1
|
Collado-Arenal AM, Exposito-Rodriguez M, Mullineaux PM, Olmedilla A, Romero-Puertas MC, Sandalio LM. Cadmium exposure induced light/dark- and time-dependent redox changes at subcellular level in Arabidopsis plants. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135164. [PMID: 39032180 DOI: 10.1016/j.jhazmat.2024.135164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 06/21/2024] [Accepted: 07/08/2024] [Indexed: 07/22/2024]
Abstract
Cadmium (Cd) is one of the most toxic heavy metals for plants and humans. Reactive oxygen species (ROS) are some of the primary signaling molecules produced after Cd treatment in plants but the contribution of different organelles and specific cell types, together with the impact of light is unknown. We used Arabidopsis lines expressing GRX1-roGFP2 (glutaredoxin1-roGFP) targeted to different cell compartments and analysed changes in redox state over 24 h light/dark cycle in Cd-treated leaf discs. We imaged redox state changes in peroxisomes and chloroplasts in leaf tissue. Chloroplasts and peroxisomes were the most affected organelles in the dark and blocking the photosynthetic electron transport chain (pETC) by DCMU (3-(3,4-dichlorophenyl)-1,1-dimethylurea) promotes higher Cd-dependent oxidation in all organelles. Peroxisomes underwent the most rapid changes in redox state in response to Cd and DCMU and silencing chloroplastic NTRC (NADPH thioredoxin reductase C) considerably increases peroxisome oxidation. Total NAD(P)H and cytosolic NADH decreased during exposure to Cd, while Ca+2 content in chloroplasts and cytosol increased in the dark period. Our results demonstrate a Cd-, time- and light-dependent increase of oxidation of all organelles analysed, that could be in part triggered by disturbances in pETC and photorespiration, the decrease of NAD(P)H availability, and differential antioxidants expression at subcellular level.
Collapse
Affiliation(s)
- Aurelio M Collado-Arenal
- Department of Biochemistry and Molecular and Cellular Biology of Plants, Estación Experimental del Zaidín, CSIC, Granada 18008, Spain.
| | | | - Philip M Mullineaux
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, UK.
| | - Adela Olmedilla
- Department of Biochemistry and Molecular and Cellular Biology of Plants, Estación Experimental del Zaidín, CSIC, Granada 18008, Spain.
| | - María C Romero-Puertas
- Department of Biochemistry and Molecular and Cellular Biology of Plants, Estación Experimental del Zaidín, CSIC, Granada 18008, Spain.
| | - Luisa M Sandalio
- Department of Biochemistry and Molecular and Cellular Biology of Plants, Estación Experimental del Zaidín, CSIC, Granada 18008, Spain.
| |
Collapse
|
2
|
Smith K, Strand DD, Walker BJ. Evaluating the contribution of plant metabolic pathways in the light to the ATP:NADPH demand using a meta-analysis of isotopically non-stationary metabolic flux analyses. PHOTOSYNTHESIS RESEARCH 2024; 161:177-189. [PMID: 38874662 PMCID: PMC11324800 DOI: 10.1007/s11120-024-01106-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 06/06/2024] [Indexed: 06/15/2024]
Abstract
Balancing the ATP: NADPH demand from plant metabolism with supply from photosynthesis is essential for preventing photodamage and operating efficiently, so understanding its drivers is important for integrating metabolism with the light reactions of photosynthesis and for bioengineering efforts that may radically change this demand. It is often assumed that the C3 cycle and photorespiration consume the largest amount of ATP and reductant in illuminated leaves and as a result mostly determine the ATP: NADPH demand. However, the quantitative extent to which other energy consuming metabolic processes contribute in large ways to overall ATP: NADPH demand remains unknown. Here, we used the metabolic flux networks of numerous recently published isotopically non-stationary metabolic flux analyses (INST-MFA) to evaluate flux through the C3 cycle, photorespiration, the oxidative pentose phosphate pathway, the tricarboxylic acid cycle, and starch/sucrose synthesis and characterize broad trends in the demand of energy across different pathways and compartments as well as in the overall ATP:NADPH demand. These data sets include a variety of species including Arabidopsis thaliana, Nicotiana tabacum, and Camelina sativa as well as varying environmental factors including high/low light, day length, and photorespiratory levels. Examining these datasets in aggregate reveals that ultimately the bulk of the energy flux occurred in the C3 cycle and photorespiration, however, the energy demand from these pathways did not determine the ATP: NADPH demand alone. Instead, a notable contribution was revealed from starch and sucrose synthesis which might counterbalance photorespiratory demand and result in fewer adjustments in mechanisms which balance the ATP deficit.
