1
|
Wang H, Liu C, Zhou X, Wan Y, Song X, Li W, Guo W. Suppressing a β-1,3-glucanase gene expression increases the seed and fibre yield in cotton. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:289-301. [PMID: 39154347 DOI: 10.1111/tpj.16986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 07/31/2024] [Accepted: 08/05/2024] [Indexed: 08/20/2024]
Abstract
Seeds are initiated from the carpel margin meristem (CMM) and high seed yield is top one of breeding objectives for many crops. β-1,3-glucanases play various roles in plant growth and developmental processes; however, whether it participates in CMM development and seed formation remains largely unknown. Here, we identified a β-1,3-glucanase gene (GLU19) as a determinant of CMM callose deposition and seed yield in cotton. GLU19 was differentially expressed in carpel tissues between Gossypium barbadense (Gb) and Gossypium hirsutum (Gh). Based on resequencing data, one interspecies-specific InDel in the promoter of GLU19 was further detected. The InDel was involved in the binding site of the CRABS CLAW (CRC) transcription factor, a regulator of carpel development. We found that the CRC binding affinity to the GLU19 promoter of G. barbadense was higher than that of G. hirsutum. Since G. barbadense yields fewer seeds than G. hirsutum, we speculated that stronger CRC binding to the GLU19 promoter activated higher expression of GLU19 which in turn suppressed seed production. Consistent with this hypothesis was that the overexpression of GhGLU19 caused reduced seed number, boll weight and less callose formation in CMM. Conversely, GhGLU19-knockdown (GhGLU19-KD) cotton led to the opposite phenotypes. By crossing GhGLU19-KD lines with several G. hirsutum and G. barbadense cotton accessions, all F1 and F2 plants carrying GhGLU19-KD transgenic loci exhibited higher seed yield than control plants without the locus. The increased seed effect was also found in the down-regulation of Arabidopsis orthologs lines, indicating that this engineering strategy may improve the seed yield in other crops.
Collapse
Affiliation(s)
- Haitang Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Engineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and Application, Nanjing Agricultural University, Nanjing, 210095, China
| | - Chuchu Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Engineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and Application, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xuesong Zhou
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Engineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and Application, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yu Wan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Engineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and Application, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiaohui Song
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Engineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and Application, Nanjing Agricultural University, Nanjing, 210095, China
| | - Weixi Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Engineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and Application, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wangzhen Guo
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Engineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and Application, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
2
|
Wang H, Cai X, Umer MJ, Xu Y, Hou Y, Zheng J, Liu F, Wang K, Chen M, Ma S, Yu J, Zhou Z. Genetic Analysis of Cotton Fiber Traits in Gossypium Hybrid Lines. PHYSIOLOGIA PLANTARUM 2024; 176:e14442. [PMID: 39030776 DOI: 10.1111/ppl.14442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 04/25/2024] [Indexed: 07/22/2024]
Abstract
Cotton plays a crucial role in the progress of the textile industry and the betterment of human life by providing natural fibers. In our study, we explored the genetic determinants of cotton architecture and fiber yield and quality by crossbreeding Gossypium hirsutum and Gossypium barbadense, creating a recombinant inbred line (RIL) population. Utilizing SNP markers, we constructed an extensive genetic map encompassing 7,730 markers over 2,784.2 cM. We appraised two architectural and seven fiber traits within six environments, identifying 58 QTLs, of which 49 demonstrated stability across these environments. These encompassed QTLs for traits such as lint percentage (LP), boll weight (BW), fiber strength (STRENGTH), seed index (SI), and micronaire (MIC), primarily located on chromosomes chr-A07, chr-D06, and chr-D07. Notably, chr-D07 houses a QTL region affecting SI, corroborated by multiple studies. Within this region, the genes BZIP043 and SEP2 were identified as pivotal, with SEP2 particularly showing augmented expression in developing ovules. These discoveries contribute significantly to marker-assisted selection, potentially elevating both the yield and quality of cotton fiber production. These findings provide valuable insights into marker-assisted breeding strategies, offering crucial information to enhance fiber yield and quality in cotton production.
Collapse
Affiliation(s)
- Heng Wang
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization/Institute of Cotton Research, Chinese Academy of Agricultural Sciences (ICR, CAAS), Anyang, Henan, China
| | - Xiaoyan Cai
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization/Institute of Cotton Research, Chinese Academy of Agricultural Sciences (ICR, CAAS), Anyang, Henan, China
- Hainan Yazhou Bay Seed Laboratory, Sanya 572024, China/ National Nanfan Research Institute (Sanya), Chinese Academy of Agriculture Sciences, Sanya, China
- Henan International Joint Laboratory of Cotton Biology, Anyang, Henan, China
| | - Muhammad Jawad Umer
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization/Institute of Cotton Research, Chinese Academy of Agricultural Sciences (ICR, CAAS), Anyang, Henan, China
| | - Yanchao Xu
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization/Institute of Cotton Research, Chinese Academy of Agricultural Sciences (ICR, CAAS), Anyang, Henan, China
| | - Yuqing Hou
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization/Institute of Cotton Research, Chinese Academy of Agricultural Sciences (ICR, CAAS), Anyang, Henan, China
- Henan International Joint Laboratory of Cotton Biology, Anyang, Henan, China
| | - Jie Zheng
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization/Institute of Cotton Research, Chinese Academy of Agricultural Sciences (ICR, CAAS), Anyang, Henan, China
- Hainan Yazhou Bay Seed Laboratory, Sanya 572024, China/ National Nanfan Research Institute (Sanya), Chinese Academy of Agriculture Sciences, Sanya, China
- Henan International Joint Laboratory of Cotton Biology, Anyang, Henan, China
| | - Fang Liu
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization/Institute of Cotton Research, Chinese Academy of Agricultural Sciences (ICR, CAAS), Anyang, Henan, China
- Hainan Yazhou Bay Seed Laboratory, Sanya 572024, China/ National Nanfan Research Institute (Sanya), Chinese Academy of Agriculture Sciences, Sanya, China
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
- Henan International Joint Laboratory of Cotton Biology, Anyang, Henan, China
| | - Kunbo Wang
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization/Institute of Cotton Research, Chinese Academy of Agricultural Sciences (ICR, CAAS), Anyang, Henan, China
| | - Mengshan Chen
- Chinese Academy of Agricultural Science, Beijing, China
| | | | - Jingzhong Yu
- Standing Committee of the People's Congress of Jiangsu Province, Nanjing, China
| | - Zhongli Zhou
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization/Institute of Cotton Research, Chinese Academy of Agricultural Sciences (ICR, CAAS), Anyang, Henan, China
| |
Collapse
|
3
|
Song X, Zhu G, Su X, Yu Y, Duan Y, Wang H, Shang X, Xu H, Chen Q, Guo W. Combined genome and transcriptome analysis of elite fiber quality in Gossypium barbadense. PLANT PHYSIOLOGY 2024; 195:2158-2175. [PMID: 38513701 DOI: 10.1093/plphys/kiae175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/01/2024] [Accepted: 03/04/2024] [Indexed: 03/23/2024]
Abstract
Gossypium barbadense, which is one of several species of cotton, is well known for its superior fiber quality. However, the genetic basis of its high-quality fiber remains largely unexplored. Here, we resequenced 269 G. barbadense accessions. Phylogenetic structure analysis showed that the set of accessions was clustered into 3 groups: G1 and G2 mainly included modern cultivars from Xinjiang, China, and G3 was related to widely introduced accessions in different regions worldwide. A genome-wide association study of 5 fiber quality traits across multiple field environments identified a total of 512 qtls (main-effect QTLs) and 94 qtlEs (QTL-by-environment interactions) related to fiber quality, of which 292 qtls and 57 qtlEs colocated with previous studies. We extracted the genes located in these loci and performed expression comparison, local association analysis, and introgression segment identification. The results showed that high expression of hormone-related genes during fiber development, introgressions from Gossypium hirsutum, and the recombination of domesticated elite allelic variation were 3 major contributors to improve the fiber quality of G. barbadense. In total, 839 candidate genes with encoding region variations associated with elite fiber quality were mined. We confirmed that haplotype GB_D03G0092H traced to G. hirsutum introgression, with a 1-bp deletion leading to a frameshift mutation compared with GB_D03G0092B, significantly improved fiber quality. GB_D03G0092H is localized in the plasma membrane, while GB_D03G0092B is in both the nucleus and plasma membrane. Overexpression of GB_D03G0092H in Arabidopsis (Arabidopsis thaliana) significantly improved the elongation of longitudinal cells. Our study systematically reveals the genetic basis of the superior fiber quality of G. barbadense and provides elite segments and gene resources for breeding high-quality cotton cultivars.
