1
|
Liu JJ, Sniezko RA, Houston S, Krakowski J, Alger G, Benowicz A, Sissons R, Zamany A, Williams H, Kegley A, Rancourt B. Genome-Wide Association Study Reveals Polygenic Architecture for Limber Pine Quantitative Disease Resistance to White Pine Blister Rust. PHYTOPATHOLOGY 2024; 114:1626-1636. [PMID: 38489164 DOI: 10.1094/phyto-09-23-0338-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/17/2024]
Abstract
Development of durable resistance effective against a broad range of pathotypes is crucial for restoration of pathogen-damaged ecosystems. This study dissected the complex genetic architecture for limber pine quantitative disease resistance (QDR) to Cronartium ribicola using a genome-wide association study. Eighteen-month-old seedlings were inoculated for resistance screening under controlled conditions. Disease development was quantitatively assessed for QDR-related traits over 4 years postinoculation. To reveal the genomic architecture contributing to QDR-related traits, a set of genes related to disease resistance with genome-wide distribution was selected for targeted sequencing for genotyping of single-nucleotide polymorphisms (SNPs). The genome-wide association study revealed a set of SNPs significantly associated with quantitative traits for limber pine QDR to white pine blister rust, including number of needle spots and stem cankers, as well as survival 4 years postinoculation. The peaks of marker-trait associations displayed a polygenic pattern, with genomic regions as potential resistant quantitative trait loci, distributed over 10 of the 12 linkage groups (LGs) of Pinus. None of them was linked to the Cr4-controlled major gene resistance previously mapped on LG08. Both normal canker and bole infection were mapped on LG05, and the associated SNPs explained their phenotypic variance up to 52%, tagging a major resistant quantitative trait locus. Candidate genes containing phenotypically associated SNPs encoded putative nucleotide-binding site leucine-rich repeat proteins, leucine-rich repeat-receptor-like kinase, cytochrome P450 superfamily protein, heat shock cognate protein 70, glutamate receptor, RNA-binding family protein, and unknown protein. The confirmation of resistant quantitative trait loci broadens the genetic pool of limber pine resistance germplasm for resistance breeding.
Collapse
Affiliation(s)
- Jun-Jun Liu
- Natural Resources Canada, Canadian Forest Service, Pacific Forestry Centre, 506 West Burnside Road, Victoria, BC V8Z 1M5, Canada
| | - Richard A Sniezko
- U.S. Department of Agriculture Forest Service, Dorena Genetic Resource Center, 34963 Shoreview Drive, Cottage Grove, OR 97424, U.S.A
| | - Sydney Houston
- Natural Resources Canada, Canadian Forest Service, Pacific Forestry Centre, 506 West Burnside Road, Victoria, BC V8Z 1M5, Canada
| | - Jodie Krakowski
- Independent Consultant, Box 774, Coleman, AB, T0K 0M0, Canada
| | - Genoa Alger
- Parks Canada, Waterton Lakes National Park, Alberta, T0K 2M0, Canada
| | - Andy Benowicz
- Alberta Forestry and Parks, Government of Alberta, Edmonton, T6H 5T6, Canada
| | - Robert Sissons
- Parks Canada, Waterton Lakes National Park, Alberta, T0K 2M0, Canada
| | - Arezoo Zamany
- Natural Resources Canada, Canadian Forest Service, Pacific Forestry Centre, 506 West Burnside Road, Victoria, BC V8Z 1M5, Canada
| | - Holly Williams
- Natural Resources Canada, Canadian Forest Service, Pacific Forestry Centre, 506 West Burnside Road, Victoria, BC V8Z 1M5, Canada
| | - Angelia Kegley
- U.S. Department of Agriculture Forest Service, Dorena Genetic Resource Center, 34963 Shoreview Drive, Cottage Grove, OR 97424, U.S.A
| | - Benjamin Rancourt
- Natural Resources Canada, Canadian Forest Service, Pacific Forestry Centre, 506 West Burnside Road, Victoria, BC V8Z 1M5, Canada
| |
Collapse
|
2
|
Woudstra Y, Tumas H, van Ghelder C, Hung TH, Ilska JJ, Girardi S, A’Hara S, McLean P, Cottrell J, Bohlmann J, Bousquet J, Birol I, Woolliams JA, MacKay JJ. Conifers Concentrate Large Numbers of NLR Immune Receptor Genes on One Chromosome. Genome Biol Evol 2024; 16:evae113. [PMID: 38787537 PMCID: PMC11171428 DOI: 10.1093/gbe/evae113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 04/23/2024] [Accepted: 05/21/2024] [Indexed: 05/25/2024] Open
Abstract
Nucleotide-binding domain and leucine-rich repeat (NLR) immune receptor genes form a major line of defense in plants, acting in both pathogen recognition and resistance machinery activation. NLRs are reported to form large gene clusters in limber pine (Pinus flexilis), but it is unknown how widespread this genomic architecture may be among the extant species of conifers (Pinophyta). We used comparative genomic analyses to assess patterns in the abundance, diversity, and genomic distribution of NLR genes. Chromosome-level whole genome assemblies and high-density linkage maps in the Pinaceae, Cupressaceae, Taxaceae, and other gymnosperms were scanned for NLR genes using existing and customized pipelines. The discovered genes were mapped across chromosomes and linkage groups and analyzed phylogenetically for evolutionary history. Conifer genomes are characterized by dense clusters of NLR genes, highly localized on one chromosome. These clusters are rich in TNL-encoding genes, which seem to have formed through multiple tandem duplication events. In contrast to angiosperms and nonconiferous gymnosperms, genomic clustering of NLR genes is ubiquitous in conifers. NLR-dense genomic regions are likely to influence a large part of the plant's resistance, informing our understanding of adaptation to biotic stress and the development of genetic resources through breeding.
