1
|
Harun A, Liu H, Song S, Asghar S, Wen X, Fang Z, Chen C. Oligonucleotide Fluorescence In Situ Hybridization: An Efficient Chromosome Painting Method in Plants. PLANTS (BASEL, SWITZERLAND) 2023; 12:2816. [PMID: 37570972 PMCID: PMC10420648 DOI: 10.3390/plants12152816] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/19/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023]
Abstract
Fluorescence in situ hybridization (FISH) is an indispensable technique for studying chromosomes in plants. However, traditional FISH methods, such as BAC, rDNA, tandem repeats, and distributed repetitive sequence probe-based FISH, have certain limitations, including difficulties in probe synthesis, low sensitivity, cross-hybridization, and limited resolution. In contrast, oligo-based FISH represents a more efficient method for chromosomal studies in plants. Oligo probes are computationally designed and synthesized for any plant species with a sequenced genome and are suitable for single and repetitive DNA sequences, entire chromosomes, or chromosomal segments. Furthermore, oligo probes used in the FISH experiment provide high specificity, resolution, and multiplexing. Moreover, oligo probes made from one species are applicable for studying other genetically and taxonomically related species whose genome has not been sequenced yet, facilitating molecular cytogenetic studies of non-model plants. However, there are some limitations of oligo probes that should be considered, such as requiring prior knowledge of the probe design process and FISH signal issues with shorter probes of background noises during oligo-FISH experiments. This review comprehensively discusses de novo oligo probe synthesis with more focus on single-copy DNA sequences, preparation, improvement, and factors that affect oligo-FISH efficiency. Furthermore, this review highlights recent applications of oligo-FISH in a wide range of plant chromosomal studies.
Collapse
Affiliation(s)
- Arrashid Harun
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Institute of Rice Industry Technology Research, College of Agricultural Sciences, Guizhou University, Guiyang 550025, China;
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Institute of Agro-Bioengineering, College of Life Science, Guizhou University, Guiyang 550025, China; (S.A.); (X.W.)
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Hubei Hongshan Laboratory, Wuhan 430070, China; (H.L.); (S.S.)
| | - Hui Liu
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Hubei Hongshan Laboratory, Wuhan 430070, China; (H.L.); (S.S.)
| | - Shipeng Song
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Hubei Hongshan Laboratory, Wuhan 430070, China; (H.L.); (S.S.)
| | - Sumeera Asghar
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Institute of Agro-Bioengineering, College of Life Science, Guizhou University, Guiyang 550025, China; (S.A.); (X.W.)
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Hubei Hongshan Laboratory, Wuhan 430070, China; (H.L.); (S.S.)
| | - Xiaopeng Wen
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Institute of Agro-Bioengineering, College of Life Science, Guizhou University, Guiyang 550025, China; (S.A.); (X.W.)
| | - Zhongming Fang
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Institute of Rice Industry Technology Research, College of Agricultural Sciences, Guizhou University, Guiyang 550025, China;
| | - Chunli Chen
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Institute of Rice Industry Technology Research, College of Agricultural Sciences, Guizhou University, Guiyang 550025, China;
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Institute of Agro-Bioengineering, College of Life Science, Guizhou University, Guiyang 550025, China; (S.A.); (X.W.)
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Hubei Hongshan Laboratory, Wuhan 430070, China; (H.L.); (S.S.)
| |
Collapse
|
2
|
Vaughn JN, Branham SE, Abernathy B, Hulse-Kemp AM, Rivers AR, Levi A, Wechter WP. Graph-based pangenomics maximizes genotyping density and reveals structural impacts on fungal resistance in melon. Nat Commun 2022; 13:7897. [PMID: 36550124 PMCID: PMC9780226 DOI: 10.1038/s41467-022-35621-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022] Open
Abstract
The genomic sequences segregating in experimental populations are often highly divergent from the community reference and from one another. Such divergence is problematic under various short-read-based genotyping strategies. In addition, large structural differences are often invisible despite being strong candidates for causal variation. These issues are exacerbated in specialty crop breeding programs with fewer, lower-quality sequence resources. Here, we examine the benefits of complete genomic information, based on long-read assemblies, in a biparental mapping experiment segregating at numerous disease resistance loci in the non-model crop, melon (Cucumis melo). We find that a graph-based approach, which uses both parental genomes, results in 19% more variants callable across the population and raw allele calls with a 2 to 3-fold error-rate reduction, even relative to single reference approaches using a parent genome. We show that structural variation has played a substantial role in shaping two Fusarium wilt resistance loci with known causal genes. We also report on the genetics of powdery mildew resistance, where copy number variation and local recombination suppression are directly interpretable via parental genome alignments. Benefits observed, even in this low-resolution biparental experiment, will inevitably be amplified in more complex populations.