Collapse
Affiliation(s)
- Xiaohui Song
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
- Engineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and Application, Nanjing Agricultural University, Nanjing 210095, China
| | - Guozhong Zhu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
- Engineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and Application, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiujuan Su
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
- Engineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and Application, Nanjing Agricultural University, Nanjing 210095, China
- College of Agronomy, Xinjiang Agricultural University, Urumqi 830052, China
| | - Yujia Yu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
- Engineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and Application, Nanjing Agricultural University, Nanjing 210095, China
| | - Yujia Duan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
- Engineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and Application, Nanjing Agricultural University, Nanjing 210095, China
| | - Haitang Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
- Engineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and Application, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaoguang Shang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
- Engineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and Application, Nanjing Agricultural University, Nanjing 210095, China
| | - Haijiang Xu
- Institute of Industrial Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China
| | - Quanjia Chen
- College of Agronomy, Xinjiang Agricultural University, Urumqi 830052, China
| | - Wangzhen Guo
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
- Engineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and Application, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
4
|
Zhang S, Wang H, Li X, Tang L, Cai X, Liu C, Zhang X, Zhang J. Aspartyl proteases identified as candidate genes of a fiber length QTL, qFL D05, that regulates fiber length in cotton (Gossypium hirsutum L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:59. [PMID: 38407588 DOI: 10.1007/s00122-024-04559-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 01/20/2024] [Indexed: 02/27/2024]
Abstract
KEY MESSAGE GhAP genes were identified as the candidates involved in cotton fiber length under the scope of fine mapping a stable fiber length QTL, qFLD05. Moreover, the transcription factor GhWRKY40 positively regulated GhAP3 to decrease fiber length. Fiber length (FL) is an economically important fiber quality trait. Although several genes controlling cotton fiber development have been identified, our understanding of this process remains limited. In this study, an FL QTL (qFLD05) was fine-mapped to a 216.9-kb interval using a secondary F2:3 population derived from the upland hybrid cultivar Ji1518. This mapped genomic segment included 15 coding genes, four of which were annotated as aspartyl proteases (GhAP1-GhAP4). GhAPs were identified as candidates for qFLD05 as the sequence variations in GhAPs were associated with FL deviations in the mapping population, and functional validation of GhAP3 and GhAP4 indicated a longer FL following decreases in their expression levels through virus-induced gene silencing (VIGS). Subsequently, the potential involvement of GhWRKY40 in the regulatory network was revealed: GhWRKY40 positively regulated GhAP3's expression according to transcriptional profiling, VIGS, yeast one-hybrid assays and dual-luciferase experiments. Furthermore, alterations in the expression of the eight previously reported cotton FL-responsive genes from the above three VIGS lines (GhAP3, GhAP4 and GhWRKY40) implied that MYB5_A12 was involved in the GhWRKY40-GhAP network. In short, we unveiled the unprecedented FL regulation roles of GhAPs in cotton, which was possibly further regulated by GhWRKY40. These findings will reveal the genetic basis of FL development associated with qFLD05 and be beneficial for the marker-assisted selection of long-staple cotton.
Collapse
Affiliation(s)
- Sujun Zhang
- Institute of Cotton, Hebei Academy of Agricultural and Forestry Sciences/Key Laboratory of Biology and Genetic Improvement of Cotton in Huanghuaihai Semiarid Area, Ministry of Agriculture and Rural Affairs, Shijiazhuang, 050051, Hebei, China
| | - Haitao Wang
- Institute of Cotton, Hebei Academy of Agricultural and Forestry Sciences/Key Laboratory of Biology and Genetic Improvement of Cotton in Huanghuaihai Semiarid Area, Ministry of Agriculture and Rural Affairs, Shijiazhuang, 050051, Hebei, China
| | - Xinghe Li
- Institute of Cotton, Hebei Academy of Agricultural and Forestry Sciences/Key Laboratory of Biology and Genetic Improvement of Cotton in Huanghuaihai Semiarid Area, Ministry of Agriculture and Rural Affairs, Shijiazhuang, 050051, Hebei, China
| | - Liyuan Tang
- Institute of Cotton, Hebei Academy of Agricultural and Forestry Sciences/Key Laboratory of Biology and Genetic Improvement of Cotton in Huanghuaihai Semiarid Area, Ministry of Agriculture and Rural Affairs, Shijiazhuang, 050051, Hebei, China
| | - Xiao Cai
- Institute of Cotton, Hebei Academy of Agricultural and Forestry Sciences/Key Laboratory of Biology and Genetic Improvement of Cotton in Huanghuaihai Semiarid Area, Ministry of Agriculture and Rural Affairs, Shijiazhuang, 050051, Hebei, China
| | - Cunjing Liu
- Institute of Cotton, Hebei Academy of Agricultural and Forestry Sciences/Key Laboratory of Biology and Genetic Improvement of Cotton in Huanghuaihai Semiarid Area, Ministry of Agriculture and Rural Affairs, Shijiazhuang, 050051, Hebei, China
| | - Xiangyun Zhang
- Institute of Cotton, Hebei Academy of Agricultural and Forestry Sciences/Key Laboratory of Biology and Genetic Improvement of Cotton in Huanghuaihai Semiarid Area, Ministry of Agriculture and Rural Affairs, Shijiazhuang, 050051, Hebei, China
| | - Jianhong Zhang
- Institute of Cotton, Hebei Academy of Agricultural and Forestry Sciences/Key Laboratory of Biology and Genetic Improvement of Cotton in Huanghuaihai Semiarid Area, Ministry of Agriculture and Rural Affairs, Shijiazhuang, 050051, Hebei, China.
| |
Collapse
|
5
|
Wang N, Li Y, Meng Q, Chen M, Wu M, Zhang R, Xu Z, Sun J, Zhang X, Nie X, Yuan D, Lin Z. Genome and haplotype provide insights into the population differentiation and breeding improvement of Gossypium barbadense. J Adv Res 2023; 54:15-27. [PMID: 36775017 DOI: 10.1016/j.jare.2023.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/10/2023] [Accepted: 02/04/2023] [Indexed: 02/12/2023] Open
Abstract
INTRODUCTION Sea-island cotton (Gossypium barbadense, Gb) is one of the major sources of high-grade natural fiber. Besides the common annual Gb cotton, perennial Gb cotton is also cultivated, but studies on perennial Gb cotton are rare. OBJECTIVES We aimed to make a systematic analysis of perennial sea-island cotton and lay a foundation for its utilization in breeding, and try to identify the representative structural variations (SVs) in sea-island cotton, and to reveal the population differentiation and adaptive improvement of sea-island cotton. METHODS Through genome assembly of one perennial Gb cotton accession (named Gb_M210936) and comparative genome analysis, variations during Gb cotton domestication were identified by comparing Gb_M210936 with annual Gb accession 3-79 and with wild allotetraploid cotton G. darwinii. Six perennial Gb accessions combining with the resequenced 1,129 cotton accessions were used to conduct population and genetic analysis. Large haplotype blocks (haploblocks), generated from interspecific introgressions and intraspecific inversions, were identified and were used to analyze their effects on population differentiation and agronomic traits of sea-island cotton. RESULTS One reference genome of perennial sea-island cotton was assembled. Representative SVs in sea-island cotton were identified, and 31 SVs were found to be associated with agronomic traits. Perennial Gb cotton had a closer kinship with the wild-to-landrace continuum Gb cotton from south America where Gb cotton is originally domesticated. Haploblocks were associated with agronomic traits improvement of sea-island cotton, promoted sea-island cotton differentiation into three subgroups, were suffered from breeding selection, and may drive Gb cotton to be adapted to central Asian. CONCLUSION Our study made up the lack of perennial Gb cotton genome, and clarified that exotic introgressions improved the traits of sea-island cotton, promoted the population differentiation, and drove sea-island cotton adaptive to central Asia, which will provide new insights for the genetic breeding improvement of sea-island cottons.