Collapse
Affiliation(s)
| | - Hayley Tumas
- Department of Biology, University of Oxford, Oxford OX1 3RB, UK
| | - Cyril van Ghelder
- INRAE, Université Côte d’Azur, CNRS, ISA, Sophia Antipolis 06903, France
| | - Tin Hang Hung
- Department of Biology, University of Oxford, Oxford OX1 3RB, UK
| | - Joana J Ilska
- The Roslin Institute, Royal (Dick) School of Veterinary Science, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK
| | - Sebastien Girardi
- Canada Research Chair in Forest Genomics, Forest Research Centre, Université Laval, Québec, QC, Canada G1V 0A6
- Institute for Systems and Integrative Biology, Université Laval, Québec, QC, Canada GIV 0A6
| | - Stuart A’Hara
- Forest Research, Northern Research Station, Roslin, Midlothian EH25 9SY, UK
| | - Paul McLean
- Forest Research, Northern Research Station, Roslin, Midlothian EH25 9SY, UK
| | - Joan Cottrell
- Forest Research, Northern Research Station, Roslin, Midlothian EH25 9SY, UK
| | - Joerg Bohlmann
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada V6T 1Z4
| | - Jean Bousquet
- Canada Research Chair in Forest Genomics, Forest Research Centre, Université Laval, Québec, QC, Canada G1V 0A6
| | - Inanc Birol
- Canada's Michael Smith Genome Sciences Centre, Vancouver, BC, Canada V5Z 4S6
| | - John A Woolliams
- The Roslin Institute, Royal (Dick) School of Veterinary Science, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK
| | - John J MacKay
- Department of Biology, University of Oxford, Oxford OX1 3RB, UK
| |
Collapse
|
3
|
Tumas H, Ilska JJ, Gérardi S, Laroche J, A’Hara S, Boyle B, Janes M, McLean P, Lopez G, Lee SJ, Cottrell J, Gorjanc G, Bousquet J, Woolliams JA, MacKay JJ. High-density genetic linkage mapping in Sitka spruce advances the integration of genomic resources in conifers. G3 (BETHESDA, MD.) 2024; 14:jkae020. [PMID: 38366548 PMCID: PMC10989875 DOI: 10.1093/g3journal/jkae020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 01/03/2024] [Indexed: 02/18/2024]
Abstract
In species with large and complex genomes such as conifers, dense linkage maps are a useful resource for supporting genome assembly and laying the genomic groundwork at the structural, populational, and functional levels. However, most of the 600+ extant conifer species still lack extensive genotyping resources, which hampers the development of high-density linkage maps. In this study, we developed a linkage map relying on 21,570 single nucleotide polymorphism (SNP) markers in Sitka spruce (Picea sitchensis [Bong.] Carr.), a long-lived conifer from western North America that is widely planted for productive forestry in the British Isles. We used a single-step mapping approach to efficiently combine RAD-seq and genotyping array SNP data for 528 individuals from 2 full-sib families. As expected for spruce taxa, the saturated map contained 12 linkages groups with a total length of 2,142 cM. The positioning of 5,414 unique gene coding sequences allowed us to compare our map with that of other Pinaceae species, which provided evidence for high levels of synteny and gene order conservation in this family. We then developed an integrated map for P. sitchensis and Picea glauca based on 27,052 markers and 11,609 gene sequences. Altogether, these 2 linkage maps, the accompanying catalog of 286,159 SNPs and the genotyping chip developed, herein, open new perspectives for a variety of fundamental and more applied research objectives, such as for the improvement of spruce genome assemblies, or for marker-assisted sustainable management of genetic resources in Sitka spruce and related species.
Collapse
Affiliation(s)
- Hayley Tumas
- Department of Biology, University of Oxford, Oxford OX1 3RB, UK
| | - Joana J Ilska
- The Roslin Institute, Royal (Dick) School of Veterinary Science, University of Edinburgh, Midlothian EH25 9RG, UK
| | - Sebastien Gérardi
- Canada Research Chair in Forest Genomics, Forest Research Centre, Université Laval, Québec, QC GIV 0A6, Canada
- Institute for Systems and Integrative Biology, Université Laval, Québec, QC GIV 0A6, Canada
| | - Jerome Laroche
- Institute for Systems and Integrative Biology, Université Laval, Québec, QC GIV 0A6, Canada
| | - Stuart A’Hara
- Forest Research, Northern Research Station, Midlothian EH25 9SY, UK
| | - Brian Boyle
- Institute for Systems and Integrative Biology, Université Laval, Québec, QC GIV 0A6, Canada
| | - Mateja Janes
- The Roslin Institute, Royal (Dick) School of Veterinary Science, University of Edinburgh, Midlothian EH25 9RG, UK
| | - Paul McLean
- Forest Research, Northern Research Station, Midlothian EH25 9SY, UK
| | - Gustavo Lopez
- Forest Research, Northern Research Station, Midlothian EH25 9SY, UK
| | - Steve J Lee
- Forest Research, Northern Research Station, Midlothian EH25 9SY, UK
| | - Joan Cottrell
- Forest Research, Northern Research Station, Midlothian EH25 9SY, UK
| | - Gregor Gorjanc
- The Roslin Institute, Royal (Dick) School of Veterinary Science, University of Edinburgh, Midlothian EH25 9RG, UK
| | - Jean Bousquet
- Canada Research Chair in Forest Genomics, Forest Research Centre, Université Laval, Québec, QC GIV 0A6, Canada
- Institute for Systems and Integrative Biology, Université Laval, Québec, QC GIV 0A6, Canada
| | - John A Woolliams
- The Roslin Institute, Royal (Dick) School of Veterinary Science, University of Edinburgh, Midlothian EH25 9RG, UK
| | - John J MacKay
- Department of Biology, University of Oxford, Oxford OX1 3RB, UK
| |
Collapse
|
4
|
Simões ASB, Borges MM, Grazina L, Nunes J. Stone Pine ( Pinus pinea L.) High-Added-Value Genetics: An Overview. Genes (Basel) 2024; 15:84. [PMID: 38254973 PMCID: PMC10815827 DOI: 10.3390/genes15010084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/05/2024] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
Stone pine (Pinus pinea L.) has received limited attention in terms of genetic research. However, genomic techniques hold promise for decoding the stone pine genome and contributing to developing a more resilient bioeconomy. Retrotransposon and specific genetic markers are effective tools for determining population-specific genomic diversity. Studies on the transcriptome and proteome have identified differentially expressed genes PAS1, CLV1, ATAF1, and ACBF involved in shoot bud formation. The stone pine proteome shows variation among populations and shows the industrial potential of the enzyme pinosylvin. Microsatellite studies have revealed low levels of polymorphism and a unique genetic diversity in stone pine, which may contribute to its environmental adaptation. Transcriptomic and proteomic analyses uncover the genetic and molecular responses of stone pine to fungal infections and nematode infestations, elucidating the defense activation, gene regulation, and the potential role of terpenes in pathogen resistance. Transcriptomics associated with carbohydrate metabolism, dehydrins, and transcription factors show promise as targets for improving stone pine's drought stress response and water retention capabilities. Stone pine presents itself as an important model tree for studying climate change adaptation due to its characteristics. While knowledge gaps exist, stone pine's genetic resources hold significant potential, and ongoing advancements in techniques offer prospects for future exploration.