Collapse
Affiliation(s)
- Justin N Vaughn
- Genomics and Bioinformatics Research Unit, The Agricultural Research Service of U.S. Department of Agriculture, Athens, GA, 37605, USA.
- Department of Crop and Soil Sciences, University of Georgia, Athens, GA, 30602, USA.
| | - Sandra E Branham
- Plant and Environmental Sciences Department, Coastal Research and Education Center, Clemson University, Charleston, SC, 29414, USA
| | - Brian Abernathy
- Department of Crop and Soil Sciences, University of Georgia, Athens, GA, 30602, USA
| | - Amanda M Hulse-Kemp
- Genomics and Bioinformatics Research Unit, The Agricultural Research Service of U.S. Department of Agriculture, Raleigh, NC, 27965, USA
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, NC, 27695, USA
| | - Adam R Rivers
- Genomics and Bioinformatics Research Unit, The Agricultural Research Service of U.S. Department of Agriculture, Gainesville, FL, 32608, USA
| | - Amnon Levi
- US Vegetable Laboratory, The Agricultural Research Service of U.S. Department of Agriculture, Charleston, SC, 29414, USA
| | - William P Wechter
- Plant and Environmental Sciences Department, Coastal Research and Education Center, Clemson University, Charleston, SC, 29414, USA.
- US Vegetable Laboratory, The Agricultural Research Service of U.S. Department of Agriculture, Charleston, SC, 29414, USA.
| |
Collapse
|
3
|
Contreras-Moreira B, Filippi CV, Naamati G, Girón CG, Allen JE, Flicek P. K-mer counting and curated libraries drive efficient annotation of repeats in plant genomes. THE PLANT GENOME 2021; 14:e20143. [PMID: 34562304 PMCID: PMC7614178 DOI: 10.1002/tpg2.20143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 07/06/2021] [Indexed: 06/13/2023]
Abstract
The annotation of repetitive sequences within plant genomes can help in the interpretation of observed phenotypes. Moreover, repeat masking is required for tasks such as whole-genome alignment, promoter analysis, or pangenome exploration. Although homology-based annotation methods are computationally expensive, k-mer strategies for masking are orders of magnitude faster. Here, we benchmarked a two-step approach, where repeats were first called by k-mer counting and then annotated by comparison to curated libraries. This hybrid protocol was tested on 20 plant genomes from Ensembl, with the k-mer-based Repeat Detector (Red) and two repeat libraries (REdat, last updated in 2013, and nrTEplants, curated for this work). Custom libraries produced by RepeatModeler were also tested. We obtained repeated genome fractions that matched those reported in the literature but with shorter repeated elements than those produced directly by sequence homology. Inspection of the masked regions that overlapped genes revealed no preference for specific protein domains. Most Red-masked sequences could be successfully classified by sequence similarity, with the complete protocol taking less than 2 h on a desktop Linux box. A guide to curating your own repeat libraries and the scripts for masking and annotating plant genomes can be obtained at https://github.com/Ensembl/plant-scripts.
