and broadly distributed clade of LHCR proteins, plays a pivotal role in a dynamic balancing act between photoprotection and efficient light harvesting for photosynthesis. LHCR proteins are ancient chlorophyll a-binding antennas that evolved in diverse algae of the red lineage. Here Lu et al. characterize a red lineage LHCR mutant and show reduced oxidative damage in high light but attenuated growth under low light, thus demonstrating how LHCR proteins impact the balance between photoprotection and light harvesting.
Collapse
Affiliation(s)
- Yandu Lu
- State Key Laboratory of Marine Resource Utilization in South China Sea, College of Oceanology, Hainan University, Haikou, Hainan, China. .,Howard Hughes Medical Institute, Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA.
| | - Qinhua Gan
- State Key Laboratory of Marine Resource Utilization in South China Sea, College of Oceanology, Hainan University, Haikou, Hainan, China
| | - Masakazu Iwai
- Howard Hughes Medical Institute, Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA.,Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | | | - Adrien Burlacot
- CEA, CNRS, Aix-Marseille Université, Institut de Biosciences et Biotechnologies Aix-Marseille, UMR 7265, Laboratoire de Bioénergétique et Biotechnologie des Bactéries et Microalgues, CEA Cadarache, Saint-Paul-lezDurance, France
| | - Oliver Dautermann
- Howard Hughes Medical Institute, Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA
| | - Hiroko Takahashi
- Department of Biochemistry and Molecular Biology, Graduate school of Science and Engineering, Saitama University, Saitama, Japan
| | - Thien Crisanto
- Howard Hughes Medical Institute, Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA
| | - Gilles Peltier
- CEA, CNRS, Aix-Marseille Université, Institut de Biosciences et Biotechnologies Aix-Marseille, UMR 7265, Laboratoire de Bioénergétique et Biotechnologie des Bactéries et Microalgues, CEA Cadarache, Saint-Paul-lezDurance, France
| | | | - Anastasios Melis
- Howard Hughes Medical Institute, Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA
| | - Krishna K Niyogi
- Howard Hughes Medical Institute, Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA. .,Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| |
Collapse
|
28
|
Gong Y, Kang NK, Kim YU, Wang Z, Wei L, Xin Y, Shen C, Wang Q, You W, Lim JM, Jeong SW, Park YI, Oh HM, Pan K, Poliner E, Yang G, Li-Beisson Y, Li Y, Hu Q, Poetsch A, Farre EM, Chang YK, Jeong WJ, Jeong BR, Xu J. The NanDeSyn database for Nannochloropsis systems and synthetic biology. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 104:1736-1745. [PMID: 33103271 DOI: 10.1111/tpj.15025] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 09/10/2020] [Accepted: 09/23/2020] [Indexed: 06/11/2023]
Abstract
Nannochloropsis species, unicellular industrial oleaginous microalgae, are model organisms for microalgal systems and synthetic biology. To facilitate community-based annotation and mining of the rapidly accumulating functional genomics resources, we have initiated an international consortium and present a comprehensive multi-omics resource database named Nannochloropsis Design and Synthesis (NanDeSyn; http://nandesyn.single-cell.cn). Via the Tripal toolkit, it features user-friendly interfaces hosting genomic resources with gene annotations and transcriptomic and proteomic data for six Nannochloropsis species, including two updated genomes of Nannochloropsis oceanica IMET1 and Nannochloropsis salina CCMP1776. Toolboxes for search, Blast, synteny view, enrichment analysis, metabolic pathway analysis, a genome browser, etc. are also included. In addition, functional validation of genes is indicated based on phenotypes of mutants and relevant bibliography. Furthermore, epigenomic resources are also incorporated, especially for sequencing of small RNAs including microRNAs and circular RNAs. Such comprehensive and integrated landscapes of Nannochloropsis genomics and epigenomics will promote and accelerate community efforts in systems and synthetic biology of these industrially important microalgae.
Collapse
Affiliation(s)
- Yanhai Gong
- Single-Cell Center, CAS Key Laboratory of Biofuels and Shandong Key Laboratory of Energy Genetics, Shandong Institute of Energy Research, Qingdao Institute of BioEnergy and Bioprocess Technology (QIBEBT), Chinese Academy of Sciences, Qingdao, Shandong, 266101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Nam K Kang
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Korea
- Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana, IL, 61801, USA
| | - Young U Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Korea
| | - Zengbin Wang
- Single-Cell Center, CAS Key Laboratory of Biofuels and Shandong Key Laboratory of Energy Genetics, Shandong Institute of Energy Research, Qingdao Institute of BioEnergy and Bioprocess Technology (QIBEBT), Chinese Academy of Sciences, Qingdao, Shandong, 266101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Li Wei
- Single-Cell Center, CAS Key Laboratory of Biofuels and Shandong Key Laboratory of Energy Genetics, Shandong Institute of Energy Research, Qingdao Institute of BioEnergy and Bioprocess Technology (QIBEBT), Chinese Academy of Sciences, Qingdao, Shandong, 266101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Yi Xin
- Single-Cell Center, CAS Key Laboratory of Biofuels and Shandong Key Laboratory of Energy Genetics, Shandong Institute of Energy Research, Qingdao Institute of BioEnergy and Bioprocess Technology (QIBEBT), Chinese Academy of Sciences, Qingdao, Shandong, 266101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Chen Shen
- Single-Cell Center, CAS Key Laboratory of Biofuels and Shandong Key Laboratory of Energy Genetics, Shandong Institute of Energy Research, Qingdao Institute of BioEnergy and Bioprocess Technology (QIBEBT), Chinese Academy of Sciences, Qingdao, Shandong, 266101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Qintao Wang
- Single-Cell Center, CAS Key Laboratory of Biofuels and Shandong Key Laboratory of Energy Genetics, Shandong Institute of Energy Research, Qingdao Institute of BioEnergy and Bioprocess Technology (QIBEBT), Chinese Academy of Sciences, Qingdao, Shandong, 266101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Wuxin You
- Single-Cell Center, CAS Key Laboratory of Biofuels and Shandong Key Laboratory of Energy Genetics, Shandong Institute of Energy Research, Qingdao Institute of BioEnergy and Bioprocess Technology (QIBEBT), Chinese Academy of Sciences, Qingdao, Shandong, 266101, China
- Department of Plant Biochemistry, Ruhr University Bochum, Bochum, Germany
| | - Jong-Min Lim
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Korea
| | - Suk-Won Jeong
- Department of Biological Sciences, Chungnam National University, Daejeon, 34134, Korea
| | - Youn-Il Park
- Department of Biological Sciences, Chungnam National University, Daejeon, 34134, Korea
| | - Hee-Mock Oh
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Korea
| | - Kehou Pan
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
- Laboratory of Applied Microalgae, College of Fisheries, Ocean University of China, Qingdao, 266003, China
| | - Eric Poliner