Collapse
Affiliation(s)
- Ana Sofia B. Simões
- Association BLC3–Technology and Innovation Campus, Centre Bio R&D Unit, Rua Nossa Senhora da Conceição 2, Lagares da Beira, 3405-155 Oliveira do Hospital, Portugal; (M.M.B.); (L.G.); (J.N.)
| | - Margarida Machado Borges
- Association BLC3–Technology and Innovation Campus, Centre Bio R&D Unit, Rua Nossa Senhora da Conceição 2, Lagares da Beira, 3405-155 Oliveira do Hospital, Portugal; (M.M.B.); (L.G.); (J.N.)
| | - Liliana Grazina
- Association BLC3–Technology and Innovation Campus, Centre Bio R&D Unit, Rua Nossa Senhora da Conceição 2, Lagares da Beira, 3405-155 Oliveira do Hospital, Portugal; (M.M.B.); (L.G.); (J.N.)
| | - João Nunes
- Association BLC3–Technology and Innovation Campus, Centre Bio R&D Unit, Rua Nossa Senhora da Conceição 2, Lagares da Beira, 3405-155 Oliveira do Hospital, Portugal; (M.M.B.); (L.G.); (J.N.)
- BLC3 Evolution Lda, 3405-155 Oliveira do Hospital, Portugal
| |
Collapse
|
5
|
Liu JJ, Schoettle AW, Sniezko RA, Waring KM, Williams H, Zamany A, Johnson JS, Kegley A. Comparative Association Mapping Reveals Conservation of Major Gene Resistance to White Pine Blister Rust in Southwestern White Pine ( Pinus strobiformis) and Limber Pine ( P. flexilis). PHYTOPATHOLOGY 2022; 112:1093-1102. [PMID: 34732078 DOI: 10.1094/phyto-09-21-0382-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
All native North American white pines are highly susceptible to white pine blister rust (WPBR) caused by Cronartium ribicola. Understanding genomic diversity and molecular mechanisms underlying genetic resistance to WPBR remains one of the great challenges in improvement of white pines. To compare major gene resistance (MGR) present in two species, southwestern white pine (Pinus strobiformis) Cr3 and limber pine (P. flexilis) Cr4, we performed association analyses of Cr3-controlled resistant traits using single nucleotide polymorphism (SNP) assays designed with Cr4-linked polymorphic genes. We found that ∼70% of P. flexilis SNPs were transferable to P. strobiformis. Furthermore, several Cr4-linked SNPs were significantly associated with the Cr3-controlled traits in P. strobiformis families. The most significantly associated SNP (M326511_1126R) almost colocalized with Cr4 on the Pinus consensus linkage group 8, suggesting that Cr3 and Cr4 might be the same R locus, or have localizations very close to each other in the syntenic region of the P. strobiformis and P. flexilis genomes. M326511_1126R was identified as a nonsynonymous SNP, causing amino acid change (Val376Ile) in a putative pectin acetylesterase, with coding sequences identical between the two species. Moreover, top Cr3-associated SNPs were further developed as TaqMan genotyping assays, suggesting their usefulness as marker-assisted selection (MAS) tools to distinguish genotypes between quantitative resistance and MGR. This work demonstrates the successful transferability of SNP markers between two closely related white pine species in the hybrid zone, and the possibility for deployment of MAS tools to facilitate long-term WPBR management in P. strobiformis breeding and conservation.
Collapse
Affiliation(s)
- Jun-Jun Liu
- Canadian Forest Service, Natural Resources Canada, Victoria, British Columbia V8Z 1M5, Canada
| | - Anna W Schoettle
- Rocky Mountain Research Station, Forest Service, U.S. Department of Agriculture, Fort Collins, CO 80526, U.S.A
| | - Richard A Sniezko
- Dorena Genetic Resource Center, Forest Service, U.S. Department of Agriculture, Cottage Grove, OR 97424, U.S.A
| | - Kristen M Waring
- School of Forestry, Northern Arizona University, Flagstaff, AZ 86011-5018, U.S.A
| | - Holly Williams
- Canadian Forest Service, Natural Resources Canada, Victoria, British Columbia V8Z 1M5, Canada
| | - Arezoo Zamany
- Canadian Forest Service, Natural Resources Canada, Victoria, British Columbia V8Z 1M5, Canada
| | - Jeremy S Johnson
- Dorena Genetic Resource Center, Forest Service, U.S. Department of Agriculture, Cottage Grove, OR 97424, U.S.A
- School of Forestry, Northern Arizona University, Flagstaff, AZ 86011-5018, U.S.A
| | - Angelia Kegley
- Dorena Genetic Resource Center, Forest Service, U.S. Department of Agriculture, Cottage Grove, OR 97424, U.S.A
| |
Collapse
|
6
|
Development and Validation of a 36K SNP Array for Radiata Pine (Pinus radiata D.Don). FORESTS 2022. [DOI: 10.3390/f13020176] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Radiata pine (Pinus radiata D.Don) is one of the world’s most domesticated pines and a key economic species in New Zealand. Thus, the development of genomic resources for radiata pine has been a high priority for both research and commercial breeding. Leveraging off a previously developed exome capture panel, we tested the performance of 438,744 single nucleotide polymorphisms (SNPs) on a screening array (NZPRAD01) and then selected 36,285 SNPs for a final genotyping array (NZPRAD02). These SNPs aligned to 15,372 scaffolds from the Pinus taeda L. v. 1.01e assembly, and 20,039 contigs from the radiata pine transcriptome assembly. The genotyping array was tested on more than 8000 samples, including material from archival progenitors, current breeding trials, nursery material, clonal lines, and material from Australia. Our analyses indicate that the array is performing well, with sample call rates greater than 98% and a sample reproducibility of 99.9%. Genotyping in two linkage mapping families indicated that the SNPs are well distributed across the 12 linkage groups. Using genotypic data from this array, we were also able to differentiate representatives of the five recognized provenances of radiata pine, Año Nuevo, Monterey, Cambria, Cedros and Guadalupe. Furthermore, principal component analysis of genotyped trees revealed clear patterns of population structure, with the primary axis of variation driven by provenance ancestry and the secondary axis reflecting breeding activities. This represents the first commercial use of genomics in a radiata pine breeding program.