Collapse
Affiliation(s)
- Kaila Smith
- Michigan State Unversity - Department of Energy, Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, USA
- Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA
- Plant Biotechnology for Health and Sustainability Program, Michigan State University, East Lansing, MI, 48824, USA
| | - Deserah D Strand
- Michigan State Unversity - Department of Energy, Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, USA
- Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Berkley J Walker
- Michigan State Unversity - Department of Energy, Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, USA.
- Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA.
| |
Collapse
|
3
|
Deng Q, Jiang H, Hu J, Pan R. Identification of Auxiliary Organellar Targeting Signals for Plant Peroxisomes Using Bioinformatic Analysis of Large Protein Sequence Datasets Followed by Experimental Validation. Methods Mol Biol 2024; 2792:265-275. [PMID: 38861094 DOI: 10.1007/978-1-0716-3802-6_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
Eukaryotic cells are compartmentalized by membrane-bounded organelles to ensure that specific biochemical reactions and cellular functions occur in a spatially restricted manner. The subcellular localization of proteins is largely determined by their intrinsic targeting signals, which are mainly constituted by short peptides. A complete organelle targeting signal may contain a core signal (CoreS) as well as auxiliary signals (AuxiS). However, the AuxiS is often not as well characterized as the CoreS. Peroxisomes house many key steps in photorespiration, besides other crucial functions in plants. Peroxisome targeting signal type 1 (PTS1), which is carried by most peroxisome matrix proteins, was initially recognized as a C-terminal tripeptide with a "canonical" consensus of [S/A]-[K/R]-[L/M]. Many studies have shown the existence of auxiliary targeting signals upstream of PTS1, but systematic characterizations are lacking. Here, we designed an analytical strategy to characterize the auxiliary targeting signals for plant peroxisomes using large datasets and statistics followed by experimental validations. This method may also be applied to deciphering the auxiliary targeting signals for other organelles, whose organellar targeting depends on a core peptide with assistance from a nearby auxiliary signal.
Collapse
Affiliation(s)
- Qianwen Deng
- College of Agriculture and Biotechnology & ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, China
- Zhijiang Lab, Hangzhou, China
| | - Hangjin Jiang
- Center for Data Science, Zhejiang University, Hangzhou, China
| | - Jianping Hu
- Michigan State University-Department of Energy Plant Research Laboratory and Plant Biology Department, Michigan State University, East Lansing, MI, USA
| | - Ronghui Pan
- College of Agriculture and Biotechnology & ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, China.
- Zhijiang Lab, Hangzhou, China.
| |
Collapse
|
4
|
Lazár D, Niu Y, Nedbal L. Insights on the regulation of photosynthesis in pea leaves exposed to oscillating light. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:6380-6393. [PMID: 36036782 PMCID: PMC9578350 DOI: 10.1093/jxb/erac283] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 08/26/2022] [Indexed: 06/15/2023]
Abstract
Plants growing in nature often experience fluctuating irradiance. However, in the laboratory, the dynamics of photosynthesis are usually explored by instantaneously exposing dark-adapted plants to constant light and examining the dark-to-light transition, which is a poor approximation of natural phenomena. With the aim creating a better approximation, we exposed leaves of pea (Pisum sativum) to oscillating light and measured changes in the functioning of PSI and PSII, and of the proton motive force at the thylakoid membrane. We found that the dynamics depended on the oscillation period, revealing information about the underlying regulatory networks. As demonstrated for a selected oscillation period of 60 s, the regulation tries to keep the reaction centers of PSI and PSII open. We present an evaluation of the data obtained, and discuss the involvement of particular processes in the regulation of photosynthesis. The forced oscillations provided an information-rich fingerprint of complex regulatory networks. We expect future progress in understanding these networks from experiments involving chemical interventions and plant mutants, and by using mathematical modeling and systems identification and control tools.