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, USA
| | - Guanpin Yang
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
- College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong, 266003, China
- Institutes of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, Shandong, 266003, China
| | - Yonghua Li-Beisson
- Aix Marseille Univ, CEA, CNRS, Institut de Biosciences et Biotechnologies Aix-Marseille, CEA Cadarache, 13108, Saint Paul-Lez-Durance, France
| | - Yantao Li
- Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science, University of Maryland, Baltimore County, Baltimore, MD, 21202, USA
| | - Qiang Hu
- Center for Microalgal Biotechnology and Biofuels, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Ansgar Poetsch
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
- Department of Plant Biochemistry, Ruhr University Bochum, Bochum, Germany
- College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong, 266003, China
| | - Eva M Farre
- Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Yong K Chang
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Korea
| | - Won-Joong Jeong
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Korea
| | - Byeong-Ryool Jeong
- Single-Cell Center, CAS Key Laboratory of Biofuels and Shandong Key Laboratory of Energy Genetics, Shandong Institute of Energy Research, Qingdao Institute of BioEnergy and Bioprocess Technology (QIBEBT), Chinese Academy of Sciences, Qingdao, Shandong, 266101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Korea
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Korea
| | - Jian Xu
- Single-Cell Center, CAS Key Laboratory of Biofuels and Shandong Key Laboratory of Energy Genetics, Shandong Institute of Energy Research, Qingdao Institute of BioEnergy and Bioprocess Technology (QIBEBT), Chinese Academy of Sciences, Qingdao, Shandong, 266101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| |
Collapse
|
29
|
Lu Y, Jiang J, Zhao H, Han X, Xiang Y, Zhou W. Clade-Specific Sterol Metabolites in Dinoflagellate Endosymbionts Are Associated with Coral Bleaching in Response to Environmental Cues. mSystems 2020; 5:e00765-20. [PMID: 32994291 PMCID: PMC7527140 DOI: 10.1128/msystems.00765-20] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 08/18/2020] [Indexed: 11/20/2022] Open
Abstract
Cnidarians cannot synthesize sterols (which play essential roles in growth and development) de novo but often use sterols acquired from endosymbiotic dinoflagellates. While sterol availability can impact the mutualistic interaction between coral host and algal symbiont, the biosynthetic pathways (in the dinoflagellate endosymbionts) and functional roles of sterols in these symbioses are poorly understood. In this study, we found that itraconazole, which perturbs sterol metabolism by inhibiting the sterol 14-demethylase CYP51 in dinoflagellates, induces bleaching of the anemone Heteractis crispa and that bleaching perturbs sterol metabolism of the dinoflagellate. While Symbiodiniaceae have clade-specific sterol metabolites, they share features of the common sterol biosynthetic pathway but with distinct architecture and substrate specificity features of participating enzymes. Tracking sterol profiles and transcripts of enzymes involved in sterol biosynthesis across time in response to different environmental cues revealed similarities and idiosyncratic features of sterol synthesis in the endosymbiont Breviolum minutum Exposure of algal cultures to high levels of light, heat, and acidification led to alterations in sterol synthesis, including blocks through downregulation of squalene synthase transcript levels accompanied by marked growth reductions.IMPORTANCE These results indicate that sterol metabolites in Symbiodiniaceae are clade specific, that their biosynthetic pathways share architectural and substrate specificity features with those of animals and plants, and that environmental stress-specific perturbation of sterol biosynthesis in dinoflagellates can impair a key mutualistic partnership for healthy reefs.
Collapse
Affiliation(s)
- Yandu Lu
- State Key Laboratory of Marine Resource Utilization in the South China Sea, College of Oceanology, Hainan University, Haikou, Hainan, China
| | - Jiaoyun Jiang
- State Key Laboratory of Marine Resource Utilization in the South China Sea, College of Oceanology, Hainan University, Haikou, Hainan, China
- College of Life Sciences, Guangxi Normal University, Guilin, Guangxi, China
| | - Hongwei Zhao
- State Key Laboratory of Marine Resource Utilization in the South China Sea, College of Oceanology, Hainan University, Haikou, Hainan, China
| | - Xiao Han
- State Key Laboratory of Marine Resource Utilization in the South China Sea, College of Oceanology, Hainan University, Haikou, Hainan, China
| | - Yun Xiang
- State Key Laboratory of Marine Resource Utilization in the South China Sea, College of Oceanology, Hainan University, Haikou, Hainan, China
| | - Wenxu Zhou
- Shandong Rongchen Pharmaceuticals Inc., Qingdao, China
| |
Collapse
|
30
|
Han X, Song X, Li F, Lu Y. Improving lipid productivity by engineering a control-knob gene in the oleaginous microalga Nannochloropsis oceanica. Metab Eng Commun 2020; 11:e00142. [PMID: 32995270 PMCID: PMC7516279 DOI: 10.1016/j.mec.2020.e00142] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 08/06/2020] [Accepted: 08/19/2020] [Indexed: 01/08/2023] Open
Abstract
Nannochloropsis spp. are promising industrial microalgae for scalable oil production and the lipid production can be boosted by nutrient starvation and high irradiance. However, these stimuli halt growth, thereby decreasing overall productivity. In this study, we created transgenic N. oceanica where AtDXS gene encoding 1-deoxy-D-xylulose 5-phosphate synthase (DXS) derived from Arabidopsis thaliana was overexpressed in vivo. Compared with the wild type (WT), engineered Nannochloropsis showed a higher CO2 absorption capacity and produced more biomass, lipids, and carbohydrates with more robust growth in either preferred conditions or various stressed conditions (low light, high light, nitrogen starvation, and trace element depletion). Specifically, relative to the WT, lipid production increased by ~68.6% in nitrogen depletion (~1.08 g L−1) and ~110.6% in high light (~1.15 g L−1) in the transgenic strains. As for neutral lipid (triacylglycerol, TAG), the engineered strains produced ~93.2% more in nitrogen depletion (~0.77 g L−1) and ~148.6% more in high light (~0.80 g L−1) than the WT. These values exceed available records in engineered industrial microalgae. Therefore, engineering control-knob genes could modify multiple biological processes simultaneously and enable efficient carbon partitioning to lipid biosynthesis with elevated biomass productivity. It could be further exploited for simultaneous enhancement of growth property and oil productivity in more industrial microalgae. An oil-rich strain Nannochloropsis AtDXSoe3 was genetically created. AtDXSoe3 produces ~110.6% more total lipids than wild-type stain. AtDXSoe3 produces ~148.6% more neutral lipid than wild-type stain. AtDXSoe3 exceeds documented engineered microalgae in oil production. Crucial algal traits could be improved by engineering a single ‘control knob’ gene.