Collapse
|
7
|
Wu T, Yu L, Zhang Y, Liu J. Characterization of fatty acid desaturases reveals stress-induced synthesis of C18 unsaturated fatty acids enriched in triacylglycerol in the oleaginous alga Chromochloris zofingiensis. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:184. [PMID: 34535156 PMCID: PMC8447527 DOI: 10.1186/s13068-021-02037-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 09/07/2021] [Indexed: 05/16/2023]
Abstract
BACKGROUND The green microalga Chromochloris zofingiensis is capable of producing high levels of triacylglycerol rich in C18 unsaturated fatty acids (UFAs). FA desaturation degree is regulated by FA desaturases (FADs). Nevertheless, it remains largely unknown regarding what FADs are involved in FA desaturations and how these FADs collaborate to contribute to the high abundance of C18 UFAs in triacylglycerol in C. zofingiensis. RESULTS To address these issues, we firstly determined the transcription start sites of 11 putative membrane-bound FAD-coding genes (CzFADs) and updated their gene models. Functional validation of these CzFADs in yeast and cyanobacterial cells revealed that seven are bona fide FAD enzymes with distinct substrates. Combining the validated functions and predicted subcellular compartments of CzFADs and the FA profiles of C. zofingiensis, the FA desaturation pathways in this alga were reconstructed. Furthermore, a multifaceted lipidomic analysis by systematically integrating thin-layer chromatography, gas chromatography-mass spectrometry and liquid chromatography-mass spectrometry techniques was conducted, unraveling profiles of polar membrane lipids in C. zofingiensis and major desaturation steps occurring in these lipids. By correlating transcriptional patterns of CzFAD genes and changes of lipids upon abiotic stress conditions, our results highlighted collaboration of CzFADs for C18 UFA synthesis and supported that both de novo FA synthesis and membrane lipid remodeling contributed C18 UFAs to triacylglycerol for storage. CONCLUSIONS Taken together, our study for the first time elucidated the pathways of C18 FA desaturations and comprehensive profiles of polar membrane lipids in C. zofingiensis and shed light on collaboration of CzFADs for the synthesis and enrichment of C18 UFAs in triacylglycerol.
Collapse
Affiliation(s)
- Tao Wu
- Laboratory for Algae Biotechnology & Innovation, College of Engineering, Peking University, Beijing, 100871 China
| | - Lihua Yu
- Laboratory for Algae Biotechnology & Innovation, College of Engineering, Peking University, Beijing, 100871 China
| | - Yu Zhang
- Laboratory for Algae Biotechnology & Innovation, College of Engineering, Peking University, Beijing, 100871 China
| | - Jin Liu
- Laboratory for Algae Biotechnology & Innovation, College of Engineering, Peking University, Beijing, 100871 China
| |
Collapse
|
8
|
Liu JJ, Schoettle AW, Sniezko RA, Williams H, Zamany A, Rancourt B. Fine dissection of limber pine resistance to Cronartium ribicola using targeted sequencing of the NLR family. BMC Genomics 2021; 22:567. [PMID: 34294045 PMCID: PMC8299668 DOI: 10.1186/s12864-021-07885-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 06/29/2021] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Proteins with nucleotide binding site (NBS) and leucine-rich repeat (LRR) domains (NLR) make up one of most important resistance (R) families for plants to resist attacks from various pathogens and pests. The available transcriptomes of limber pine (Pinus flexilis) allow us to characterize NLR genes and related resistance gene analogs (RGAs) in host resistance against Cronartium ribicola, the causal fungal pathogen of white pine blister rust (WPBR) on five-needle pines throughout the world. We previously mapped a limber pine major gene locus (Cr4) that confers complete resistance to C. ribicola on the Pinus consensus linkage group 8 (LG-8). However, genetic distribution of NLR genes as well as their divergence between resistant and susceptible alleles are still unknown. RESULTS To identify NLR genes at the Cr4 locus, the present study re-sequenced a total of 480 RGAs using targeted sequencing in a Cr4-segregated seed family. Following a call of single nucleotide polymorphisms (SNPs) and genetic mapping, a total of 541 SNPs from 155 genes were mapped across 12 LGs. Three putative NLR genes were newly mapped in the Cr4 region, including one that co-segregated with Cr4. The tight linkage of NLRs with Cr4-controlled phenotypes was further confirmed by bulked segregation analysis (BSA) using extreme-phenotype genome-wide association study (XP-GWAS) for significance test. Local tandem duplication in the Cr4 region was further supported by syntenic analysis using the sugar pine genome sequence. Significant gene divergences have been observed in the NLR family, revealing that diversifying selection pressures are relatively higher in local duplicated genes. Most genes showed similar expression patterns at low levels, but some were affected by genetic background related to disease resistance. Evidence from fine genetic dissection, evolutionary analysis, and expression profiling suggests that two NLR genes are the most promising candidates for Cr4 against WPBR. CONCLUSION This study provides fundamental insights into genetic architecture of the Cr4 locus as well as a set of NLR variants for marker-assisted selection in limber pine breeding. Novel NLR genes were identified at the Cr4 locus and the Cr4 candidates will aid deployment of this R gene in combination with other major/minor genes in the limber pine breeding program.