Collapse
Affiliation(s)
- Dušan Lazár
- Department of Biophysics, Faculty of Science, Palacký University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Yuxi Niu
- Institute of Bio- and Geosciences/Plant Sciences (IBG-2), Forschungszentrum Jülich, Wilhelm-Johnen-Straße, D-52428 Jülich, Germany
| | - Ladislav Nedbal
- Department of Biophysics, Faculty of Science, Palacký University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| |
Collapse
|
5
|
Theeuwen TPJM, Logie LL, Harbinson J, Aarts MGM. Genetics as a key to improving crop photosynthesis. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:3122-3137. [PMID: 35235648 PMCID: PMC9126732 DOI: 10.1093/jxb/erac076] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 02/23/2022] [Indexed: 05/02/2023]
Abstract
Since the basic biochemical mechanisms of photosynthesis are remarkably conserved among plant species, genetic modification approaches have so far been the main route to improve the photosynthetic performance of crops. Yet, phenotypic variation observed in wild species and between varieties of crop species implies there is standing natural genetic variation for photosynthesis, offering a largely unexplored resource to use for breeding crops with improved photosynthesis and higher yields. The reason this has not yet been explored is that the variation probably involves thousands of genes, each contributing only a little to photosynthesis, making them hard to identify without proper phenotyping and genetic tools. This is changing, though, and increasingly studies report on quantitative trait loci for photosynthetic phenotypes. So far, hardly any of these quantitative trait loci have been used in marker assisted breeding or genomic selection approaches to improve crop photosynthesis and yield, and hardly ever have the underlying causal genes been identified. We propose to take the genetics of photosynthesis to a higher level, and identify the genes and alleles nature has used for millions of years to tune photosynthesis to be in line with local environmental conditions. We will need to determine the physiological function of the genes and alleles, and design novel strategies to use this knowledge to improve crop photosynthesis through conventional plant breeding, based on readily available crop plant germplasm. In this work, we present and discuss the genetic methods needed to reveal natural genetic variation, and elaborate on how to apply this to improve crop photosynthesis.
Collapse
Affiliation(s)
- Tom P J M Theeuwen
- Laboratory of Genetics, Wageningen University & Research, Wageningen, The Netherlands
- Correspondence:
| | - Louise L Logie
- Laboratory of Genetics, Wageningen University & Research, Wageningen, The Netherlands
| | - Jeremy Harbinson
- Biophysics, Wageningen University & Research, Wageningen, The Netherlands
| | - Mark G M Aarts
- Laboratory of Genetics, Wageningen University & Research, Wageningen, The Netherlands
| |
Collapse
|
6
|
Nedbal L, Lazár D. Photosynthesis dynamics and regulation sensed in the frequency domain. PLANT PHYSIOLOGY 2021; 187:646-661. [PMID: 34608969 PMCID: PMC8491066 DOI: 10.1093/plphys/kiab317] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 06/19/2021] [Indexed: 05/20/2023]
Abstract
Foundations of photosynthesis research have been established mainly by studying the response of plants to changing light, typically to sudden exposure to a constant light intensity after dark acclimation or light flashes. This approach remains valid and powerful, but can be limited by requiring dark acclimation before time-domain measurements and often assumes that rate constants determining the photosynthetic response do not change between dark and light acclimation. We show that these limits can be overcome by measuring plant responses to sinusoidally modulated light of varying frequency. By its nature, such frequency-domain characterization is performed in light-acclimated plants with no need for prior dark acclimation. Amplitudes, phase shifts, and upper harmonic modulation extracted from the data for a wide range of frequencies can target different kinetic domains and regulatory feedbacks. The occurrence of upper harmonic modulation reflects nonlinear phenomena, including photosynthetic regulation. To support these claims, we measured chlorophyll fluorescence emission of the green alga Chlorella sorokiniana in light that was sinusoidally modulated in the frequency range 1000-0.001 Hz. Based on these experimental data and numerical as well as analytical mathematical models, we propose that frequency-domain measurements can become a versatile tool in plant sensing.