Collapse
Affiliation(s)
- Xiao Han
- State Key Laboratory of Marine Resource Utilization in South China Sea, College of Oceanology, Hainan University, Haikou, 570228, Hainan Province, China
| | - Xiaojin Song
- Shandong Provincial Key Laboratory of Energy Genetics, CAS Key Laboratory of Biofuels, Qingdao Engineering Laboratory of Single Cell Oil, Shandong Engineering Laboratory of Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, Shandong, China
| | - Falan Li
- State Key Laboratory of Marine Resource Utilization in South China Sea, College of Oceanology, Hainan University, Haikou, 570228, Hainan Province, China
| | - Yandu Lu
- State Key Laboratory of Marine Resource Utilization in South China Sea, College of Oceanology, Hainan University, Haikou, 570228, Hainan Province, China
| |
Collapse
|
31
|
Characterization of Endogenous Auxins and Gibberellins Produced by Chlorella sorokiniana TH01 under Phototrophic and Mixtrophic Cultivation Modes toward Applications in Microalgal Biorefinery and Crop Research. J CHEM-NY 2020. [DOI: 10.1155/2020/4910621] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Microalgae have been reported to produce endogenous phytohormones including auxins, gibberellins, cytokinins, brassinosteroids, and abscisic acid. Methanol residual released from microalgal lipid extraction usually contains a variety of bioactive compounds including the phytohormones; however, they are poorly characterized and used for other applications. This study aimed at investigating auxin, gibberellin, and cytokinin production of C. sorokiniana TH01 under phototrophic and mixtrophic cultivations. Moreover, endogenous auxins, gibberellins, and cytokinins in methanol residual obtained from the algal lipid extraction were characterized using HPLC-ESI-MS/MS toward application for crop and biorefinery research. Data showed that endogenous indole-3-acetic acid (IAA), 3-indolepropionic acid (IPA), gibberellin A4 (GA4), and gibberellin A7 (GA7) were detected in C. sorokiniana TH01 biomass. Under the phototrophic mode, total auxin and GA levels were reduced to 0.98 and 9.65 μg/g DW under salt stress (20 g NaCl/L) from 3.59 to 24.71 μg/g DW, respectively, measured for the control. Similarly, total auxins and GAs were also decreased to 0.56 and 2.86 μg/g DW, respectively, under mixtrophic growth with 6 g glucose/L. Total auxins and GAs determined in the water algal extract were 1062.7 and 2000.1 μg/L, respectively. Treatment with higher 40% (v/v) of the algal extract triggered earlier seed germination of rice and tomato plants in 2 and 1 days, respectively. Our new findings in capability of C. sorokiniana TH01 in endogenous phytohormone production contain fundamental merits for further optimization of the algal production (i.e., cultivation modes, conditions, lipids, biomass productivity, and hormone levels) to be used for biorefinery.
Collapse
|
32
|
Mc Gee D, Archer L, Fleming GT, Gillespie E, Touzet N. The effect of nutrient and phytohormone supplementation on the growth, pigment yields and biochemical composition of newly isolated microalgae. Process Biochem 2020. [DOI: 10.1016/j.procbio.2020.03.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
33
|
Norlina R, Norashikin MN, Loh SH, Aziz A, Cha TS. Exogenous Abscisic Acid Supplementation at Early Stationary Growth Phase Triggers Changes in the Regulation of Fatty Acid Biosynthesis in Chlorella vulgaris UMT-M1. Appl Biochem Biotechnol 2020; 191:1653-1669. [PMID: 32198601 DOI: 10.1007/s12010-020-03312-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 03/12/2020] [Indexed: 11/30/2022]
Abstract
Abscisic acid (ABA) has been known to exist in a microalgal system and serves as one of the chemical stimuli in various biological pathways. Nonetheless, the involvement of ABA in fatty acid biosynthesis, particularly at the transcription level in microalgae is poorly understood. The objective of this study was to determine the effects of exogenous ABA on growth, total oil content, fatty acid composition, and the expression level of beta ketoacyl-ACP synthase I (KAS I) and omega-3 fatty acid desaturase (ω-3 FAD) genes in Chlorella vulgaris UMT-M1. ABA was applied to early stationary C. vulgaris cultures at concentrations of 0, 10, 20, and 80 μM for 48 h. The results showed that ABA significantly increased biomass production and total oil content. The increment of palmitic (C16:0) and stearic (C18:0) acids was coupled by decrement in linoleic (C18:2) and α-linolenic (C18:3n3) acids. Both KAS I and ω-3 FAD gene expression were downregulated, which was negatively correlated to saturated fatty acid (SFAs), but positively correlated to polyunsaturated fatty acid (PUFA) accumulations. Further analysis of both KAS I and ω-3 FAD promoters revealed the presence of multiple ABA-responsive elements (ABREs) in addition to other phytohormone-responsive elements. However, the role of these phytohormone-responsive elements in regulating KAS I and ω-3 FAD gene expression still remains elusive. This revelation might suggest that phytohormone-responsive gene regulation in C. vulgaris and microalgae as a whole might diverge from higher plants which deserve further scientific research to elucidate its functional roles.