Collapse
Affiliation(s)
- Nian Wang
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China.
| | - Yuanxue Li
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China.
| | - Qingying Meng
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China.
| | - Meilin Chen
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China.
| | - Mi Wu
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China.
| | - Ruiting Zhang
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China.
| | - Zhiyong Xu
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China.
| | - Jie Sun
- Key Laboratory of Oasis Ecology Agricultural of Xinjiang Bingtuan, College of Agriculture, Shihezi University, Shihezi 832000, Xinjiang, China.
| | - Xianlong Zhang
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China.
| | - Xinhui Nie
- Key Laboratory of Oasis Ecology Agricultural of Xinjiang Bingtuan, College of Agriculture, Shihezi University, Shihezi 832000, Xinjiang, China.
| | - Daojun Yuan
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China.
| | - Zhongxu Lin
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China; Hubei Hongshan Laboratory, Wuhan 430070, China; Key Laboratory of Oasis Ecology Agricultural of Xinjiang Bingtuan, College of Agriculture, Shihezi University, Shihezi 832000, Xinjiang, China.
| |
Collapse
|
6
|
Gao C, Han X, Xu Z, Yang Z, Yan Q, Zhang Y, Song J, Yu H, Liu R, Yang L, Hu W, Yang J, Wu M, Liu J, Xie Z, Yu J, Zhang Z. Oil candidate genes in seeds of cotton (Gossypium hirsutum L.) and functional validation of GhPXN1. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:169. [PMID: 37932798 PMCID: PMC10629180 DOI: 10.1186/s13068-023-02420-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 10/26/2023] [Indexed: 11/08/2023]
Abstract
BACKGROUND Cottonseed oil is a promising edible plant oil with abundant unsaturated fatty acids. However, few studies have been conducted to explore the characteristics of cottonseed oil. The molecular mechanism of cottonseed oil accumulation remains unclear. RESULTS In the present study, we conducted comparative transcriptome and weighted gene co-expression network (WGCNA) analysis for two G. hirsutum materials with significant difference in cottonseed oil content. Results showed that, between the high oil genotype 6053 (H6053) and the low oil genotype 2052 (L2052), a total of 412, 507, 1,121, 1,953, and 2,019 differentially expressed genes (DEGs) were detected at 10, 15, 20, 25, and 30 DPA, respectively. Remarkably, a large number of the down-regulated DEGs were enriched in the phenylalanine metabolic processes. Investigation into the dynamic changes of expression profiling of genes associated with both phenylalanine metabolism and oil biosynthesis has shed light on a significant competitive relationship in substrate allocation during cottonseed development. Additionally, the WGCNA analysis of all DEGs identified eight distinct modules, one of which includes GhPXN1, a gene closely associated with oil accumulation. Through phylogenetic analysis, we hypothesized that GhPXN1 in G. hirsutum might have been introgressed from G. arboreum. Overexpression of the GhPXN1 gene in tobacco leaf suggested a significant reduction in oil content compared to the empty-vector transformants. Furthermore, ten other crucial oil candidate genes identified in this study were also validated using quantitative real-time PCR (qRT-PCR). CONCLUSIONS Overall, this study enhances our comprehension of the molecular mechanisms underlying cottonseed oil accumulation.
Collapse
Affiliation(s)
- Chenxu Gao
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Zhengzhou University, Zhengzhou, 450000, China
| | - Xiao Han
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
- Shijiazhuang Academy of Agriculture and Forestry Sciences, Shijiazhuang, 050000, China
| | - Zhenzhen Xu
- Jiangsu Academy of Agricultural Sciences, Nanjing, 210000, China
| | - Zhaoen Yang
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Zhengzhou University, Zhengzhou, 450000, China
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Qingdi Yan
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Yihao Zhang
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Zhengzhou University, Zhengzhou, 450000, China
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Jikun Song
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Hang Yu
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Zhengzhou University, Zhengzhou, 450000, China
| | - Renju Liu
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Zhengzhou University, Zhengzhou, 450000, China
| | - Lan Yang
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Wei Hu
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Zhengzhou University, Zhengzhou, 450000, China
| | - Jiaxiang Yang
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Zhengzhou University, Zhengzhou, 450000, China
| | - Man Wu
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Jisheng Liu
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Zongming Xie
- Key Laboratory of Cotton Biology and Genetic Breeding in the Northwest Inland Cotton Production Region of the Ministry of Agriculture and Rural Affairs, Institute of Cotton Research, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, 832000, China.
| | - Jiwen Yu
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Zhengzhou University, Zhengzhou, 450000, China.
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China.
| | - Zhibin Zhang
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Zhengzhou University, Zhengzhou, 450000, China.
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China.
| |
Collapse
|
7
|
Li S, Kong L, Xiao X, Li P, Liu A, Li J, Gong J, Gong W, Ge Q, Shang H, Pan J, Chen H, Peng Y, Zhang Y, Lu Q, Shi Y, Yuan Y. Genome-wide artificial introgressions of Gossypium barbadense into G. hirsutum reveal superior loci for simultaneous improvement of cotton fiber quality and yield traits. J Adv Res 2023; 53:1-16. [PMID: 36460274 PMCID: PMC10658236 DOI: 10.1016/j.jare.2022.11.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 10/31/2022] [Accepted: 11/24/2022] [Indexed: 12/02/2022] Open
Abstract
INTRODUCTION The simultaneous improvement of fiber quality and yield for cotton is strongly limited by the narrow genetic backgrounds of Gossypium hirsutum (Gh) and the negative genetic correlations among traits. An effective way to overcome the bottlenecks is to introgress the favorable alleles of Gossypium barbadense (Gb) for fiber quality into Gh with high yield. OBJECTIVES This study was to identify superior loci for the improvement of fiber quality and yield. METHODS Two sets of chromosome segment substitution lines (CSSLs) were generated by crossing Hai1 (Gb, donor-parent) with cultivar CCRI36 (Gh) and CCRI45 (Gh) as genetic backgrounds, and cultivated in 6 and 8 environments, respectively. The kmer genotyping strategy was improved and applied to the population genetic analysis of 743 genomic sequencing data. A progeny segregating population was constructed to validate genetic effects of the candidate loci. RESULTS A total of 68,912 and 83,352 genome-wide introgressed kmers were identified in the CCRI36 and CCRI45 populations, respectively. Over 90 % introgressions were homologous exchanges and about 21 % were reverse insertions. In total, 291 major introgressed segments were identified with stable genetic effects, of which 66(22.98 %), 64(21.99 %), 35(12.03 %), 31(10.65 %) and 18(6.19 %) were beneficial for the improvement of fiber length (FL), strength (FS), micronaire, lint-percentage (LP) and boll-weight, respectively. Thirty-nine introgression segments were detected with stable favorable additive effects for simultaneous improvement of 2 or more traits in Gh genetic background, including 6 could increase FL/FS and LP. The pyramiding effects of 3 pleiotropic segments (A07:C45Clu-081, D06:C45Clu-218, D02:C45Clu-193) were further validated in the segregating population. CONCLUSION The combining of genome-wide introgressions and kmer genotyping strategy showed significant advantages in exploring genetic resources. Through the genome-wide comprehensive mining, a total of 11 clusters (segments) were discovered for the stable simultaneous improvement of FL/FS and LP, which should be paid more attention in the future.