Collapse
Affiliation(s)
- Ladislav Nedbal
- Institute of Bio- and Geosciences/Plant Sciences (IBG-2), Forschungszentrum Jülich, Wilhelm-Johnen-Straße, D-52428 Jülich, Germany
- Author for communication:
| | - Dušan Lazár
- Department of Biophysics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| |
Collapse
|
7
|
Chadee A, Alber NA, Dahal K, Vanlerberghe GC. The Complementary Roles of Chloroplast Cyclic Electron Transport and Mitochondrial Alternative Oxidase to Ensure Photosynthetic Performance. FRONTIERS IN PLANT SCIENCE 2021; 12:748204. [PMID: 34650584 PMCID: PMC8505746 DOI: 10.3389/fpls.2021.748204] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 08/30/2021] [Indexed: 05/29/2023]
Abstract
Chloroplasts use light energy and a linear electron transport (LET) pathway for the coupled generation of NADPH and ATP. It is widely accepted that the production ratio of ATP to NADPH is usually less than required to fulfill the energetic needs of the chloroplast. Left uncorrected, this would quickly result in an over-reduction of the stromal pyridine nucleotide pool (i.e., high NADPH/NADP+ ratio) and under-energization of the stromal adenine nucleotide pool (i.e., low ATP/ADP ratio). These imbalances could cause metabolic bottlenecks, as well as increased generation of damaging reactive oxygen species. Chloroplast cyclic electron transport (CET) and the chloroplast malate valve could each act to prevent stromal over-reduction, albeit in distinct ways. CET avoids the NADPH production associated with LET, while the malate valve consumes the NADPH associated with LET. CET could operate by one of two different pathways, depending upon the chloroplast ATP demand. The NADH dehydrogenase-like pathway yields a higher ATP return per electron flux than the pathway involving PROTON GRADIENT REGULATION5 (PGR5) and PGR5-LIKE PHOTOSYNTHETIC PHENOTYPE1 (PGRL1). Similarly, the malate valve could couple with one of two different mitochondrial electron transport pathways, depending upon the cytosolic ATP demand. The cytochrome pathway yields a higher ATP return per electron flux than the alternative oxidase (AOX) pathway. In both Arabidopsis thaliana and Chlamydomonas reinhardtii, PGR5/PGRL1 pathway mutants have increased amounts of AOX, suggesting complementary roles for these two lesser-ATP yielding mechanisms of preventing stromal over-reduction. These two pathways may become most relevant under environmental stress conditions that lower the ATP demands for carbon fixation and carbohydrate export.