Collapse
Affiliation(s)
- Bruno Contreras-Moreira
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Carla V Filippi
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
- Instituto de Biotecnología, Centro de Investigaciones en Ciencias Veterinarias y Agronómicas (CICVyA), Instituto Nacional de Tecnología Agropecuaria (INTA); Instituto de Agrobiotecnología y Biología Molecular (IABIMO), INTA-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) Nicolas Repetto y Los Reseros s/n (1686), Hurlingham, Buenos Aires, Argentina
- CONICET, Av Rivadavia 1917, C1033AAJ Ciudad de Buenos Aires, Argentina
| | - Guy Naamati
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Carlos García Girón
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - James E Allen
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Paul Flicek
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| |
Collapse
|
4
|
Liu G, Zhang T. Single Copy Oligonucleotide Fluorescence In Situ Hybridization Probe Design Platforms: Development, Application and Evaluation. Int J Mol Sci 2021; 22:ijms22137124. [PMID: 34281175 PMCID: PMC8268824 DOI: 10.3390/ijms22137124] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/28/2021] [Accepted: 06/29/2021] [Indexed: 12/30/2022] Open
Abstract
Oligonucleotides fluorescence in situ hybridization (Oligo-FISH) is an emerging technology and is an important tool in research areas such as detection of chromosome variation, identification of allopolyploid, and deciphering of three-dimensional (3D) genome structures. Based on the demand for highly efficient oligo probes for oligo-FISH experiments, increasing numbers of tools have been developed for probe design in recent years. Obsolete oligonucleotide design tools have been adapted for oligo-FISH probe design because of their similar considerations. With the development of DNA sequencing and large-scale synthesis, novel tools have been designed to increase the specificity of designed oligo probes and enable genome-scale oligo probe design, which has greatly improved the application of single copy oligo-FISH. Despite this, few studies have introduced the development of the oligo-FISH probe design tools and their application in FISH experiments systematically. Besides, a comprehensive comparison and evaluation is lacking for the available tools. In this review, we provide an overview of the oligo-FISH probe design process, summarize the development and application of the available tools, evaluate several state-of-art tools, and eventually provide guidance for single copy oligo-FISH probe design.
Collapse
Affiliation(s)
- Guanqing Liu
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agricultural College of Yangzhou University, Yangzhou 225009, China;
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Tao Zhang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agricultural College of Yangzhou University, Yangzhou 225009, China;
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
- Institutes of Agricultural Science and Technology Development, Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
- Correspondence:
| |
Collapse
|
5
|
Gerasimova SV, Hertig C, Korotkova AM, Kolosovskaya EV, Otto I, Hiekel S, Kochetov AV, Khlestkina EK, Kumlehn J. Conversion of hulled into naked barley by Cas endonuclease-mediated knockout of the NUD gene. BMC PLANT BIOLOGY 2020; 20:255. [PMID: 33050877 PMCID: PMC7556925 DOI: 10.1186/s12870-020-02454-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Accepted: 05/20/2020] [Indexed: 05/28/2023]
Abstract
BACKGROUND The naked caryopsis character in barley is a domestication-associated trait defined by loss-of-function of the NUD gene. The functional NUD gene encodes an Apetala 2/Ethylene-Response Factor (AP2/ERF) controlling the formation of a cementing layer between pericarp and both lemma and palea. The downstream genes regulated by the NUD transcription factor and molecular mechanism of a cementing layer formation are still not sufficiently described. A naturally occurring 17-kb deletion in the nud locus is associated with the emergence of naked barley. Naked barley has been traditionally used for food and nowadays is considered as a dietary component for functional nutrition. RESULTS In the present study, we demonstrate that targeted knockout of the NUD gene using RNA-guided Cas9 endonuclease leads to the phenotype conversion from hulled to naked barley. Using in vivo pre-testing systems, highly effective guide RNAs targeting the first exon of the NUD gene were selected. Expression cassettes harboring the cas9 and guide RNA genes were used to transform barley cv. Golden Promise via Agrobacterium-mediated DNA transfer. The recessive naked grain phenotype was observed in 57% of primary transformants, which indicates a frequent occurrence of homozygous or biallelic mutations. T-DNA-free homozygous lines with independently generated mutations in the NUD gene were obtained in the T1 generation. At homozygous state, all obtained mutations including one- and two-amino acid losses with the translational reading frame being retained invariably caused the naked grain phenotype. CONCLUSIONS The hulled and naked barley isogenic lines generated are a perfect experimental model for further studies on pleiotropic consequences of nud mutations on overall plant performance under particular consideration of yield-determining traits. Due to the high β-glucan content of its grains, naked barley is considered as being of particular dietary value. The possibility to convert hulled into naked barley cultivars by targeted mutagenesis allows breeders to extend the potential utilization of barley by the provision of functional food.