Collapse
Affiliation(s)
- Shaoqi Li
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; Crop Information Center, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Linglei Kong
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Xianghui Xiao
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Pengtao Li
- School of Biotechnology and Food Engineering, Anyang Institute of Technology, Anyang 455000, China
| | - Aiying Liu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Junwen Li
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Juwu Gong
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Wankui Gong
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Qun Ge
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Haihong Shang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Jingtao Pan
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Hong Chen
- Cotton Research Institute, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi 832000, China
| | - Yan Peng
- Third Division of the Xinjiang Production and Construction Corps Agricultural Research Institute, Tumushuke 843900, China
| | - Yuanming Zhang
- Crop Information Center, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Quanwei Lu
- School of Biotechnology and Food Engineering, Anyang Institute of Technology, Anyang 455000, China.
| | - Yuzhen Shi
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China.
| | - Youlu Yuan
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; Crop Information Center, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
8
|
Gowda SA, Bourland FM, Kaur B, Jones DC, Kuraparthy V. Genetic diversity and population structure analyses and genome-wide association studies of photoperiod sensitivity in cotton (Gossypium hirsutum L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:230. [PMID: 37875695 DOI: 10.1007/s00122-023-04477-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 10/04/2023] [Indexed: 10/26/2023]
Abstract
KEY MESSAGE Genetic diversity and population structure analyses showed progressively narrowed diversity in US Upland cotton compared to land races. GWAS identified genomic regions and candidate genes for photoperiod sensitivity in cotton. Six hundred fifty-seven accessions that included elite cotton germplasm (DIV panel), lines of a public cotton breeding program (FB panel), and tropical landrace accessions (TLA panel) of Gossypium hirsutum L. were genotyped with cottonSNP63K array and phenotyped for photoperiod sensitivity under long day-length conditions. The genetic diversity analysis using 26,952 polymorphic SNPs indicated a progressively narrowed diversity from the landraces (0.230) to the DIV panel accessions (0.195) and FB panel (0.116). Structure analysis in the US germplasm identified seven subpopulations representing all four major regions of the US cotton belt. Three subpopulations were identified within the landrace accessions. The highest fixation index (FST) of 0.65 was found between landrace accessions of Guatemala and the Plains-type cultivars from Southwest cotton region while the lowest FST values were between the germplasms of Mid-South and Southeastern regions. Genome wide association studies (GWAS) of photoperiod response using 600 phenotyped accessions identified 14 marker trait associations spread across eight Upland cotton chromosomes. Six of these marker trait associations, on four chromosomes (A10, D04, D05, and D06), showed significant epistatic interactions. Targeted genomic analysis identified regions with 19 candidate genes including Transcription factor Vascular Plant One-Zinc Finger 1 (VOZ1) and Protein Photoperiod-Independent Early Flowering 1 (PIE1) genes. Genetic diversity and genome wide analyses of photoperiod sensitivity in diverse cotton germplasms will enable the use of genomic tools to systematically utilize the tropical germplasm and its beneficial alleles for broadening the genetic base in Upland cotton.
Collapse
Affiliation(s)
- S Anjan Gowda
- Crop and Soil Sciences Department, North Carolina State University, Raleigh, NC, 27695, USA
| | - Fred M Bourland
- NE Research and Extension Center, Crop, Soil, and Environmental Sciences, University of Arkansas, Keiser, AR, 72351, USA
| | - Baljinder Kaur
- Crop and Soil Sciences Department, North Carolina State University, Raleigh, NC, 27695, USA
| | - Don C Jones
- Cotton Incorporated, 6399 Weston Parkway, Cary, NC, 27513, USA
| | - Vasu Kuraparthy
- Crop and Soil Sciences Department, North Carolina State University, Raleigh, NC, 27695, USA.
| |
Collapse
|
9
|
Hu J, Liu T, Huo H, Liu S, Liu M, Liu C, Zhao M, Wang K, Wang Y, Zhang M. Genome-wide characterization, evolutionary analysis, and expression pattern analysis of the trihelix transcription factor family and gene expression analysis under MeJA treatment in Panax ginseng. BMC PLANT BIOLOGY 2023; 23:376. [PMID: 37525122 PMCID: PMC10392005 DOI: 10.1186/s12870-023-04390-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 07/22/2023] [Indexed: 08/02/2023]
Abstract
Panax ginseng is a well-known medicinal plant with several pharmacological uses in China. The trihelix family transcription factors, also known as GT factors, can be involved in the regulation of growth and developmental processes in plants. There have been no in-depth reports or systematic studies about the trihelix transcription factor in ginseng. In this study, the structure, chromosomal localization, gene duplication, phylogeny, functional differentiation, expression patterns and coexpression interactions of trihelix transcripts were analysed using bioinformatics methods based on the ginseng transcriptome database. Thirty-two trihelix transcription factor genes were identified in ginseng, and these genes were alternatively spliced to obtain 218 transcripts. These transcripts were unevenly distributed on different chromosomes of ginseng, and phylogenetic analysis classified the PgGT transcripts into five subgroups. Gene Ontology (GO) analysis classified PgGT transcripts into eight functional subclasses, indicating that they are functionally diverse. The expression pattern analysis of 218 PgGT transcripts revealed that their expression was tissue-specific and spatiotemporally-specific in 14 different tissues of 4-year-old ginseng, 4 different ages of ginseng roots, and 42 farmers' cultivars of 4-year-old ginseng roots. Despite the differences in the expression patterns of these transcripts, coexpression network analysis revealed that these transcripts could be expressed synergistically in ginseng. In addition, two randomly selected PgGT transcripts in each of the five different subfamilies were subjected to methyl jasmonate treatment at different times, and PgGT was able to respond to the regulation of methy1 jasmonate. These results provide a theoretical basis and gene resources for an in-depth study of the function of trihelix genes in other plants.
Collapse
Affiliation(s)
- Jian Hu
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, 130118, China
- Jilin Engineering Research Center Ginseng Genetic Resources Development and Utilization, Changchun, Jilin, 130118, China
| | - Tao Liu
- Jilin Engineering Research Center Ginseng Genetic Resources Development and Utilization, Changchun, Jilin, 130118, China
| | - Huimin Huo
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, 130118, China
- Jilin Engineering Research Center Ginseng Genetic Resources Development and Utilization, Changchun, Jilin, 130118, China
| | - Sizhang Liu
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, 130118, China
- Jilin Engineering Research Center Ginseng Genetic Resources Development and Utilization, Changchun, Jilin, 130118, China
| | - Mingming Liu
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, 130118, China
- Jilin Engineering Research Center Ginseng Genetic Resources Development and Utilization, Changchun, Jilin, 130118, China
| | - Chang Liu
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, 130118, China
- Jilin Engineering Research Center Ginseng Genetic Resources Development and Utilization, Changchun, Jilin, 130118, China
| | - Mingzhu Zhao
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, 130118, China
- Jilin Engineering Research Center Ginseng Genetic Resources Development and Utilization, Changchun, Jilin, 130118, China
| | - Kangyu Wang
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, 130118, China.
- Jilin Engineering Research Center Ginseng Genetic Resources Development and Utilization, Changchun, Jilin, 130118, China.
| | - Yi Wang
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, 130118, China.
- Jilin Engineering Research Center Ginseng Genetic Resources Development and Utilization, Changchun, Jilin, 130118, China.
| | - Meiping Zhang
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, 130118, China.
- Jilin Engineering Research Center Ginseng Genetic Resources Development and Utilization, Changchun, Jilin, 130118, China.
| |
Collapse
|
10
|
Xiao X, Liu R, Gong J, Li P, Li Z, Gong W, Liu A, Ge Q, Deng X, Li S, Chen Q, Zhang H, Peng R, Peng Y, Shang H, Pan J, Shi Y, Lu Q, Yuan Y. Fine mapping and candidate gene analysis of qFL-A12-5: a fiber length-related QTL introgressed from Gossypium barbadense into Gossypium hirsutum. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:48. [PMID: 36912959 DOI: 10.1007/s00122-023-04247-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 10/21/2022] [Indexed: 06/18/2023]
Abstract
The fiber length-related qFL-A12-5 identified in CSSLs introgressed from Gossypium barbadense into Gossypium hirsutum was fine-mapped to an 18.8 kb region on chromosome A12, leading to the identification of the GhTPR gene as a potential regulator of cotton fiber length. Fiber length is a key determinant of fiber quality in cotton, and it is a key target of artificial selection for breeding and domestication. Although many fiber length-related quantitative trait loci have been identified, there are few reports on their fine mapping or candidate gene validation, thus hampering efforts to understand the mechanistic basis of cotton fiber development. Our previous study identified the qFL-A12-5 associated with superior fiber quality on chromosome A12 in the chromosome segment substitution line (CSSL) MBI7747 (BC4F3:5). A single segment substitution line (CSSL-106) screened from BC6F2 was backcrossed to construct a larger segregation population with its recurrent parent CCRI45, thus enabling the fine mapping of 2852 BC7F2 individuals using denser simple sequence repeat markers to narrow the qFL-A12-5 to an 18.8 kb region of the genome, in which six annotated genes were identified in Gossypium hirsutum. Quantitative real-time PCR and comparative analyses led to the identification of GH_A12G2192 (GhTPR) encoding a tetratricopeptide repeat-like superfamily protein as a promising candidate gene for qFL-A12-5. A comparative analysis of the protein-coding regions of GhTPR among Hai1, MBI7747, and CCRI45 revealed two non-synonymous mutations. The overexpression of GhTPR resulted in longer roots in Arabidopsis, suggesting that GhTPR may regulate cotton fiber development. These results provide a foundation for future efforts to improve cotton fiber length.