Collapse
Affiliation(s)
- Avesh Chadee
- Department of Biological Sciences, and Department of Cell and Systems Biology, University of Toronto Scarborough, Toronto, ON, Canada
| | - Nicole A. Alber
- Department of Biological Sciences, and Department of Cell and Systems Biology, University of Toronto Scarborough, Toronto, ON, Canada
| | - Keshav Dahal
- Fredericton Research and Development Centre, Agriculture and Agri-Food Canada, Fredericton, NB, Canada
| | - Greg C. Vanlerberghe
- Department of Biological Sciences, and Department of Cell and Systems Biology, University of Toronto Scarborough, Toronto, ON, Canada
| |
Collapse
|
8
|
Osei-Bonsu I, McClain AM, Walker BJ, Sharkey TD, Kramer DM. The roles of photorespiration and alternative electron acceptors in the responses of photosynthesis to elevated temperatures in cowpea. PLANT, CELL & ENVIRONMENT 2021; 44:2290-2307. [PMID: 33555066 PMCID: PMC11176259 DOI: 10.1111/pce.14026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 11/13/2020] [Accepted: 11/20/2020] [Indexed: 05/02/2023]
Abstract
We explored the effects, on photosynthesis in cowpea (Vigna unguiculata) seedlings, of high temperature and light-environmental stresses that often co-occur under field conditions and can have greater impact on photosynthesis than either by itself. We observed contrasting responses in the light and carbon assimilatory reactions, whereby in high temperature, the light reactions were stimulated while CO2 assimilation was substantially reduced. There were two striking observations. Firstly, the primary quinone acceptor (QA ), a measure of the regulatory balance of the light reactions, became more oxidized with increasing temperature, suggesting increased electron sink capacity, despite the reduced CO2 fixation. Secondly, a strong, O2 -dependent inactivation of assimilation capacity, consistent with down-regulation of rubisco under these conditions. The dependence of these effects on CO2 , O2 and light led us to conclude that both photorespiration and an alternative electron acceptor supported increased electron flow, and thus provided photoprotection under these conditions. Further experiments showed that the increased electron flow was maintained by rapid rates of PSII repair, particularly at combined high light and temperature. Overall, the results suggest that photodamage to the light reactions can be avoided under high light and temperatures by increasing electron sink strength, even when assimilation is strongly suppressed.
Collapse
Affiliation(s)
- Isaac Osei-Bonsu
- Department of Plant Biology, Michigan State University, East Lansing, Michigan, USA
- DOE-Plant Research Laboratory, Michigan State University, East Lansing, Michigan, USA
- Horticulture Division, CSIR-Crops Research Institute, Kumasi, Ghana
| | - Alan M McClain
- DOE-Plant Research Laboratory, Michigan State University, East Lansing, Michigan, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA
| | - Berkley J Walker
- Department of Plant Biology, Michigan State University, East Lansing, Michigan, USA
- DOE-Plant Research Laboratory, Michigan State University, East Lansing, Michigan, USA
| | - Thomas D Sharkey
- DOE-Plant Research Laboratory, Michigan State University, East Lansing, Michigan, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA
| | - David M Kramer
- DOE-Plant Research Laboratory, Michigan State University, East Lansing, Michigan, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
9
|
Sharkey TD. Pentose Phosphate Pathway Reactions in Photosynthesizing Cells. Cells 2021; 10:cells10061547. [PMID: 34207480 PMCID: PMC8234502 DOI: 10.3390/cells10061547] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 06/11/2021] [Accepted: 06/11/2021] [Indexed: 12/14/2022] Open
Abstract
The pentose phosphate pathway (PPP) is divided into an oxidative branch that makes pentose phosphates and a non-oxidative branch that consumes pentose phosphates, though the non-oxidative branch is considered reversible. A modified version of the non-oxidative branch is a critical component of the Calvin–Benson cycle that converts CO2 into sugar. The reaction sequence in the Calvin–Benson cycle is from triose phosphates to pentose phosphates, the opposite of the typical direction of the non-oxidative PPP. The photosynthetic direction is favored by replacing the transaldolase step of the normal non-oxidative PPP with a second aldolase reaction plus sedoheptulose-1,7-bisphosphatase. This can be considered an anabolic version of the non-oxidative PPP and is found in a few situations other than photosynthesis. In addition to the strong association of the non-oxidative PPP with photosynthesis metabolism, there is recent evidence that the oxidative PPP reactions are also important in photosynthesizing cells. These reactions can form a shunt around the non-oxidative PPP section of the Calvin–Benson cycle, consuming three ATP per glucose 6-phosphate consumed. A constitutive operation of this shunt occurs in the cytosol and gives rise to an unusual labeling pattern of photosynthetic metabolites while an inducible shunt in the stroma may occur in response to stress.
Collapse
Affiliation(s)
- Thomas D Sharkey
- MSU-DOE Plant Research Laboratory, Plant Resilience Institute, Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48823, USA
| |
Collapse
|
10
|
Sandalio LM, Peláez-Vico MA, Molina-Moya E, Romero-Puertas MC. Peroxisomes as redox-signaling nodes in intracellular communication and stress responses. PLANT PHYSIOLOGY 2021; 186:22-35. [PMID: 33587125 PMCID: PMC8154099 DOI: 10.1093/plphys/kiab060] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 01/22/2021] [Indexed: 05/05/2023]
Abstract
Peroxisomes are redox nodes playing a diverse range of roles in cell functionality and in the perception of and responses to changes in their environment.