Collapse
Affiliation(s)
- Ramlee Norlina
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030, Kuala Terengganu, Terengganu, Malaysia
| | - Md Nor Norashikin
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030, Kuala Terengganu, Terengganu, Malaysia
| | - Saw Hong Loh
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030, Kuala Terengganu, Terengganu, Malaysia
| | - Ahmad Aziz
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030, Kuala Terengganu, Terengganu, Malaysia
| | - Thye San Cha
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030, Kuala Terengganu, Terengganu, Malaysia.
| |
Collapse
|
34
|
Wang X, Ding J, Lin S, Liu D, Gu T, Wu H, Trigiano RN, McAvoy R, Huang J, Li Y. Evolution and roles of cytokinin genes in angiosperms 2: Do ancient CKXs play housekeeping roles while non-ancient CKXs play regulatory roles? HORTICULTURE RESEARCH 2020; 7:29. [PMID: 32140238 PMCID: PMC7049301 DOI: 10.1038/s41438-020-0246-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 12/27/2019] [Accepted: 01/04/2020] [Indexed: 05/23/2023]
Abstract
Cytokinin oxidase/dehydrogenase (CKX) is a key enzyme responsible for the degradation of endogenous cytokinins. However, the origins and roles of CKX genes in angiosperm evolution remain unclear. Based on comprehensive bioinformatic and transgenic plant analyses, we demonstrate that the CKXs of land plants most likely originated from an ancient chlamydial endosymbiont during primary endosymbiosis. We refer to the CKXs retaining evolutionarily ancient characteristics as "ancient CKXs" and those that have expanded and functionally diverged in angiosperms as "non-ancient CKXs". We show that the expression of some non-ancient CKXs is rapidly inducible within 15 min upon the dehydration of Arabidopsis, while the ancient CKX (AtCKX7) is not drought responsive. Tobacco plants overexpressing a non-ancient CKX display improved oxidative and drought tolerance and root growth. Previous mutant studies have shown that non-ancient CKXs regulate organ development, particularly that of flowers. Furthermore, ancient CKXs preferentially degrade cis-zeatin (cZ)-type cytokinins, while non-ancient CKXs preferentially target N6-(Δ2-isopentenyl) adenines (iPs) and trans-zeatins (tZs). Based on the results of this work, an accompanying study (Wang et al. 10.1038/s41438-019-0211-x) and previous studies, we hypothesize that non-ancient CKXs and their preferred substrates of iP/tZ-type cytokinins regulate angiosperm organ development and environmental stress responses, while ancient CKXs and their preferred substrates of cZs play a housekeeping role, which echoes the conclusions and hypothesis described in the accompanying report (Wang, X. et al. Evolution and roles of cytokinin genes in angiosperms 1: Doancient IPTs play housekeeping while non-ancient IPTs play regulatory roles? Hortic Res7, (2020). 10.1038/s41438-019-0211-x).
Collapse
Affiliation(s)
- Xiaojing Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and College of Horticulture, Nanjing Agricultural University, Nanjing, P. R. China
| | - Jing Ding
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and College of Horticulture, Nanjing Agricultural University, Nanjing, P. R. China
| | - Shanshan Lin
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and College of Horticulture, Nanjing Agricultural University, Nanjing, P. R. China
| | - Decai Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and College of Horticulture, Nanjing Agricultural University, Nanjing, P. R. China
| | - Tingting Gu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and College of Horticulture, Nanjing Agricultural University, Nanjing, P. R. China
| | - Han Wu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and College of Horticulture, Nanjing Agricultural University, Nanjing, P. R. China
| | - Robert N. Trigiano
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN 37996-4560 USA
| | - Richard McAvoy
- Department of Plant Science and Landscape Architecture, University of Connecticut, Storrs, CT 06269 USA
| | - Jinling Huang
- State Key Laboratory of Crop Stress Adaptation and Improvement, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng, China
- Department of Biology, East Carolina University, Greenville, NC 27858 USA
| | - Yi Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and College of Horticulture, Nanjing Agricultural University, Nanjing, P. R. China
- Department of Plant Science and Landscape Architecture, University of Connecticut, Storrs, CT 06269 USA
| |
Collapse
|
35
|
Sivaramakrishnan R, Incharoensakdi A. Plant hormone induced enrichment of Chlorella sp. omega-3 fatty acids. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:7. [PMID: 31969931 PMCID: PMC6966795 DOI: 10.1186/s13068-019-1647-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 12/29/2019] [Indexed: 05/21/2023]
Abstract
BACKGROUND Omega-3 fatty acids have various health benefits in combating against neurological problems, cancers, cardiac problems and hypertriglyceridemia. The main dietary omega-3 fatty acids are obtained from marine fish. Due to the pollution of marine environment, recently microalgae are considered as the promising source for the omega-3 fatty acid production. However, the demand and high production cost associated with microalgal biomass make it necessary to implement novel strategies in improving the biomass and omega-3 fatty acids from microalgae. RESULTS Four plant hormones zeatin, indole acetic acid (IAA), gibberellic acid (GBA) and abscisic acid (ABA) were investigated for their effect on the production of biomass and lipid in isolated Chlorella sp. The cells showed an increase of the biomass and lipid content after treatments with the plant hormones where the highest stimulatory effect was observed in ABA-treated cells. On the other hand, IAA showed the highest stimulatory effect on the omega-3 fatty acids content, eicosapentaenoic acid (EPA) (23.25%) and docosahexaenoic acid (DHA) (26.06%). On the other hand, cells treated with ABA had highest lipid content suitable for the biodiesel applications. The determination of ROS markers, antioxidant enzymes, and fatty acid biosynthesis genes after plant hormones treatment helped elucidate the mechanism underlying the improvement in biomass, lipid content and omega-3 fatty acids. All four plant hormones upregulated the fatty acid biosynthesis genes, whereas IAA particularly increased omega-3-fatty acids as a result of the upregulation of omega-3 fatty acid desaturase. CONCLUSIONS The contents of omega-3 fatty acids, the clinically important compounds, were considerably improved in IAA-treated cells. The highest lipid content obtained from ABA-treated biomass can be used for biodiesel application according to its biodiesel properties. The EPA and DHA enriched ethyl esters are an approved form of omega-3 fatty acids by US Food and Drug Administration (FDA) which can be utilized as the therapeutic treatment for the severe hypertriglyceridemia.