Collapse
Affiliation(s)
- Xianghui Xiao
- Engineering Research Centre of Cotton, Ministry of Education, College of Agriculture, Xinjiang Agricultural University, 311 Nongda East Road, Urumqi, 830052, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Ruixian Liu
- Engineering Research Centre of Cotton, Ministry of Education, College of Agriculture, Xinjiang Agricultural University, 311 Nongda East Road, Urumqi, 830052, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Juwu Gong
- Engineering Research Centre of Cotton, Ministry of Education, College of Agriculture, Xinjiang Agricultural University, 311 Nongda East Road, Urumqi, 830052, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Pengtao Li
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
- School of Biotechnology and Food Engineering, Anyang Institute of Technology, Anyang, 455000, China
| | - Ziyin Li
- Engineering Research Centre of Cotton, Ministry of Education, College of Agriculture, Xinjiang Agricultural University, 311 Nongda East Road, Urumqi, 830052, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Wankui Gong
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Aiying Liu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Qun Ge
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Xiaoying Deng
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Shaoqi Li
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Quanjia Chen
- Engineering Research Centre of Cotton, Ministry of Education, College of Agriculture, Xinjiang Agricultural University, 311 Nongda East Road, Urumqi, 830052, China
| | - Hua Zhang
- Engineering Research Centre of Cotton, Ministry of Education, College of Agriculture, Xinjiang Agricultural University, 311 Nongda East Road, Urumqi, 830052, China
| | - Renhai Peng
- School of Biotechnology and Food Engineering, Anyang Institute of Technology, Anyang, 455000, China
| | - Yan Peng
- Third Division of the Xinjiang Production and Construction Corps Agricultural Research Institute, Tumushuke, 843900, Xinjiang, China
| | - Haihong Shang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Jingtao Pan
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Yuzhen Shi
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China.
| | - Quanwei Lu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China.
- School of Biotechnology and Food Engineering, Anyang Institute of Technology, Anyang, 455000, China.
| | - Youlu Yuan
- Engineering Research Centre of Cotton, Ministry of Education, College of Agriculture, Xinjiang Agricultural University, 311 Nongda East Road, Urumqi, 830052, China.
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China.
| |
Collapse
|
11
|
Yang Z, Wang J, Huang Y, Wang S, Wei L, Liu D, Weng Y, Xiang J, Zhu Q, Yang Z, Nie X, Yu Y, Yang Z, Yang QY. CottonMD: a multi-omics database for cotton biological study. Nucleic Acids Res 2022; 51:D1446-D1456. [PMID: 36215030 PMCID: PMC9825545 DOI: 10.1093/nar/gkac863] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 09/08/2022] [Accepted: 09/24/2022] [Indexed: 01/30/2023] Open
Abstract
Cotton is an important economic crop, and many loci for important traits have been identified, but it remains challenging and time-consuming to identify candidate or causal genes/variants and clarify their roles in phenotype formation and regulation. Here, we first collected and integrated the multi-omics datasets including 25 genomes, transcriptomes in 76 tissue samples, epigenome data of five species and metabolome data of 768 metabolites from four tissues, and genetic variation, trait and transcriptome datasets from 4180 cotton accessions. Then, a cotton multi-omics database (CottonMD, http://yanglab.hzau.edu.cn/CottonMD/) was constructed. In CottonMD, multiple statistical methods were applied to identify the associations between variations and phenotypes, and many easy-to-use analysis tools were provided to help researchers quickly acquire the related omics information and perform multi-omics data analysis. Two case studies demonstrated the power of CottonMD for identifying and analyzing the candidate genes, as well as the great potential of integrating multi-omics data for cotton genetic breeding and functional genomics research.
Collapse
Affiliation(s)
| | | | | | - Shengbo Wang
- National Key Laboratory of Crop Genetic Improvement, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China,Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Lulu Wei
- National Key Laboratory of Crop Genetic Improvement, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China,Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Dongxu Liu
- National Key Laboratory of Crop Genetic Improvement, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China,Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Yonglin Weng
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Jinhai Xiang
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Qiang Zhu
- National Key Laboratory of Crop Genetic Improvement, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China,Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhaoen Yang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Xinhui Nie
- Key Laboratory of Oasis Ecology Agricultural of Xinjiang Bingtuan, Agricultural College, Shihezi University, Shihezi, Xinjiang 832000, China
| | - Yu Yu
- Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, Xinjiang 832000, China
| | - Zuoren Yang
- Correspondence may also be addressed to Zuoren Yang. Tel: +86 371 55912660;
| | - Qing-Yong Yang
- To whom correspondence should be addressed. Tel: +86 27 87288509;
| |
Collapse
|
12
|
Shao P, Peng Y, Wu Y, Wang J, Pan Z, Yang Y, Aini N, Guo C, Shui G, Chao L, Tian X, An Q, Yang Q, You C, Lu L, Zhang X, Wang M, Nie X. Genome-wide association study and transcriptome analysis reveal key genes controlling fruit branch angle in cotton. FRONTIERS IN PLANT SCIENCE 2022; 13:988647. [PMID: 36212380 PMCID: PMC9532966 DOI: 10.3389/fpls.2022.988647] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 08/22/2022] [Indexed: 06/16/2023]
Abstract
Fruit branch angle (FBA), a pivotal component of cotton plant architecture, is vital for field and mechanical harvesting. However, the molecular mechanism of FBA formation is poorly understood in cotton. To uncover the genetic basis for FBA formation in cotton, we performed a genome-wide association study (GWAS) of 163 cotton accessions with re-sequencing data. A total of 55 SNPs and 18 candidate genes were significantly associated with FBA trait. By combining GWAS and transcriptome analysis, four genes underlying FBA were identified. An FBA-associated candidate gene Ghi_A09G08736, which is homologous to SAUR46 in Arabidopsis thaliana, was detected in our study. In addition, transcriptomic evidence was provided to show that gravity and light were implicated in the FBA formation. This study provides new insights into the genetic architecture of FBA that informs architecture breeding in cotton.