Collapse
Affiliation(s)
- Jun-Jun Liu
- Canadian Forest Service, Natural Resources Canada, 506 West Burnside Road, Victoria, BC V8Z 1M5 Canada
| | - Anna W. Schoettle
- USDA Forest Service, Rocky Mountain Research Station, 240 West Prospect Road, Fort Collins, CO 80526 USA
| | - Richard A. Sniezko
- USDA Forest Service, Dorena Genetic Resource Center, 34963 Shoreview Road, Cottage Grove, Oregon, 97424 USA
| | - Holly Williams
- Canadian Forest Service, Natural Resources Canada, 506 West Burnside Road, Victoria, BC V8Z 1M5 Canada
| | - Arezoo Zamany
- Canadian Forest Service, Natural Resources Canada, 506 West Burnside Road, Victoria, BC V8Z 1M5 Canada
| | - Benjamin Rancourt
- Canadian Forest Service, Natural Resources Canada, 506 West Burnside Road, Victoria, BC V8Z 1M5 Canada
| |
Collapse
|
9
|
Lovell JT, Bentley NB, Bhattarai G, Jenkins JW, Sreedasyam A, Alarcon Y, Bock C, Boston LB, Carlson J, Cervantes K, Clermont K, Duke S, Krom N, Kubenka K, Mamidi S, Mattison CP, Monteros MJ, Pisani C, Plott C, Rajasekar S, Rhein HS, Rohla C, Song M, Hilaire RS, Shu S, Wells L, Webber J, Heerema RJ, Klein PE, Conner P, Wang X, Grauke LJ, Grimwood J, Schmutz J, Randall JJ. Four chromosome scale genomes and a pan-genome annotation to accelerate pecan tree breeding. Nat Commun 2021; 12:4125. [PMID: 34226565 PMCID: PMC8257795 DOI: 10.1038/s41467-021-24328-w] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 06/07/2021] [Indexed: 02/06/2023] Open
Abstract
Genome-enabled biotechnologies have the potential to accelerate breeding efforts in long-lived perennial crop species. Despite the transformative potential of molecular tools in pecan and other outcrossing tree species, highly heterozygous genomes, significant presence-absence gene content variation, and histories of interspecific hybridization have constrained breeding efforts. To overcome these challenges, here, we present diploid genome assemblies and annotations of four outbred pecan genotypes, including a PacBio HiFi chromosome-scale assembly of both haplotypes of the 'Pawnee' cultivar. Comparative analysis and pan-genome integration reveal substantial and likely adaptive interspecific genomic introgressions, including an over-retained haplotype introgressed from bitternut hickory into pecan breeding pedigrees. Further, by leveraging our pan-genome presence-absence and functional annotation database among genomes and within the two outbred haplotypes of the 'Lakota' genome, we identify candidate genes for pest and pathogen resistance. Combined, these analyses and resources highlight significant progress towards functional and quantitative genomics in highly diverse and outbred crops.
Collapse
Affiliation(s)
- John T. Lovell
- grid.417691.c0000 0004 0408 3720Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL USA
| | - Nolan B. Bentley
- grid.264756.40000 0004 4687 2082Department of Horticultural Science, Texas A&M University, College Station, TX USA
| | - Gaurab Bhattarai
- grid.213876.90000 0004 1936 738XInstitute of Plant Breeding, Genetics & Genomics, University of Georgia, Athens, GA USA
| | - Jerry W. Jenkins
- grid.417691.c0000 0004 0408 3720Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL USA
| | - Avinash Sreedasyam
- grid.417691.c0000 0004 0408 3720Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL USA
| | - Yanina Alarcon
- grid.419447.b0000 0004 0370 5663Noble Research Institute, Ardmore, OK USA
| | - Clive Bock
- USDA Southeastern Fruit and Tree Nut Research Laboratory, Byron, GA USA
| | - Lori Beth Boston
- grid.417691.c0000 0004 0408 3720Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL USA
| | - Joseph Carlson
- grid.451309.a0000 0004 0449 479XDOE Joint Genome Institute, Berkeley, CA USA
| | - Kimberly Cervantes
- grid.24805.3b0000 0001 0687 2182Department of Entomology, Plant Pathology and Weed Science, New Mexico State University, Las Cruces, NM USA
| | - Kristen Clermont
- grid.507314.4USDA-ARS Food Processing and Sensory Quality Research, New Orleans, LA USA
| | - Sara Duke
- USDA-ARS Plains Area Administrative Office, College Station, TX USA
| | - Nick Krom
- grid.419447.b0000 0004 0370 5663Noble Research Institute, Ardmore, OK USA
| | - Keith Kubenka
- USDA Pecan Breeding and Genetics, College Station, TX USA
| | - Sujan Mamidi
- grid.417691.c0000 0004 0408 3720Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL USA
| | | | - Maria J. Monteros
- grid.419447.b0000 0004 0370 5663Noble Research Institute, Ardmore, OK USA
| | - Cristina Pisani
- USDA Southeastern Fruit and Tree Nut Research Laboratory, Byron, GA USA
| | - Christopher Plott
- grid.417691.c0000 0004 0408 3720Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL USA
| | - Shanmugam Rajasekar
- grid.134563.60000 0001 2168 186XArizona Genomics Institute, University of Arizona, Tucson, AZ USA
| | - Hormat Shadgou Rhein
- grid.24805.3b0000 0001 0687 2182Department of Entomology, Plant Pathology and Weed Science, New Mexico State University, Las Cruces, NM USA
| | - Charles Rohla
- grid.419447.b0000 0004 0370 5663Noble Research Institute, Ardmore, OK USA
| | - Mingzhou Song
- grid.24805.3b0000 0001 0687 2182Department of Computer Science, New Mexico State University, Las Cruces, NM USA
| | - Rolston St. Hilaire
- grid.24805.3b0000 0001 0687 2182Plant and Environmental Sciences, New Mexico State University, Las Cruces, NM USA
| | - Shengqiang Shu
- grid.451309.a0000 0004 0449 479XDOE Joint Genome Institute, Berkeley, CA USA
| | - Lenny Wells
- grid.213876.90000 0004 1936 738XDepartment of Horticulture, University of Georgia-Tifton Campus, Tifton, GA USA
| | - Jenell Webber
- grid.417691.c0000 0004 0408 3720Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL USA
| | - Richard J. Heerema
- grid.24805.3b0000 0001 0687 2182Department of Computer Science, New Mexico State University, Las Cruces, NM USA
| | - Patricia E. Klein
- grid.264756.40000 0004 4687 2082Department of Horticultural Science, Texas A&M University, College Station, TX USA
| | - Patrick Conner
- grid.213876.90000 0004 1936 738XDepartment of Horticulture, University of Georgia-Tifton Campus, Tifton, GA USA
| | - Xinwang Wang
- USDA Pecan Breeding and Genetics, College Station, TX USA
| | - L. J. Grauke
- USDA Pecan Breeding and Genetics, College Station, TX USA
| | - Jane Grimwood
- grid.417691.c0000 0004 0408 3720Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL USA
| | - Jeremy Schmutz
- grid.417691.c0000 0004 0408 3720Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL USA ,grid.451309.a0000 0004 0449 479XDOE Joint Genome Institute, Berkeley, CA USA