Collapse
Affiliation(s)
- Ramachandran Sivaramakrishnan
- Laboratory of Cyanobacterial Biotechnology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330 Thailand
| | - Aran Incharoensakdi
- Laboratory of Cyanobacterial Biotechnology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330 Thailand
- Academy of Science, Royal Society of Thailand, Bangkok, 10300 Thailand
| |
Collapse
|
36
|
Effect of phytohormones from different classes on gene expression of Chlorella sorokiniana under nitrogen limitation for enhanced biomass and lipid production. ALGAL RES 2019. [DOI: 10.1016/j.algal.2019.101518] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
37
|
Abstract
Microalgae are attracting the interest of agrochemical industries and farmers, due to their biostimulant and biofertiliser properties. Microalgal biostimulants (MBS) and biofertilisers (MBF) might be used in crop production to increase agricultural sustainability. Biostimulants are products derived from organic material that, applied in small quantities, are able to stimulate the growth and development of several crops under both optimal and stressful conditions. Biofertilisers are products containing living microorganisms or natural substances that are able to improve chemical and biological soil properties, stimulating plant growth, and restoring soil fertility. This review is aimed at reporting developments in the processing of MBS and MBF, summarising the biologically-active compounds, and examining the researches supporting the use of MBS and MBF for managing productivity and abiotic stresses in crop productions. Microalgae are used in agriculture in different applications, such as amendment, foliar application, and seed priming. MBS and MBF might be applied as an alternative technique, or used in conjunction with synthetic fertilisers, crop protection products and plant growth regulators, generating multiple benefits, such as enhanced rooting, higher crop yields and quality and tolerance to drought and salt. Worldwide, MBS and MBF remain largely unexploited, such that this study highlights some of the current researches and future development priorities.
Collapse
|
38
|
Xin Y, Shen C, She Y, Chen H, Wang C, Wei L, Yoon K, Han D, Hu Q, Xu J. Biosynthesis of Triacylglycerol Molecules with a Tailored PUFA Profile in Industrial Microalgae. MOLECULAR PLANT 2019; 12:474-488. [PMID: 30580039 DOI: 10.1016/j.molp.2018.12.007] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 11/29/2018] [Accepted: 12/13/2018] [Indexed: 05/06/2023]
Abstract
The composition of polyunsaturated fatty acids (PUFAs) in triacylglycerols (TAGs) is key to health benefits and for oil applications, yet the underlying genetic mechanism remains poorly understood. In this study, by in silico, ex vivo, and in vivo profiling of type-2 diacylglycerol acyltransferases (DGAT2s) in Nannochloropsis oceanica we revealed two novel PUFA-preferring enzymes that discriminate individual PUFA species in TAG assembly, with NoDGAT2J for linoleic acid (LA) and NoDGAT2K for eicosapentaenoic acid (EPA). The LA and EPA composition of TAG molecules is mediated in vivo via the functional partitioning between NoDGAT2J and 2K, both of which are localized in the chloroplast envelope. By modulating transcript abundance of the DGAT2s, an N. oceanica strain bank was created, where proportions of LA and EPA in TAG vary by 18.7-fold (between 0.21% and 3.92% dry weight) and 34.7-fold (between 0.09% and 3.12% dry weight), respectively. These findings lay the foundation for producing designer TAG molecules with tailored health benefits or for biofuel applications in industrial microalgae and higher-plant crops.
Collapse
Affiliation(s)
- Yi Xin
- Single-Cell Center, CAS Key Laboratory of Biofuels and Shandong Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong 266237, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chen Shen
- Single-Cell Center, CAS Key Laboratory of Biofuels and Shandong Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong 266237, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yiting She
- Single-Cell Center, CAS Key Laboratory of Biofuels and Shandong Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong 266237, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hong Chen
- Center for Microalgal Biotechnology and Biofuels, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China
| | - Cong Wang
- Core Laboratory, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
| | - Li Wei
- Single-Cell Center, CAS Key Laboratory of Biofuels and Shandong Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong 266237, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kangsup Yoon
- Center for Microalgal Biotechnology and Biofuels, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China
| | - Danxiang Han
- Center for Microalgal Biotechnology and Biofuels, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China
| | - Qiang Hu
- Center for Microalgal Biotechnology and Biofuels, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong 266237, China
| | - Jian Xu
- Single-Cell Center, CAS Key Laboratory of Biofuels and Shandong Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong 266237, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
39
|
Zhao Y, Wang HP, Han B, Yu X. Coupling of abiotic stresses and phytohormones for the production of lipids and high-value by-products by microalgae: A review. BIORESOURCE TECHNOLOGY 2019; 274:549-556. [PMID: 30558833 DOI: 10.1016/j.biortech.2018.12.030] [Citation(s) in RCA: 133] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 12/07/2018] [Accepted: 12/09/2018] [Indexed: 05/03/2023]
Abstract
Microalgae can produce lipids and high-value by-products under abiotic stress conditions, including nutrient starvation, high light intensity, extreme temperature, high salinity and the presence of heavy metals. However, the growth and development of microalgae and the accumulation of metabolites may be inhibited by adverse stresses. In recent years, phytohormones have emerged as a topic of intense focus in microalgae research. Phytohormones could sustain the growth of microalgae under abiotic stress conditions. In addition, the combination of plant hormones and abiotic stresses could further promote the biosynthesis of metabolites and improve the ability of microalgae to tolerate abiotic stresses. This review primarily focuses on the regulatory effects of exogenous phytohormones on the biosynthesis of metabolites by microalgae under adverse environmental conditions and discusses the mechanisms of phytohormone-mediated cell growth, stress tolerance and lipid biosynthesis in microalgae under abiotic stress conditions.