Collapse
Affiliation(s)
- Panxia Shao
- Key Laboratory of Oasis Ecology Agricultural of Xinjiang Production and Construction Corps, Agricultural College, Shihezi University, Shihezi, Xinjiang, China
| | - Yabin Peng
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Yuanlong Wu
- Key Laboratory of Oasis Ecology Agricultural of Xinjiang Production and Construction Corps, Agricultural College, Shihezi University, Shihezi, Xinjiang, China
| | - Jing Wang
- College of Informatics, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Zhenyuan Pan
- Key Laboratory of Oasis Ecology Agricultural of Xinjiang Production and Construction Corps, Agricultural College, Shihezi University, Shihezi, Xinjiang, China
| | - Yang Yang
- Institute of Nuclear Technology and Biotechnology, Xinjiang Academy of Agricultural Sciences, Urumqi, Xinjiang, China
| | - Nurimanguli Aini
- Key Laboratory of Oasis Ecology Agricultural of Xinjiang Production and Construction Corps, Agricultural College, Shihezi University, Shihezi, Xinjiang, China
| | - Chunping Guo
- Key Laboratory of Oasis Ecology Agricultural of Xinjiang Production and Construction Corps, Agricultural College, Shihezi University, Shihezi, Xinjiang, China
| | - Guangling Shui
- Key Laboratory of Oasis Ecology Agricultural of Xinjiang Production and Construction Corps, Agricultural College, Shihezi University, Shihezi, Xinjiang, China
| | - Lei Chao
- Key Laboratory of Oasis Ecology Agricultural of Xinjiang Production and Construction Corps, Agricultural College, Shihezi University, Shihezi, Xinjiang, China
| | - Xiaomin Tian
- Key Laboratory of Oasis Ecology Agricultural of Xinjiang Production and Construction Corps, Agricultural College, Shihezi University, Shihezi, Xinjiang, China
| | - Qiushuang An
- Key Laboratory of Oasis Ecology Agricultural of Xinjiang Production and Construction Corps, Agricultural College, Shihezi University, Shihezi, Xinjiang, China
| | - Qingyong Yang
- College of Informatics, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Chunyuan You
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei, China
- Cotton Research Institute of the Shihezi Academy of Agriculture Science, Shihezi, Xinjiang, China
| | - Lu Lu
- Key Laboratory of Oasis Ecology Agricultural of Xinjiang Production and Construction Corps, Agricultural College, Shihezi University, Shihezi, Xinjiang, China
| | - Xianlong Zhang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Maojun Wang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Xinhui Nie
- Key Laboratory of Oasis Ecology Agricultural of Xinjiang Production and Construction Corps, Agricultural College, Shihezi University, Shihezi, Xinjiang, China
| |
Collapse
|
13
|
Chao L, Pan Z, Wang J, Wu Y, Shui G, Aini N, Tang B, Guo C, Han P, Shao P, Tian X, Chang X, An Q, Ma C, You C, Zhu L, Nie X. Genetic Mapping and Analysis of a Compact Plant Architecture and Precocious Mutant in Upland Cotton. PLANTS (BASEL, SWITZERLAND) 2022; 11:1483. [PMID: 35684255 PMCID: PMC9182648 DOI: 10.3390/plants11111483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 05/22/2022] [Accepted: 05/30/2022] [Indexed: 11/16/2022]
Abstract
With the promotion and popularization of machine cotton-picking, more and more attention has been paid to the selection of early-maturity varieties with compact plant architecture. The type of fruit branch is one of the most important factors affecting plant architecture and early maturity of cotton. Heredity analysis of the cotton fruit branch is beneficial to the breeding of machine-picked cotton. Phenotype analysis showed that the types of fruit branches in cotton are controlled by a single recessive gene. Using an F2 population crossed with Huaxin102 (normal branch) and 04N-11 (nulliplex branch), BSA (Bulked Segregant Analysis) resequencing analysis and GhNB gene cloning in 04N-11, and allelic testing, showed that fruit branch type was controlled by the GhNB gene, located on chromosome D07. Ghnb5, a new recessive genotype of GhNB, was found in 04N-11. Through candidate gene association analysis, SNP 20_15811516_SNV was found to be associated with plant architecture and early maturity in the Xinjiang natural population. The GhNB gene, which is related to early maturity and the plant architecture of cotton, is a branch-type gene of cotton. The 20_15811516_SNV marker, obtained from the Xinjiang natural population, was used for the assisted breeding of machine-picked cotton varieties.
Collapse
Affiliation(s)
- Lei Chao
- Key Laboratory of Oasis Ecology Agricultural of Xinjiang Production and Construction Corps, Agricultural College, Shihezi University, Shihezi 832003, China; (L.C.); (Z.P.); (G.S.); (N.A.); (C.G.); (P.H.); (P.S.); (X.T.); (X.C.); (Q.A.); (C.M.)
| | - Zhenyuan Pan
- Key Laboratory of Oasis Ecology Agricultural of Xinjiang Production and Construction Corps, Agricultural College, Shihezi University, Shihezi 832003, China; (L.C.); (Z.P.); (G.S.); (N.A.); (C.G.); (P.H.); (P.S.); (X.T.); (X.C.); (Q.A.); (C.M.)
| | - Jing Wang
- College of Informatics, Huazhong Agricultural University, Wuhan 430070, China;
| | - Yuanlong Wu
- National Key Laboratory of Crop Genetic Improvement, College of Plant Sciences & Technology, Huazhong Agricultural University, Wuhan 430070, China;
| | - Guangling Shui
- Key Laboratory of Oasis Ecology Agricultural of Xinjiang Production and Construction Corps, Agricultural College, Shihezi University, Shihezi 832003, China; (L.C.); (Z.P.); (G.S.); (N.A.); (C.G.); (P.H.); (P.S.); (X.T.); (X.C.); (Q.A.); (C.M.)
| | - Nurimanguli Aini
- Key Laboratory of Oasis Ecology Agricultural of Xinjiang Production and Construction Corps, Agricultural College, Shihezi University, Shihezi 832003, China; (L.C.); (Z.P.); (G.S.); (N.A.); (C.G.); (P.H.); (P.S.); (X.T.); (X.C.); (Q.A.); (C.M.)
| | - Binghui Tang
- Cotton Research Institute of the Shihezi Academy of Agriculture Science, Shihezi 832011, China;
| | - Chunping Guo
- Key Laboratory of Oasis Ecology Agricultural of Xinjiang Production and Construction Corps, Agricultural College, Shihezi University, Shihezi 832003, China; (L.C.); (Z.P.); (G.S.); (N.A.); (C.G.); (P.H.); (P.S.); (X.T.); (X.C.); (Q.A.); (C.M.)
| | - Peng Han
- Key Laboratory of Oasis Ecology Agricultural of Xinjiang Production and Construction Corps, Agricultural College, Shihezi University, Shihezi 832003, China; (L.C.); (Z.P.); (G.S.); (N.A.); (C.G.); (P.H.); (P.S.); (X.T.); (X.C.); (Q.A.); (C.M.)
| | - Panxia Shao
- Key Laboratory of Oasis Ecology Agricultural of Xinjiang Production and Construction Corps, Agricultural College, Shihezi University, Shihezi 832003, China; (L.C.); (Z.P.); (G.S.); (N.A.); (C.G.); (P.H.); (P.S.); (X.T.); (X.C.); (Q.A.); (C.M.)
| | - Xiaomin Tian
- Key Laboratory of Oasis Ecology Agricultural of Xinjiang Production and Construction Corps, Agricultural College, Shihezi University, Shihezi 832003, China; (L.C.); (Z.P.); (G.S.); (N.A.); (C.G.); (P.H.); (P.S.); (X.T.); (X.C.); (Q.A.); (C.M.)
| | - Xinyi Chang
- Key Laboratory of Oasis Ecology Agricultural of Xinjiang Production and Construction Corps, Agricultural College, Shihezi University, Shihezi 832003, China; (L.C.); (Z.P.); (G.S.); (N.A.); (C.G.); (P.H.); (P.S.); (X.T.); (X.C.); (Q.A.); (C.M.)
| | - Qiushuang An
- Key Laboratory of Oasis Ecology Agricultural of Xinjiang Production and Construction Corps, Agricultural College, Shihezi University, Shihezi 832003, China; (L.C.); (Z.P.); (G.S.); (N.A.); (C.G.); (P.H.); (P.S.); (X.T.); (X.C.); (Q.A.); (C.M.)
| | - Chunmei Ma
- Key Laboratory of Oasis Ecology Agricultural of Xinjiang Production and Construction Corps, Agricultural College, Shihezi University, Shihezi 832003, China; (L.C.); (Z.P.); (G.S.); (N.A.); (C.G.); (P.H.); (P.S.); (X.T.); (X.C.); (Q.A.); (C.M.)
| | - Chunyuan You
- National Key Laboratory of Crop Genetic Improvement, College of Plant Sciences & Technology, Huazhong Agricultural University, Wuhan 430070, China;
- Cotton Research Institute of the Shihezi Academy of Agriculture Science, Shihezi 832011, China;
| | - Longfu Zhu
- Key Laboratory of Oasis Ecology Agricultural of Xinjiang Production and Construction Corps, Agricultural College, Shihezi University, Shihezi 832003, China; (L.C.); (Z.P.); (G.S.); (N.A.); (C.G.); (P.H.); (P.S.); (X.T.); (X.C.); (Q.A.); (C.M.)