| | - Jennifer J. Randall
- grid.24805.3b0000 0001 0687 2182Department of Entomology, Plant Pathology and Weed Science, New Mexico State University, Las Cruces, NM USA
| |
Collapse
|
10
|
Zhang Y, Ye Y, Bai F, Liu J. The oleaginous astaxanthin-producing alga Chromochloris zofingiensis: potential from production to an emerging model for studying lipid metabolism and carotenogenesis. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:119. [PMID: 33992124 PMCID: PMC8126118 DOI: 10.1186/s13068-021-01969-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 05/07/2021] [Indexed: 05/05/2023]
Abstract
The algal lipids-based biodiesel, albeit having advantages over plant oils, still remains high in the production cost. Co-production of value-added products with lipids has the potential to add benefits and is thus believed to be a promising strategy to improve the production economics of algal biodiesel. Chromochloris zofingiensis, a unicellular green alga, has been considered as a promising feedstock for biodiesel production because of its robust growth and ability of accumulating high levels of triacylglycerol under multiple trophic conditions. This alga is also able to synthesize high-value keto-carotenoids and has been cited as a candidate producer of astaxanthin, the strongest antioxidant found in nature. The concurrent accumulation of triacylglycerol and astaxanthin enables C. zofingiensis an ideal cell factory for integrated production of the two compounds and has potential to improve algae-based production economics. Furthermore, with the advent of chromosome-level whole genome sequence and genetic tools, C. zofingiensis becomes an emerging model for studying lipid metabolism and carotenogenesis. In this review, we summarize recent progress on the production of triacylglycerol and astaxanthin by C. zofingiensis. We also update our understanding in the distinctive molecular mechanisms underlying lipid metabolism and carotenogenesis, with an emphasis on triacylglycerol and astaxanthin biosynthesis and crosstalk between the two pathways. Furthermore, strategies for trait improvements are discussed regarding triacylglycerol and astaxanthin synthesis in C. zofingiensis.
Collapse
Affiliation(s)
- Yu Zhang
- Laboratory for Algae Biotechnology and Innovation, College of Engineering, Peking University, Beijing, 100871, China
| | - Ying Ye
- Laboratory for Algae Biotechnology and Innovation, College of Engineering, Peking University, Beijing, 100871, China
| | - Fan Bai
- Laboratory for Algae Biotechnology and Innovation, College of Engineering, Peking University, Beijing, 100871, China
| | - Jin Liu
- Laboratory for Algae Biotechnology and Innovation, College of Engineering, Peking University, Beijing, 100871, China.
| |
Collapse
|
11
|
Xing G, Li J, Li W, Lam SM, Yuan H, Shui G, Yang J. AP2/ERF and R2R3-MYB family transcription factors: potential associations between temperature stress and lipid metabolism in Auxenochlorella protothecoides. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:22. [PMID: 33451355 PMCID: PMC7811268 DOI: 10.1186/s13068-021-01881-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 01/08/2021] [Indexed: 05/09/2023]
Abstract
BACKGROUND Both APETALA2/Ethylene Responsive Factor (AP2/ERF) superfamily and R2R3-MYB family were from one of the largest diverse families of transcription factors (TFs) in plants, and played important roles in plant development and responses to various stresses. However, no systematic analysis of these TFs had been conducted in the green algae A. protothecoides heretofore. Temperature was a critical factor affecting growth and lipid metabolism of A. protothecoides. It also remained largely unknown whether these TFs would respond to temperature stress and be involved in controlling lipid metabolism process. RESULTS Hereby, a total of six AP2 TFs, six ERF TFs and six R2R3-MYB TFs were identified and their expression profiles were also analyzed under low-temperature (LT) and high-temperature (HT) stresses. Meanwhile, differential adjustments of lipid pathways were triggered, with enhanced triacylglycerol accumulation. A co-expression network was built between these 18 TFs and 32 lipid-metabolism-related genes, suggesting intrinsic associations between TFs and the regulatory mechanism of lipid metabolism. CONCLUSIONS This study represented an important first step towards identifying functions and roles of AP2 superfamily and R2R3-MYB family in lipid adjustments and response to temperature stress. These findings would facilitate the biotechnological development in microalgae-based biofuel production and the better understanding of photosynthetic organisms' adaptive mechanism to temperature stress.
Collapse
Affiliation(s)
- Guanlan Xing
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193 China
| | - Jinyu Li
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193 China
| | - Wenli Li
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193 China
| | - Sin Man Lam
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101 China
| | - Hongli Yuan
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193 China
| | - Guanghou Shui
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Jinshui Yang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193 China
| |
Collapse
|
12
|
Abstract
The giant sequoia (Sequoiadendron giganteum) of California are massive, long-lived trees that grow along the U.S. Sierra Nevada mountains. Genomic data are limited in giant sequoia and producing a reference genome sequence has been an important goal to allow marker development for restoration and management. Using deep-coverage Illumina and Oxford Nanopore sequencing, combined with Dovetail chromosome conformation capture libraries, the genome was assembled into eleven chromosome-scale scaffolds containing 8.125 Gbp of sequence. Iso-Seq transcripts, assembled from three distinct tissues, was used as evidence to annotate a total of 41,632 protein-coding genes. The genome was found to contain, distributed unevenly across all 11 chromosomes and in 63 orthogroups, over 900 complete or partial predicted NLR genes, of which 375 are supported by annotation derived from protein evidence and gene modeling. This giant sequoia reference genome sequence represents the first genome sequenced in the Cupressaceae family, and lays a foundation for using genomic tools to aid in giant sequoia conservation and management.