Collapse
Affiliation(s)
- Luisa M Sandalio
- Department of Biochemistry, Cellular and Molecular Biology of Plants, Estación Experimental del Zaidín-CSIC, Profesor Albareda 1, 18008 Granada, Spain
- Author for communication:
| | - Maria Angeles Peláez-Vico
- Department of Biochemistry, Cellular and Molecular Biology of Plants, Estación Experimental del Zaidín-CSIC, Profesor Albareda 1, 18008 Granada, Spain
| | - Eliana Molina-Moya
- Department of Biochemistry, Cellular and Molecular Biology of Plants, Estación Experimental del Zaidín-CSIC, Profesor Albareda 1, 18008 Granada, Spain
| | - Maria C Romero-Puertas
- Department of Biochemistry, Cellular and Molecular Biology of Plants, Estación Experimental del Zaidín-CSIC, Profesor Albareda 1, 18008 Granada, Spain
| |
Collapse
|
11
|
Kuhnert F, Schlüter U, Linka N, Eisenhut M. Transport Proteins Enabling Plant Photorespiratory Metabolism. PLANTS 2021; 10:plants10050880. [PMID: 33925393 PMCID: PMC8146403 DOI: 10.3390/plants10050880] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/19/2021] [Accepted: 04/20/2021] [Indexed: 01/21/2023]
Abstract
Photorespiration (PR) is a metabolic repair pathway that acts in oxygenic photosynthetic organisms to degrade a toxic product of oxygen fixation generated by the enzyme ribulose 1,5-bisphosphate carboxylase/oxygenase. Within the metabolic pathway, energy is consumed and carbon dioxide released. Consequently, PR is seen as a wasteful process making it a promising target for engineering to enhance plant productivity. Transport and channel proteins connect the organelles accomplishing the PR pathway-chloroplast, peroxisome, and mitochondrion-and thus enable efficient flux of PR metabolites. Although the pathway and the enzymes catalyzing the biochemical reactions have been the focus of research for the last several decades, the knowledge about transport proteins involved in PR is still limited. This review presents a timely state of knowledge with regard to metabolite channeling in PR and the participating proteins. The significance of transporters for implementation of synthetic bypasses to PR is highlighted. As an excursion, the physiological contribution of transport proteins that are involved in C4 metabolism is discussed.
Collapse
|
12
|
Emerging research in plant photosynthesis. Emerg Top Life Sci 2020; 4:137-150. [PMID: 32573736 DOI: 10.1042/etls20200035] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/03/2020] [Accepted: 06/05/2020] [Indexed: 12/27/2022]
Abstract
Photosynthesis involves capturing light energy and, most often, converting it to chemical energy stored as reduced carbon. It is the source of food, fuel, and fiber and there is a resurgent interest in basic research on photosynthesis. Plants make excellent use of visible light energy; leaves are ideally suited to optimize light use by having a large area per amount of material invested and also having leaf angles to optimize light utilization. It is thought that plants do not use green light but in fact they use green light better than blue light under some conditions. Leaves also have mechanisms to protect against excess light and how these work in a stochastic light environment is currently a very active area of current research. The speed at which photosynthesis can begin when leaves are first exposed to light and the speed of induction of protective mechanisms, as well as the speed at which protective mechanisms dissipate when light levels decline, have recently been explored. Research is also focused on reducing wasteful processes such as photorespiration, when oxygen instead of carbon dioxide is used. Some success has been reported in altering the path of carbon in photorespiration but on closer inspection there appears to be unforeseen effects contributing to the good news. The stoichiometry of interaction of light reactions with carbon metabolism is rigid and the time constants vary tremendously presenting large challenges to regulatory mechanisms. Regulatory mechanisms will be the topic of photosynthesis research for some time to come.