- National Key Laboratory of Crop Genetic Improvement, College of Plant Sciences & Technology, Huazhong Agricultural University, Wuhan 430070, China;
| | - Xinhui Nie
- Key Laboratory of Oasis Ecology Agricultural of Xinjiang Production and Construction Corps, Agricultural College, Shihezi University, Shihezi 832003, China; (L.C.); (Z.P.); (G.S.); (N.A.); (C.G.); (P.H.); (P.S.); (X.T.); (X.C.); (Q.A.); (C.M.)
| |
Collapse
|
14
|
Wang P, Dong N, Wang M, Sun G, Jia Y, Geng X, Liu M, Wang W, Pan Z, Yang Q, Li H, Wei C, Wang L, Zheng H, He S, Zhang X, Wang Q, Du X. Introgression from Gossypium hirsutum is a driver for population divergence and genetic diversity in Gossypium barbadense. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 110:764-780. [PMID: 35132720 DOI: 10.1111/tpj.15702] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/22/2022] [Accepted: 02/03/2022] [Indexed: 05/26/2023]
Affiliation(s)
- Pengpeng Wang
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences/Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, 450001, China
| | - Na Dong
- Henan Key Laboratory of Molecular Ecology and Germplasm Innovation of Cotton and Wheat, Collaborative Innovation Center of Modern Biological Breeding in Henan Province, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Maojun Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Gaofei Sun
- Anyang Institute of Technology, Anyang, 455000, China
| | - Yinhua Jia
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences/Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, 450001, China
| | - Xiaoli Geng
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences/Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, 450001, China
| | - Min Liu
- Biomarker Technologies Corporation, Beijing, China
| | - Weipeng Wang
- Henan Key Laboratory of Molecular Ecology and Germplasm Innovation of Cotton and Wheat, Collaborative Innovation Center of Modern Biological Breeding in Henan Province, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Zhaoe Pan
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences/Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, 450001, China
| | - Qiuyue Yang
- Henan Key Laboratory of Molecular Ecology and Germplasm Innovation of Cotton and Wheat, Collaborative Innovation Center of Modern Biological Breeding in Henan Province, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Hongge Li
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences/Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, 450001, China
| | - Chunyan Wei
- Henan Key Laboratory of Molecular Ecology and Germplasm Innovation of Cotton and Wheat, Collaborative Innovation Center of Modern Biological Breeding in Henan Province, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Liru Wang
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences/Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, 450001, China
| | | | - Shoupu He
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences/Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, 450001, China
| | - Xianlong Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Qinglian Wang
- Henan Key Laboratory of Molecular Ecology and Germplasm Innovation of Cotton and Wheat, Collaborative Innovation Center of Modern Biological Breeding in Henan Province, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Xiongming Du
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences/Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, 450001, China
| |
Collapse
|
15
|
Si Z, Jin S, Chen J, Wang S, Fang L, Zhu X, Zhang T, Hu Y. Construction of a high-density genetic map and identification of QTLs related to agronomic and physiological traits in an interspecific (Gossypium hirsutum × Gossypium barbadense) F2 population. BMC Genomics 2022; 23:307. [PMID: 35428176 PMCID: PMC9013169 DOI: 10.1186/s12864-022-08528-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 03/21/2022] [Indexed: 02/06/2023] Open
Abstract
Abstract
Background
Advances in genome sequencing technology, particularly restriction-site associated DNA sequence (RAD-seq) and whole-genome resequencing, have greatly aided the construction of cotton interspecific genetic maps based on single nucleotide polymorphism (SNPs), Indels, and other types of markers. High-density genetic maps can improve accuracy of quantitative trait locus (QTL) mapping, narrow down location intervals, and facilitate identification of the candidate genes.
Result
In this study, 249 individuals from an interspecific F2 population (TM-1 and Hai7124) were re-sequenced, yielding 6303 high-confidence bin markers spanning 5057.13 cM across 26 cotton chromosomes. A total of 3380 recombination hot regions RHRs were identified which unevenly distributed on the 26 chromosomes. Based on this map, 112 QTLs relating to agronomic and physiological traits from seedling to boll opening stage were identified, including 15 loci associated with 14 traits that contained genes harboring nonsynonymous SNPs. We analyzed the sequence and expression of these ten candidate genes and discovered that GhRHD3 (GH_D10G0500) may affect fiber yield while GhGPAT6 (GH_D04G1426) may affect photosynthesis efficiency.
Conclusion
Our research illustrates the efficiency of constructing a genetic map using binmap and QTL mapping on the basis of a certain size of the early-generation population. High-density genetic map features high recombination exchanges in number and distribution. The QTLs and the candidate genes identified based on this high-density genetic map may provide important gene resources for the genetic improvement of cotton.
Collapse
|
16
|
Zhao N, Wang W, Jiang K, Grover CE, Cheng C, Pan Z, Zhao C, Zhu J, Li D, Wang M, Xiao L, Yang J, Ning X, Li B, Xu H, Su Y, Aierxi A, Li P, Guo B, Wendel JF, Kong J, Hua J. A Calmodulin-Like Gene ( GbCML7) for Fiber Strength and Yield Improvement Identified by Resequencing Core Accessions of a Pedigree in Gossypium barbadense. FRONTIERS IN PLANT SCIENCE 2022; 12:815648. [PMID: 35185964 PMCID: PMC8850914 DOI: 10.3389/fpls.2021.815648] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 12/29/2021] [Indexed: 05/23/2023]
Abstract
Sea Island cotton (Gossypium barbadense) is world-renowned for its superior natural fiber. Although fiber strength is one of the most important fiber quality traits, genes contributing to fiber strength are poorly understood. Production of sea island cotton also is inextricably linked to improving its relatively low yield, thus enhancing the importance of joint improvement of both fiber quality and yield. We used genomic variation to uncover the genetic evidence of trait improvement resulting from pedigree breeding of Sea Island cotton. This pedigree was aimed at improving fiber strength and yielded an elite cultivar, XH35. Using a combination of genome-wide association study (GWAS) and selection screens, we detected 82 putative fiber-strength-related genes. Expression analysis confirmed a calmodulin-like gene, GbCML7, which enhanced fiber strength in a specific haplotype. This gene is a major-effect gene, which interacts with a minor-effect gene, GbTUA3, facilitating the enhancement of fiber strength in a synergistic fashion. Moreover, GbCML7 participates in the cooperative improvement of fiber strength, fiber length, and fiber uniformity, though a slight compromise exists between the first two of these traits and the latter. Importantly, GbCML7 is shown to boost yield in some backgrounds by increasing multiple yield components to varying degrees, especially boll number. Our work provides valuable genomic evidence and a key genetic factor for the joint improvement of fiber quality and yield in Sea Island cotton.
Collapse
Affiliation(s)
- Nan Zhao
- Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education/College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Weiran Wang
- Institute of Economic Crops, Xinjiang Academy of Agricultural Sciences, Ürümqi, China
| | - Kaiyun Jiang
- Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education/College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Corrinne E. Grover
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, IA, United States
| | - Cheng Cheng
- Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education/College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Zhuanxia Pan
- Institute of Cotton Research, Shanxi Agricultural University, Yuncheng, China
| | - Cunpeng Zhao
- Cotton Research Institute, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, China
| | - Jiahui Zhu
- Institute of Economic Crops, Xinjiang Academy of Agricultural Sciences, Ürümqi, China
| | - Dan Li
- Cotton Research Institute, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, China
| | - Meng Wang
- Institute of Economic Crops, Xinjiang Academy of Agricultural Sciences, Ürümqi, China
| | - Li Xiao
- Institute of Economic Crops, Xinjiang Academy of Agricultural Sciences, Ürümqi, China
| | - Jing Yang
- Institute of Economic Crops, Xinjiang Academy of Agricultural Sciences, Ürümqi, China
| | - Xinmin Ning
- Institute of Economic Crops, Xinjiang Academy of Agricultural Sciences, Ürümqi, China
| | - Bin Li
- Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education/College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Haijiang Xu
- Institute of Economic Crops, Xinjiang Academy of Agricultural Sciences, Ürümqi, China
| | - Ying Su
- Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education/College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Alifu Aierxi
- Institute of Economic Crops, Xinjiang Academy of Agricultural Sciences, Ürümqi, China
| | - Pengbo Li
- Institute of Cotton Research, Shanxi Agricultural University, Yuncheng, China
| | - Baosheng Guo
- Cotton Research Institute, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, China
| | - Jonathan F. Wendel
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, IA, United States
| | - Jie Kong
- Institute of Economic Crops, Xinjiang Academy of Agricultural Sciences, Ürümqi, China
| | - Jinping Hua
- Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education/College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| |
Collapse
|
17
|
Peng Z, Li H, Sun G, Dai P, Geng X, Wang X, Zhang X, Wang Z, Jia Y, Pan Z, Chen B, Du X, He S. CottonGVD: A Comprehensive Genomic Variation Database for Cultivated Cottons. FRONTIERS IN PLANT SCIENCE 2021; 12. [PMID: 34992626 PMCID: PMC8724205 DOI: 10.3389/fpls.2021.803736] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Cultivated cottons are the most important economic crop, which produce natural fiber for the textile industry. In recent years, the genetic basis of several essential traits for cultivated cottons has been gradually elucidated by decoding their genomic variations. Although an abundance of resequencing data is available in public, there is still a lack of a comprehensive tool to exhibit the results of genomic variations and genome-wide association study (GWAS). To assist cotton researchers in utilizing these data efficiently and conveniently, we constructed the cotton genomic variation database (CottonGVD; http://120.78.174.209/ or http://db.cngb.org/cottonGVD). This database contains the published genomic information of three cultivated cotton species, the corresponding population variations (SNP and InDel markers), and the visualized results of GWAS for major traits. Various built-in genomic tools help users retrieve, browse, and query the variations conveniently. The database also provides interactive maps (e.g., Manhattan map, scatter plot, heatmap, and linkage disequilibrium block) to exhibit GWAS and expression GWAS results. Cotton researchers could easily focus on phenotype-associated loci visualization, and they are interested in and screen for candidate genes. Moreover, CottonGVD will continue to update by adding more data and functions.