Collapse
Affiliation(s)
- Yongteng Zhao
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Hui-Ping Wang
- Children's Hospital Affiliated to Kunming Medical University, Kunming 650228, China
| | - Benyong Han
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Xuya Yu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China.
| |
Collapse
|
40
|
Bowman JL, Briginshaw LN, Fisher TJ, Flores-Sandoval E. Something ancient and something neofunctionalized-evolution of land plant hormone signaling pathways. CURRENT OPINION IN PLANT BIOLOGY 2019; 47:64-72. [PMID: 30339930 DOI: 10.1016/j.pbi.2018.09.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 09/13/2018] [Accepted: 09/25/2018] [Indexed: 06/08/2023]
Abstract
The evolution of land plants from a charophycean algal ancestor was accompanied by an increased diversity of regulatory networks, including signaling pathways mediating cellular communication within plants and between plants and the environment. Canonical land plant hormone signaling pathways were originally identified in angiosperms, and comparative studies in basal taxa show that they have been assembled from both ancient and newly evolved components, both before and during land plant evolution. In this review we present our current understanding, and highlight several uncertainties, of the evolution of hormone signaling pathways, focusing on the biosynthetic pathways generating putative ligands and the downstream perception and signaling pathways often leading to transcriptional responses.
Collapse
Affiliation(s)
- John L Bowman
- School of Biological Sciences, Monash University, Clayton, Melbourne, VIC 3800, Australia.
| | - Liam N Briginshaw
- School of Biological Sciences, Monash University, Clayton, Melbourne, VIC 3800, Australia
| | - Tom J Fisher
- School of Biological Sciences, Monash University, Clayton, Melbourne, VIC 3800, Australia
| | | |
Collapse
|
41
|
Song X, Wang J, Wang Y, Feng Y, Cui Q, Lu Y. Artificial creation of Chlorella pyrenoidosa mutants for economic sustainable food production. BIORESOURCE TECHNOLOGY 2018; 268:340-345. [PMID: 30096641 DOI: 10.1016/j.biortech.2018.08.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 08/02/2018] [Accepted: 08/03/2018] [Indexed: 06/08/2023]
Abstract
To improve the economic viability of Chlorella as feedstock for food commodities, a serial of concentrations of low-cost sweet sorghum juice (SSJ), alternative to glucose, were used for the fermentation of Chlorella pyrenoidosa. A high biomass and protein production (8.91 g L-1 biomass and 4.52 g L-1 protein) was revealed with 20% SSJ. To further increase productivity, heavy-ion irradiation-mediated mutagenesis was employed to create mutants where a strain K05, with desired phenotypes (increased biomass and protein production in pilot-scale fermentation), was screened. Compared with the parental strain, the production of biomass, proteins, and chlorophylls of mutant K05 increased by 11.6%, 31.8%, and 7.6%, respectively. Production capacities under industrial scale (two-ton) further pinpoint the stability and scalability of mutant K05. These results suggest that advances in cultivation techniques coupled with artificial strain improvement will further promote microalgae as an attractive platform of functional food.
Collapse
Affiliation(s)
- Xiaojin Song
- Shandong Provincial Key Laboratory of Energy Genetics, CAS Key Laboratory of Biofuels, Qingdao Engineering Laboratory of Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, Shandong, China
| | - Jie Wang
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, Gansu, China
| | - Yanchao Wang
- Shandong Provincial Key Laboratory of Energy Genetics, CAS Key Laboratory of Biofuels, Qingdao Engineering Laboratory of Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, Shandong, China
| | - Yingang Feng
- Shandong Provincial Key Laboratory of Energy Genetics, CAS Key Laboratory of Biofuels, Qingdao Engineering Laboratory of Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, Shandong, China
| | - Qiu Cui
- Shandong Provincial Key Laboratory of Energy Genetics, CAS Key Laboratory of Biofuels, Qingdao Engineering Laboratory of Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, Shandong, China
| | - Yandu Lu
- State Key Laboratory of Marine Resource Utilization in South China Sea, College of Oceanology, Hainan University, Haikou 570228, Hainan Province, China.
| |
Collapse
|
42
|
Sun XM, Ren LJ, Zhao QY, Ji XJ, Huang H. Microalgae for the production of lipid and carotenoids: a review with focus on stress regulation and adaptation. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:272. [PMID: 30305845 PMCID: PMC6171298 DOI: 10.1186/s13068-018-1275-9] [Citation(s) in RCA: 173] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 09/26/2018] [Indexed: 05/04/2023]
Abstract
Microalgae have drawn great attention as promising sustainable source of lipids and carotenoids. Their lipid and carotenoids accumulation machinery can be trigged by the stress conditions such as nutrient limitation or exposure to the damaging physical factors. However, stressful conditions often adversely affect microalgal growth and cause oxidative damage to the cells, which can eventually reduce the yield of the desired products. To overcome these limitations, two-stage cultivation strategies and supplementation of growth-promoting agents have traditionally been utilized, but developing new highly adapted strains is theoretically the simplest strategy. In addition to genetic engineering, adaptive laboratory evolution (ALE) is frequently used to develop beneficial phenotypes in industrial microorganisms during long-term selection under specific stress conditions. In recent years, many studies have gradually introduced ALE as a powerful tool to improve the biological properties of microalgae, especially for improving the production of lipid and carotenoids. In this review, strategies for the manipulation of stress in microalgal lipids and carotenoids production are summarized and discussed. Furthermore, this review summarizes the overall state of ALE technology, including available selection pressures, methods, and their applications in microalgae for the improved production of lipids and carotenoids.
Collapse
Affiliation(s)
- Xiao-Man Sun
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing, 211816 People’s Republic of China
| | - Lu-Jing Ren
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing, 211816 People’s Republic of China
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing, People’s Republic of China
| | - Quan-Yu Zhao
- School of Pharmaceutical Sciences, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing, 211816 People’s Republic of China
| | - Xiao-Jun Ji
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing, 211816 People’s Republic of China
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing, People’s Republic of China
| | - He Huang
- School of Pharmaceutical Sciences, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing, 211816 People’s Republic of China
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, No. 5 Xinmofan Road, Nanjing, 210009 People’s Republic of China
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing, People’s Republic of China
| |
Collapse
|
43
|
Zhao Y, Li D, Xu JW, Zhao P, Li T, Ma H, Yu X. Melatonin enhances lipid production in Monoraphidium sp. QLY-1 under nitrogen deficiency conditions via a multi-level mechanism. BIORESOURCE TECHNOLOGY 2018. [PMID: 29536873 DOI: 10.1016/j.biortech.2018.03.014] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
In this study, melatonin (MT) promoted lipid accumulation in Monoraphidium sp. QLY-1 under nitrogen deficiency conditions. The lipid accumulation increased 1.22- and 1.36-fold compared with a nitrogen-starved medium and a normal BG-11 medium, respectively. The maximum lipid content was 51.38%. The reactive oxygen species (ROS) level in the presence of melatonin was lower than that in the control group, likely because of the high antioxidant activities. The application of melatonin upregulated the gibberellin acid (GA) production and rbcL and accD expression levels but downregulated the abscisic acid (ABA) content and pepc expression levels. These findings demonstrated that exogenous melatonin could further improve the lipid production in Monoraphidium sp. QLY-1 by regulating antioxidant systems, signalling molecules, and lipid biosynthesis-related gene expression under nitrogen deficiency conditions.