Collapse
|
13
|
Casiraghi FM, Landi M, Donnini S, Borlotti A, Zocchi G, Guidi L, Vigani G. Modulation of photorespiration and nitrogen recycling in Fe-deficient cucumber leaves. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 154:142-150. [PMID: 32559518 DOI: 10.1016/j.plaphy.2020.05.032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/25/2020] [Accepted: 05/25/2020] [Indexed: 06/11/2023]
Abstract
Low Fe availability affects plant production mainly by impairing the photosynthetic pathway, since Fe plays an essential role in chlorophyll synthesis as well as in the photosynthetic electron transport chain. Under these conditions, plant cells require the activation of protective mechanisms to prevent photo-inhibition. Among these mechanisms, photorespiration (PR) has been relatively little investigated in Fe-deficient plants. The aim of this work was to investigate the effect of Fe deficiency on photorespiration by performing in vivo analysis in leaves as well as biochemical characterization of some PR-related enzyme activities in a peroxisome-purified fraction from cucumber leaves. Modelling of light response curves at both 21 and 2% pO2 revealed a slowing down of PR under Fe deficiency. The activity of some PR-involving enzymes as well as the contents of glycine and serine were affected under Fe deficiency. Furthermore, nitrate reductase, the glutamine synthetase-glutamate synthase (GS-GOGAT) cycle and hydroxypyruvate dehydrogenase isoform activities were differentially altered under Fe deficiency. The dataset indicates that, in Fe-deficient cucumber leaves, the modulation of PR involves the induction of some PR-related pathways, such as the photorespiratory N recycling and cytosolic photorespiratory bypass processes.
Collapse
Affiliation(s)
- Fabio M Casiraghi
- Dipartimento di Scienze Agrarie e Ambientali - Produzione, Territorio, Agroenergia - Università Degli Studi di Milano, Italy
| | - Marco Landi
- Dipartimento di Scienze Agrarie, Alimentari e Agro-Ambientali, Università di Pisa, Italy
| | - Silvia Donnini
- Dipartimento di Scienze Agrarie e Ambientali - Produzione, Territorio, Agroenergia - Università Degli Studi di Milano, Italy
| | - Andrea Borlotti
- Dipartimento di Scienze Agrarie e Ambientali - Produzione, Territorio, Agroenergia - Università Degli Studi di Milano, Italy
| | - Graziano Zocchi
- Dipartimento di Scienze Agrarie e Ambientali - Produzione, Territorio, Agroenergia - Università Degli Studi di Milano, Italy
| | - Lucia Guidi
- Dipartimento di Scienze Agrarie, Alimentari e Agro-Ambientali, Università di Pisa, Italy
| | - Gianpiero Vigani
- Dipartimento di Scienze Della Vita e Biologia Dei Sistemi, Università Degli Studi di Torino, Italy.
| |
Collapse
|
14
|
Peroxisomal Cofactor Transport. Biomolecules 2020; 10:biom10081174. [PMID: 32806597 PMCID: PMC7463629 DOI: 10.3390/biom10081174] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/05/2020] [Accepted: 08/07/2020] [Indexed: 12/20/2022] Open
Abstract
Peroxisomes are eukaryotic organelles that are essential for growth and development. They are highly metabolically active and house many biochemical reactions, including lipid metabolism and synthesis of signaling molecules. Most of these metabolic pathways are shared with other compartments, such as Endoplasmic reticulum (ER), mitochondria, and plastids. Peroxisomes, in common with all other cellular organelles are dependent on a wide range of cofactors, such as adenosine 5′-triphosphate (ATP), Coenzyme A (CoA), and nicotinamide adenine dinucleotide (NAD). The availability of the peroxisomal cofactor pool controls peroxisome function. The levels of these cofactors available for peroxisomal metabolism is determined by the balance between synthesis, import, export, binding, and degradation. Since the final steps of cofactor synthesis are thought to be located in the cytosol, cofactors must be imported into peroxisomes. This review gives an overview about our current knowledge of the permeability of the peroxisomal membrane with the focus on ATP, CoA, and NAD. Several members of the mitochondrial carrier family are located in peroxisomes, catalyzing the transfer of these organic cofactors across the peroxisomal membrane. Most of the functions of these peroxisomal cofactor transporters are known from studies in yeast, humans, and plants. Parallels and differences between the transporters in the different organisms are discussed here.