Collapse
|
13
|
Liu JJ, Sniezko RA, Sissons R, Krakowski J, Alger G, Schoettle AW, Williams H, Zamany A, Zitomer RA, Kegley A. Association Mapping and Development of Marker-Assisted Selection Tools for the Resistance to White Pine Blister Rust in the Alberta Limber Pine Populations. FRONTIERS IN PLANT SCIENCE 2020; 11:557672. [PMID: 33042181 PMCID: PMC7522202 DOI: 10.3389/fpls.2020.557672] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 08/25/2020] [Indexed: 06/11/2023]
Abstract
Since its introduction to North America in the early 1900s, white pine blister rust (WPBR) caused by the fungal pathogen Cronartium ribicola has resulted in substantial economic losses and ecological damage to native North American five-needle pine species. The high susceptibility and mortality of these species, including limber pine (Pinus flexilis), creates an urgent need for the development and deployment of resistant germplasm to support recovery of impacted populations. Extensive screening for genetic resistance to WPBR has been underway for decades in some species but has only started recently in limber pine using seed families collected from wild parental trees in the USA and Canada. This study was conducted to characterize Alberta limber pine seed families for WPBR resistance and to develop reliable molecular tools for marker-assisted selection (MAS). Open-pollinated seed families were evaluated for host reaction following controlled infection using C. ribicola basidiospores. Phenotypic segregation for presence/absence of stem symptoms was observed in four seed families. The segregation ratios of these families were consistent with expression of major gene resistance (MGR) controlled by a dominant R locus. Based on linkage disequilibrium (LD)-based association mapping used to detect single nucleotide polymorphism (SNP) markers associated with MGR against C. ribicola, MGR in these seed families appears to be controlled by Cr4 or other R genes in very close proximity to Cr4. These associated SNPs were located in genes involved in multiple molecular mechanisms potentially underlying limber pine MGR to C. ribicola, including NBS-LRR genes for recognition of C. ribicola effectors, signaling components, and a large set of defense-responsive genes with potential functions in plant effector-triggered immunity (ETI). Interactions of associated loci were identified for MGR selection in trees with complex genetic backgrounds. SNPs with tight Cr4-linkage were further converted to TaqMan assays to confirm their effectiveness as MAS tools. This work demonstrates the successful translation and deployment of molecular genetic knowledge into specific MAS tools that can be easily applied in a selection or breeding program to efficiently screen MGR against WPBR in Alberta limber pine populations.
Collapse
Affiliation(s)
- Jun-Jun Liu
- Canadian Forest Service, Natural Resources Canada, Victoria, BC, Canada
| | - Richard A. Sniezko
- USDA Forest Service, Dorena Genetic Resource Center, Cottage Grove, OR, United States
| | - Robert Sissons
- Parks Canada, Waterton Lakes National Park, Waterton Park, AB, Canada
| | | | - Genoa Alger
- Parks Canada, Waterton Lakes National Park, Waterton Park, AB, Canada
| | - Anna W. Schoettle
- USDA Forest Service, Rocky Mountain Research Station, Fort Collins, CO, United States
| | - Holly Williams
- Canadian Forest Service, Natural Resources Canada, Victoria, BC, Canada
| | - Arezoo Zamany
- Canadian Forest Service, Natural Resources Canada, Victoria, BC, Canada
| | - Rachel A. Zitomer
- USDA Forest Service, Dorena Genetic Resource Center, Cottage Grove, OR, United States
| | - Angelia Kegley
- USDA Forest Service, Dorena Genetic Resource Center, Cottage Grove, OR, United States
| |
Collapse
|
14
|
Runyon JB, Gray CA, Jenkins MJ. Volatiles of High-Elevation Five-Needle Pines: Chemical Signatures through Ratios and Insight into Insect and Pathogen Resistance. J Chem Ecol 2020; 46:264-274. [PMID: 31974726 DOI: 10.1007/s10886-020-01150-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 01/07/2020] [Accepted: 01/16/2020] [Indexed: 01/11/2023]
Abstract
High-elevation five-needle pine trees are a group of Pinus species in the subgenus Strobus that occur at the edges of plant growth near the alpine tree line. These species are ecologically very important and are also threatened by climate-driven insect outbreaks and an exotic pathogen. Volatile organic compounds (VOCs) play central roles in the environmental adaptation of plants and in their defense against insects and pathogens. For example, the VOCs emitted by some high-elevation five-needle pine species attract female, tree-killing mountain pine beetles (MPB, Dendroctonus ponderosae) in the pioneering phase whereas VOCs from other species strongly repel this foremost herbivore, but the mechanism is unknown. We collected and compared headspace VOCs from foliage of eight species of high-elevation five-needle pines in Europe and North America. Overall, VOCs differed quantitatively among species with few qualitative differences. Despite species emitting essentially the same compounds, Random Forest analysis correctly classified 117 of the 126 trees sampled by using VOCs and identified the most important compounds for species classification and for separating species resistant from those susceptible to MPB or white pine blister rust (Cronartium ribicola). These VOC 'fingerprints' resulted largely from species emitting distinctive ratios of compounds, rather than through presence of species-specific compounds. Importantly, these Pinus species vary greatly in resistance to the main herbivore (MPB) and pathogen (white pine blister rust) causing tree mortality. Thus, these findings provide insights and should guide research into understanding resistance and in developing tools to manage these important trees. For instance, studies into the functions of five-needle pine VOCs in defense against abiotic or biotic stressors should focus on blend ratios rather than on individual compounds.
Collapse
Affiliation(s)
- Justin B Runyon
- USDA Forest Service, Rocky Mountain Research Station, Forestry Sciences Laboratory, 1648 S 7th Ave., Bozeman, MT, 59717, USA.