Collapse
Affiliation(s)
- Sophia V. Gerasimova
- Institute of Cytology and Genetics, SB RAS, Novosibirsk, 630090 Russia
- Novosibirsk State University, Novosibirsk, 630090 Russia
- Kurchatov Genomics Center, Institute of Cytology and Genetics, SB RAS, Novosibirsk, 630090 Russia
| | - Christian Hertig
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466 Gatersleben, Germany
| | - Anna M. Korotkova
- Institute of Cytology and Genetics, SB RAS, Novosibirsk, 630090 Russia
| | | | - Ingrid Otto
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466 Gatersleben, Germany
| | - Stefan Hiekel
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466 Gatersleben, Germany
| | - Alex V. Kochetov
- Institute of Cytology and Genetics, SB RAS, Novosibirsk, 630090 Russia
- Novosibirsk State University, Novosibirsk, 630090 Russia
| | - Elena K. Khlestkina
- Institute of Cytology and Genetics, SB RAS, Novosibirsk, 630090 Russia
- Novosibirsk State University, Novosibirsk, 630090 Russia
- Vavilov Institute of Plant Genetic Resources (VIR), Saint Petersburg, 190000 Russia
| | - Jochen Kumlehn
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466 Gatersleben, Germany
| |
Collapse
|
6
|
Ruban A, Schmutzer T, Wu DD, Fuchs J, Boudichevskaia A, Rubtsova M, Pistrick K, Melzer M, Himmelbach A, Schubert V, Scholz U, Houben A. Supernumerary B chromosomes of Aegilops speltoides undergo precise elimination in roots early in embryo development. Nat Commun 2020; 11:2764. [PMID: 32488019 PMCID: PMC7265534 DOI: 10.1038/s41467-020-16594-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 05/13/2020] [Indexed: 12/17/2022] Open
Abstract
Not necessarily all cells of an organism contain the same genome. Some eukaryotes exhibit dramatic differences between cells of different organs, resulting from programmed elimination of chromosomes or their fragments. Here, we present a detailed analysis of programmed B chromosome elimination in plants. Using goatgrass Aegilops speltoides as a model, we demonstrate that the elimination of B chromosomes is a strictly controlled and highly efficient root-specific process. At the onset of embryo differentiation B chromosomes undergo elimination in proto-root cells. Independent of centromere activity, B chromosomes demonstrate nondisjunction of chromatids and lagging in anaphase, leading to micronucleation. Chromatin structure and DNA replication differ between micronuclei and primary nuclei and degradation of micronucleated DNA is the final step of B chromosome elimination. This process might allow root tissues to survive the detrimental expression, or overexpression of B chromosome-located root-specific genes with paralogs located on standard chromosomes. B chromosomes are supernumerary chromosomes exhibiting dramatic differences between different organs in same species. Here, the authors show programmed B chromosome elimination in goatgrass starts at the onset of embryo differentiation by nondisjunction of chromatids, anaphase lagging, and ends with the degradation of micronucleated DNA.
Collapse
Affiliation(s)
- Alevtina Ruban
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, 06466 Seeland, OT Gatersleben, Germany.,KWS SAAT SE & Co. KGaA, 37574, Einbeck, Germany
| | - Thomas Schmutzer
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, 06466 Seeland, OT Gatersleben, Germany.,Martin Luther University Halle-Wittenberg, Institute for Agricultural and Nutritional Sciences, 06099, Halle (Saale), Germany
| | - Dan D Wu
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, 06466 Seeland, OT Gatersleben, Germany.,Triticeae Research Institute, Sichuan Agricultural University, 611130, Wenjiang, China
| | - Joerg Fuchs
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, 06466 Seeland, OT Gatersleben, Germany
| | - Anastassia Boudichevskaia
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, 06466 Seeland, OT Gatersleben, Germany.,KWS SAAT SE & Co. KGaA, 37574, Einbeck, Germany
| | - Myroslava Rubtsova
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, 06466 Seeland, OT Gatersleben, Germany.,SAATEN-UNION BIOTEC GmbH, 06466 Seeland, OT Gatersleben, Germany
| | - Klaus Pistrick
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, 06466 Seeland, OT Gatersleben, Germany
| | - Michael Melzer
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, 06466 Seeland, OT Gatersleben, Germany
| | - Axel Himmelbach
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, 06466 Seeland, OT Gatersleben, Germany
| | - Veit Schubert
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, 06466 Seeland, OT Gatersleben, Germany
| | - Uwe Scholz
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, 06466 Seeland, OT Gatersleben, Germany
| | - Andreas Houben
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, 06466 Seeland, OT Gatersleben, Germany.
| |
Collapse
|