Collapse
Affiliation(s)
- Yongteng Zhao
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Dafei Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Jun-Wei Xu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Peng Zhao
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Tao Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Huixian Ma
- School of Foreign Languages, Kunming University, Kunming 650200, China
| | - Xuya Yu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China.
| |
Collapse
|
44
|
Rational Discovery of (+) (S) Abscisic Acid as a Potential Antifungal Agent: a Repurposing Approach. Sci Rep 2018; 8:8565. [PMID: 29867091 PMCID: PMC5986790 DOI: 10.1038/s41598-018-26998-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 05/14/2018] [Indexed: 12/20/2022] Open
Abstract
Fungal infections are spreading widely worldwide, and the types of treatment are limited due to the lack of diverse therapeutic agents and their associated side effects and toxicity. The discovery of new antifungal classes is vital and critical. We discovered the antifungal activity of abscisic acid through a rational drug design methodology that included the building of homology models for fungal chorismate mutases and a pharmacophore model derived from a transition state inhibitor. Ligand-based virtual screening resulted in some hits that were filtered using molecular docking and molecular dynamic simulations studies. Both in silico methods and in vitro antifungal assays were used as tools to select and validate the abscisic acid repurposing. Abscisic acid inhibition assays confirmed the inhibitory effect of abscisic acid on chorismate mutase through the inhibition of phenylpyruvate production. The repositioning of abscisic acid, the well-known and naturally occurring plant growth regulator, as a potential antifungal agent because of its suggested action as an inhibitor to several fungal chorismate mutases was the main result of this work.
Collapse
|
45
|
Udayan A, Kathiresan S, Arumugam M. Kinetin and Gibberellic acid (GA3) act synergistically to produce high value polyunsaturated fatty acids in Nannochloropsis oceanica CASA CC201. ALGAL RES 2018. [DOI: 10.1016/j.algal.2018.03.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
46
|
Li X, Wang L, Wang S, Yang Q, Zhou Q, Huang X. A preliminary analysis of the effects of bisphenol A on the plant root growth via changes in endogenous plant hormones. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 150:152-158. [PMID: 29274504 DOI: 10.1016/j.ecoenv.2017.12.031] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 11/20/2017] [Accepted: 12/14/2017] [Indexed: 05/12/2023]
Abstract
Bisphenol A (BPA) is ubiquitous in the environment worldwide, affecting plant growth and development. Endogenous plant hormones serve as switches that regulate plant growth and development. However, plants have different physiological requirements and environmental adaptive capacities during the different growth stages. Here, we investigated the effects of BPA on soybean (Glycine max L.) root growth at the three growth stages and analyzed the mechanisms underlying the effects of BPA on the root growth by assessing changes in endogenous hormone. The results showed that low concentration of BPA (1.5mgL-1) improved root growth (except at the seed-filling stage), increased indole-3-acetic acid (IAA) content at the first two growth stages, and increased zeatin (ZT) content and decreased gibberellic acid (GA3) content at the seedling stage. But low concentration of BPA caused decreased ethylene (ETH) contents and constant abscisic acid (ABA) content at all three stages. However, BPA at moderate and high concentrations (6.0 and 12.0mgL-1) inhibited root growth, causing the decreased IAA, GA3 and ETH contents and increased ABA content at all three growth stages. The change degrees of above indices were weakened with prolonging the growth stages. After BPA withdrawal, both the root growth and the hormone contents recovered (with the exception of ZT and ETH), and the recovery degrees had negative correlation with the BPA exposure concentration and had positive correlation with the growth stage. Changes in residual BPA content in the roots were also observed at different BPA concentrations and different growth stages. Our results demonstrated the effects of BPA on root growth were related to BPA-induced changes in hormone, which performed differently at various growth stages.
Collapse
Affiliation(s)
- Xingyi Li
- State Key Laboratory of Food Science and Technology, Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Lihong Wang
- State Key Laboratory of Food Science and Technology, Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Shengman Wang
- State Key Laboratory of Food Science and Technology, Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Qing Yang
- State Key Laboratory of Food Science and Technology, Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biomedical Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210046, China
| | - Qing Zhou
- State Key Laboratory of Food Science and Technology, Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Cooperative Innovation Center of Water Treatment Technology and Materials, Suzhou University of Science and Technology, Suzhou 215009, China.
| | - Xiaohua Huang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biomedical Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210046, China.
| |
Collapse
|
47
|
|
48
|
Wang M, Lee J, Choi B, Park Y, Sim HJ, Kim H, Hwang I. Physiological and Molecular Processes Associated with Long Duration of ABA Treatment. FRONTIERS IN PLANT SCIENCE 2018; 9:176. [PMID: 29515601 PMCID: PMC5826348 DOI: 10.3389/fpls.2018.00176] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 01/30/2018] [Indexed: 05/27/2023]
Abstract
Plants need to respond to various environmental stresses such as abiotic stress for proper development and growth. The responses to abiotic stress can be biochemically demanding, resulting in a trade-off that negatively affects plant growth and development. Thus, plant stress responses must be fine-tuned depending on the stress severity and duration. Abscisic acid, a phytohormone, plays a key role in responses to abiotic stress. Here, we investigated time-dependent physiological and molecular responses to long-term ABA treatment in Arabidopsis as an approach to gain insight into the plant responses to long-term abiotic stress. Upon ABA treatment, the amount of cellular ABA increased to higher levels, reaching to a peak at 24 h after treatment (HAT), and then gradually decreased with time whereas ABA-GE was maintained at lower levels until 24 HAT and then abruptly increased to higher levels at 48 HAT followed by a gradual decline at later time points. Many genes involved in dehydration stress responses, ABA metabolism, chloroplast biogenesis, and chlorophyll degradation were strongly expressed at early time points with a peak at 24 or 48 HAT followed by gradual decreases in induction fold or even suppression at later time points. At the physiological level, long-term ABA treatment caused leaf yellowing, reduced chlorophyll levels, and inhibited chloroplast division in addition to the growth suppression whereas short-term ABA treatment did not affect chlorophyll levels. Our results indicate that the duration of ABA treatment is a crucial factor in determining the mode of ABA-mediated signaling and plant responses: active mobilization of cellular resources at early time points and suppressive responses at later time points.