| | - Curtis A Gray
- Department of Wildland Resources, Utah State University, 5230 Old Main Hill, Logan, UT, 84322, USA
| | - Michael J Jenkins
- Department of Wildland Resources, Utah State University, 5230 Old Main Hill, Logan, UT, 84322, USA
| |
Collapse
|
15
|
Ma Z, Liu JJ, Zamany A. Identification and Functional Characterization of an Effector Secreted by Cronartium ribicola. PHYTOPATHOLOGY 2019; 109:942-951. [PMID: 31066346 DOI: 10.1094/phyto-11-18-0427-r] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Cri-9402 was identified as a protein effector from Cronartium ribicola, based on the effect of its expression on growth of Pseudomonas syringae Psm ES4326 introduced into transiently transformed tobacco leaves and stably transformed Arabidopsis seedlings. In tobacco leaves transiently expressing its coding sequence, growth of P. syringae Psm ES4326 was inhibited. Expression of pathogenesis-related (PR) protein 2 (PR2), PR4a, endochitinase B, hypersensitive-related 201 (HSR201), HSR203J, and proteinase inhibitor 1 was upregulated but expression of PR1, coronatine insensitive 1, and abscisic acid 1 was significantly suppressed. In transformed Arabidopsis seedlings, the effector stimulated growth of P. syringae Psm ES4326; significantly suppressed expression of PR1, PR2, nonexpresser of pathogenesis-related genes 1 (NPR1), NPR3, NPR4, phytoalexin deficient 4, and salicylic acid induction deficient 2; and enhanced expression of plant defensin 1.2 (PDF1.2). The above results showed that the majority of responses to this effector in tobacco leaves were converse to those in transformed Arabidopsis. We could conclude that Cri-9402 promoted disease resistance in tobacco leaves and disease susceptibility in Arabidopsis seedlings. Its transcript was mainly expressed in aeciospores of C. ribicola and was probably involved in production or germination of aeciospores, and it was an effector potentially functioning in white pine-blister rust interactions.
Collapse
Affiliation(s)
- Zhenguo Ma
- Canadian Forest Service, Natural Resources Canada, 506 West Burnside Road, Victoria, BC V8Z 1M5, Canada
| | - Jun-Jun Liu
- Canadian Forest Service, Natural Resources Canada, 506 West Burnside Road, Victoria, BC V8Z 1M5, Canada
| | - Arezoo Zamany
- Canadian Forest Service, Natural Resources Canada, 506 West Burnside Road, Victoria, BC V8Z 1M5, Canada
| |
Collapse
|
16
|
Liu JJ, Xiang Y. Characterization of the western white pine TIR-NBS-LRR ( PmTNL2) gene by transcript profiling and promoter analysis. Genome 2019; 62:477-488. [PMID: 31132323 DOI: 10.1139/gen-2019-0035] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Proteins with nucleotide-binding site (NBS) and leucine-rich repeats (LRRs) have been reported to play important roles in plant disease resistance, growth, and development. However, no comprehensive analysis of this protein family has been performed in conifers. Here we report that the Pinus monticola PmTNL2 gene is a member of the NBS-LRR superfamily. Quantitative reverse transcription-PCR (qRT-PCR) analysis revealed that the PmTNL2 transcript was expressed in a tissue-specific pattern with extensive regulation by various environmental stimuli in western white pine seedlings, suggesting its wide involvement in stress defense and diverse developmental processes. In silico analysis of the PmTNL2 promoter region revealed multiple cis-regulatory elements characterized with potential functions for development-, light-, and stress-regulated transcript expression. Expression patterns were largely confirmed by PmTNL2 promoter-directed reporter gene expression using stable transgenic Arabidopsis plants. Notably, the PmTNL2 promoter activity was highly expressed in shoot apical and floral meristems and was induced strongly with vascular specificity by pathogen infection. Our data has provided a fundamental insight into both expression regulation and putative functions of the PmTNL2 gene in the context of plant growth and development, as well as in responses to environmental stressors. Promoter application as a potential tool for tree improvement was further discussed.
Collapse
Affiliation(s)
- Jun-Jun Liu
- a Canadian Forest Service, Natural Resources Canada, 506 West Burnside Road, Victoria, BC V8Z 1M5, Canada
| | - Yu Xiang
- b Summerland Research and Development Centre, Agriculture and Agri-Food Canada, Summerland, BC V0H 1Z0, Canada
| |
Collapse
|
17
|
Zhang Y, Shi M, Mao X, Kou Y, Liu J. Time-resolved carotenoid profiling and transcriptomic analysis reveal mechanism of carotenogenesis for astaxanthin synthesis in the oleaginous green alga Chromochloris zofingiensis. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:287. [PMID: 31890015 PMCID: PMC6913025 DOI: 10.1186/s13068-019-1626-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 12/04/2019] [Indexed: 05/03/2023]
Abstract
BACKGROUND Chromochloris zofingiensis is emerging as an industrially relevant alga given its robust growth for the production of lipids and astaxanthin, a value-added carotenoid with broad applications. Nevertheless, poor understanding of astaxanthin synthesis has limited engineering of this alga for rational improvements. RESULTS To reveal the molecular mechanism underlying astaxanthin accumulation in C. zofingiensis, here we conducted an integrated analysis by combining the time-resolved transcriptomes and carotenoid profiling in response to nitrogen deprivation (ND). A global response was triggered for C. zofingiensis to cope with the ND stress. Albeit the little variation in total carotenoid content, individual carotenoids responded differentially to ND: the primary carotenoids particularly lutein and β-carotene decreased, while the secondary carotenoids increased considerably, with astaxanthin and canthaxanthin being the most increased ones. The carotenogenesis pathways were reconstructed: ND had little effect on the carbon flux to carotenoid precursors, but stimulated astaxanthin biosynthesis while repressing lutein biosynthesis, thereby diverting the carotenoid flux from primary carotenoids to secondary carotenoids particularly astaxanthin. Comparison between C. zofingiensis and Haematococcus pluvialis revealed the distinctive mechanism of astaxanthin synthesis in C. zofingiensis. Furthermore, potential bottlenecks in astaxanthin synthesis were identified and possible engineering strategies were proposed for the alga. CONCLUSIONS Collectively, these findings shed light on distinctive mechanism of carotenogenesis for astaxanthin biosynthesis in C. zofingiensis, identify key functional enzymes and regulators with engineering potential and will benefit rational manipulation of this alga for improving nutritional traits.
Collapse
Affiliation(s)
- Yu Zhang
- Laboratory for Algae Biotechnology & Innovation, College of Engineering, Peking University, Beijing, 100871 China
| | - Meicheng Shi
- Laboratory for Algae Biotechnology & Innovation, College of Engineering, Peking University, Beijing, 100871 China
| | - Xuemei Mao
- Laboratory for Algae Biotechnology & Innovation, College of Engineering, Peking University, Beijing, 100871 China
| | - Yaping Kou
- Laboratory for Algae Biotechnology & Innovation, College of Engineering, Peking University, Beijing, 100871 China
| | - Jin Liu
- Laboratory for Algae Biotechnology & Innovation, College of Engineering, Peking University, Beijing, 100871 China
| |
Collapse
|