Collapse
|
15
|
Pan R, Liu J, Wang S, Hu J. Peroxisomes: versatile organelles with diverse roles in plants. THE NEW PHYTOLOGIST 2020; 225:1410-1427. [PMID: 31442305 DOI: 10.1111/nph.16134] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 08/08/2019] [Indexed: 05/18/2023]
Abstract
Peroxisomes are small, ubiquitous organelles that are delimited by a single membrane and lack genetic material. However, these simple-structured organelles are highly versatile in morphology, abundance and protein content in response to various developmental and environmental cues. In plants, peroxisomes are essential for growth and development and perform diverse metabolic functions, many of which are carried out coordinately by peroxisomes and other organelles physically interacting with peroxisomes. Recent studies have added greatly to our knowledge of peroxisomes, addressing areas such as the diverse proteome, regulation of division and protein import, pexophagy, matrix protein degradation, solute transport, signaling, redox homeostasis and various metabolic and physiological functions. This review summarizes our current understanding of plant peroxisomes, focusing on recent discoveries. Current problems and future efforts required to better understand these organelles are also discussed. An improved understanding of peroxisomes will be important not only to the understanding of eukaryotic cell biology and metabolism, but also to agricultural efforts aimed at improving crop performance and defense.
Collapse
Affiliation(s)
- Ronghui Pan
- Seed Science Center, Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Jun Liu
- Seed Science Center, Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Saisai Wang
- Seed Science Center, Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Jianping Hu
- MSU-Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, USA
- Plant Biology Department, Michigan State University, East Lansing, MI, 48824, USA
| |
Collapse
|
16
|
Charton L, Plett A, Linka N. Plant peroxisomal solute transporter proteins. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2019; 61:817-835. [PMID: 30761734 PMCID: PMC6767901 DOI: 10.1111/jipb.12790] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 02/11/2019] [Indexed: 05/18/2023]
Abstract
Plant peroxisomes are unique subcellular organelles which play an indispensable role in several key metabolic pathways, including fatty acid β-oxidation, photorespiration, and degradation of reactive oxygen species. The compartmentalization of metabolic pathways into peroxisomes is a strategy for organizing the metabolic network and improving pathway efficiency. An important prerequisite, however, is the exchange of metabolites between peroxisomes and other cell compartments. Since the first studies in the 1970s scientists contributed to understanding how solutes enter or leave this organelle. This review gives an overview about our current knowledge of the solute permeability of peroxisomal membranes described in plants, yeast, mammals and other eukaryotes. In general, peroxisomes contain in their bilayer membrane specific transporters for hydrophobic fatty acids (ABC transporter) and large cofactor molecules (carrier for ATP, NAD and CoA). Smaller solutes with molecular masses below 300-400 Da, like the organic acids malate, oxaloacetate, and 2-oxoglutarate, are shuttled via non-selective channels across the peroxisomal membrane. In comparison to yeast, human, mammals and other eukaryotes, the function of these known peroxisomal transporters and channels in plants are discussed in this review.
Collapse
Affiliation(s)
- Lennart Charton
- Institute for Plant Biochemistry and Cluster of Excellence on Plant Sciences (CEPLAS)Heinrich Heine UniversityUniversitätsstrasse 140225 DüsseldorfGermany
| | - Anastasija Plett
- Institute for Plant Biochemistry and Cluster of Excellence on Plant Sciences (CEPLAS)Heinrich Heine UniversityUniversitätsstrasse 140225 DüsseldorfGermany
| | - Nicole Linka
- Institute for Plant Biochemistry and Cluster of Excellence on Plant Sciences (CEPLAS)Heinrich Heine UniversityUniversitätsstrasse 140225 DüsseldorfGermany
| |
Collapse
|