Collapse
Affiliation(s)
- Mei Wang
- Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Science, Shandong University, Jinan, China
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang, South Korea
| | - Juhun Lee
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang, South Korea
| | - Bongsoo Choi
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang, South Korea
| | - Youngmin Park
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang, South Korea
| | - Hee-Jung Sim
- Center for Genome Engineering, Institute for Basic Science, Daejeon, South Korea
- Environmental Toxicology Research Center, Gyeongnam Department of Environmental Toxicology and Chemistry, Korea Institute of Toxicology, Jinju, South Korea
| | - Hyeran Kim
- Department of Biological Sciences, Kangwon National University, Chuncheon, South Korea
| | - Inhwan Hwang
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang, South Korea
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, South Korea
| |
Collapse
|
49
|
Sun XM, Geng LJ, Ren LJ, Ji XJ, Hao N, Chen KQ, Huang H. Influence of oxygen on the biosynthesis of polyunsaturated fatty acids in microalgae. BIORESOURCE TECHNOLOGY 2018; 250:868-876. [PMID: 29174352 DOI: 10.1016/j.biortech.2017.11.005] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 11/03/2017] [Accepted: 11/05/2017] [Indexed: 05/02/2023]
Abstract
As one of the most important environmental factors, oxygen is particularly important for synthesis of n-3 polyunsaturated fatty acids (n-3 PUFA) in microalgae. In general, a higher oxygen supply is beneficial for cell growth but obstructs PUFA synthesis. The generation of reactive oxygen species (ROS) under aerobic conditions, which leads to the peroxidation of lipids and especially PUFA, is an inevitable aspect of life, but is often ignored in fermentation processes. Irritability, microalgal cells are able to activate a number of anti-oxidative defenses, and the lipid profile of many species is reported to be altered under oxidative stress. In this review, the effects of oxygen on the PUFA synthesis, sources of oxidative damage, and anti-oxidative defense systems of microalgae were summarized and discussed. Moreover, this review summarizes the published reports on microalgal biotechnology involving direct/indirect oxygen regulation and new bioreactor designs that enable the improved production of PUFA.
Collapse
Affiliation(s)
- Xiao-Man Sun
- Jiangsu National Synergetic Innovation Center for Advanced Materials, State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, School of Pharmacy, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Ling-Jun Geng
- Jiangsu National Synergetic Innovation Center for Advanced Materials, State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, School of Pharmacy, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Lu-Jing Ren
- Jiangsu National Synergetic Innovation Center for Advanced Materials, State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, School of Pharmacy, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China.
| | - Xiao-Jun Ji
- Jiangsu National Synergetic Innovation Center for Advanced Materials, State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, School of Pharmacy, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Ning Hao
- Jiangsu National Synergetic Innovation Center for Advanced Materials, State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, School of Pharmacy, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Ke-Quan Chen
- Jiangsu National Synergetic Innovation Center for Advanced Materials, State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, School of Pharmacy, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - He Huang
- Jiangsu National Synergetic Innovation Center for Advanced Materials, State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, School of Pharmacy, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| |
Collapse
|
50
|
Gan Q, Jiang J, Han X, Wang S, Lu Y. Engineering the Chloroplast Genome of Oleaginous Marine Microalga Nannochloropsis oceanica. FRONTIERS IN PLANT SCIENCE 2018; 9:439. [PMID: 29696028 PMCID: PMC5904192 DOI: 10.3389/fpls.2018.00439] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 03/21/2018] [Indexed: 05/21/2023]
Abstract
Plastid engineering offers an important tool to fill the gap between the technical and the enormous potential of microalgal photosynthetic cell factory. However, to date, few reports on plastid engineering in industrial microalgae have been documented. This is largely due to the small cell sizes and complex cell-wall structures which make these species intractable to current plastid transformation methods (i.e., biolistic transformation and polyethylene glycol-mediated transformation). Here, employing the industrial oleaginous microalga Nannochloropsis oceanica as a model, an electroporation-mediated chloroplast transformation approach was established. Fluorescent microscopy and laser confocal scanning microscopy confirmed the expression of the green fluorescence protein, driven by the endogenous plastid promoter and terminator. Zeocin-resistance selection led to an acquisition of homoplasmic strains of which a stable and site-specific recombination within the chloroplast genome was revealed by sequencing and DNA gel blotting. This demonstration of electroporation-mediated chloroplast transformation opens many doors for plastid genome editing in industrial microalgae, particularly species of which the chloroplasts are recalcitrant to chemical and microparticle bombardment transformation.
Collapse
Affiliation(s)
- Qinhua Gan
- State Key Laboratory of Marine Resource Utilization in South China Sea, College of Oceanology, Hainan University, Haikou, China
| | - Jiaoyun Jiang
- State Key Laboratory of Marine Resource Utilization in South China Sea, College of Oceanology, Hainan University, Haikou, China
| | - Xiao Han
- State Key Laboratory of Marine Resource Utilization in South China Sea, College of Oceanology, Hainan University, Haikou, China
| | - Shifan Wang
- State Key Laboratory of Marine Resource Utilization in South China Sea, College of Oceanology, Hainan University, Haikou, China
- Key Laboratory of Tropical Biological Resources, Ministry of Education, Hainan University, Haikou, China
| | - Yandu Lu
- State Key Laboratory of Marine Resource Utilization in South China Sea, College of Oceanology, Hainan University, Haikou, China
- Key Laboratory of Tropical Biological Resources, Ministry of Education, Hainan University, Haikou, China
- *Correspondence: Yandu Lu
| |
Collapse
|