Collapse
|
18
|
Yu J, Hui Y, Chen J, Yu H, Gao X, Zhang Z, Li Q, Zhu S, Zhao T. Whole-genome resequencing of 240 Gossypium barbadense accessions reveals genetic variation and genes associated with fiber strength and lint percentage. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:3249-3261. [PMID: 34240238 DOI: 10.1007/s00122-021-03889-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 06/08/2021] [Indexed: 05/26/2023]
Abstract
KEY MESSAGE Genetic variation in a G. barbadense population was revealed using resquencing. GWAS on G.barbadense population identified several candidate genes associated with fiber strength and lint percentage. Gossypium barbadense is the second-largest cultivated cotton species planted in the world, which is characterized by high fiber quality. Here, we described the global pattern of genetic polymorphisms for 240 G. barbadense accessions based on the whole-genome resequencing. A total of 3,632,231 qualified single-nucleotide polymorphisms (SNPs) and 221,354 insertion-deletions (indels) were obtained. We conducted a genome-wide association study (GWAS) on 12 traits under four environments. Two traits with more stable associated variants, fiber strength and lint percentage, were chosen for further analysis. Three putative candidate genes, HD16 orthology (GB_D11G3437), WDL2 orthology (GB_D11G3460) and TUBA1 orthology (GB_D11G3471), on chromosome D11 were found to be associated with fiber strength, and one gene orthologous to Arabidopsis Receptor-like protein kinase HERK 1 (GB_A07G1034) was predicated to be the candidate gene for the lint percentage improvement. The identified genes may serve as promising targets for genetic engineering to accelerate the breeding process for G. barbadense and the high-density genome variation map constructed in this work may facilitate our understanding of the genetic architecture of cotton traits.
Collapse
Affiliation(s)
- Jingwen Yu
- Institute of Crop Science, College of Agriculture, Zhejiang University, Hangzhou, 310058, China
| | - Yixuan Hui
- Institute of Crop Science, College of Agriculture, Zhejiang University, Hangzhou, 310058, China
| | - Jinhong Chen
- Institute of Crop Science, College of Agriculture, Zhejiang University, Hangzhou, 310058, China
| | - Hurong Yu
- Institute of Crop Science, College of Agriculture, Zhejiang University, Hangzhou, 310058, China
| | - Xinpeng Gao
- Novogene Bioinformatics Institute, Beijing, 100083, China
| | - Zhaohui Zhang
- Hainan Institute, Zhejiang University, Sanya, 572025, China
| | - Qin Li
- Hainan Institute, Zhejiang University, Sanya, 572025, China
| | - Shuijin Zhu
- Institute of Crop Science, College of Agriculture, Zhejiang University, Hangzhou, 310058, China.
- Hainan Institute, Zhejiang University, Sanya, 572025, China.
| | - Tianlun Zhao
- Institute of Crop Science, College of Agriculture, Zhejiang University, Hangzhou, 310058, China.
- Hainan Institute, Zhejiang University, Sanya, 572025, China.
| |
Collapse
|
19
|
Fang L, Zhao T, Hu Y, Si Z, Zhu X, Han Z, Liu G, Wang S, Ju L, Guo M, Mei H, Wang L, Qi B, Wang H, Guan X, Zhang T. Divergent improvement of two cultivated allotetraploid cotton species. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:1325-1336. [PMID: 33448110 PMCID: PMC8313128 DOI: 10.1111/pbi.13547] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/24/2020] [Accepted: 01/03/2021] [Indexed: 05/21/2023]
Abstract
Interspecific genomic variation can provide a genetic basis for local adaptation and domestication. A series of studies have presented its role of interspecific haplotypes and introgressions in adaptive traits, but few studies have addressed their role in improving agronomic character. Two allotetraploid Gossypium species, Gossypium barbadense (Gb) and G. hirsutum (Gh) originating from the Americas, are cultivated independently. Here, through sequencing and the comparison of one GWAS panel in 229 Gb accessions and two GWAS panels in 491 Gh accessions, we found that most associated loci or functional haplotypes for agronomic traits were highly divergent, representing the strong divergent improvement between Gb and Gh. Using a comprehensive interspecific haplotype map, we revealed that six interspecific introgressions from Gh to Gb were significantly associated with the phenotypic performance of Gb, which could explain 5%-40% of phenotypic variation in yield and fibre qualities. In addition, three introgressions overlapped with six associated loci in Gb, indicating that these introgression regions were under further selection and stabilized during improvement. A single interspecific introgression often possessed yield-increasing potential but decreased fibre qualities, or the opposite, making it difficult to simultaneously improve yield and fibre qualities. Our study not only has proved the importance of interspecific functional haplotypes or introgressions in the divergent improvement of Gb and Gh, but also supports their potential value in further human-mediated hybridization or precision breeding.
Collapse
Affiliation(s)
- Lei Fang
- Zhejiang Provincial Key Laboratory of Crop Genetic ResourcesInstitute of Crop SciencePlant Precision Breeding AcademyCollege of Agriculture and BiotechnologyZhejiang UniversityHangzhouChina
| | - Ting Zhao
- Zhejiang Provincial Key Laboratory of Crop Genetic ResourcesInstitute of Crop SciencePlant Precision Breeding AcademyCollege of Agriculture and BiotechnologyZhejiang UniversityHangzhouChina
| | - Yan Hu
- Zhejiang Provincial Key Laboratory of Crop Genetic ResourcesInstitute of Crop SciencePlant Precision Breeding AcademyCollege of Agriculture and BiotechnologyZhejiang UniversityHangzhouChina
| | - Zhanfeng Si
- Zhejiang Provincial Key Laboratory of Crop Genetic ResourcesInstitute of Crop SciencePlant Precision Breeding AcademyCollege of Agriculture and BiotechnologyZhejiang UniversityHangzhouChina
| | - Xiefei Zhu
- State Key Laboratory of Crop Genetics and Germplasm EnhancementNanjing Agricultural UniversityNanjingChina
| | - Zegang Han
- Zhejiang Provincial Key Laboratory of Crop Genetic ResourcesInstitute of Crop SciencePlant Precision Breeding AcademyCollege of Agriculture and BiotechnologyZhejiang UniversityHangzhouChina
| | - Guizhen Liu
- State Key Laboratory of Crop Genetics and Germplasm EnhancementNanjing Agricultural UniversityNanjingChina
- Henan Province Seed StationZhengzhouChina
| | - Sen Wang
- State Key Laboratory of Crop Genetics and Germplasm EnhancementNanjing Agricultural UniversityNanjingChina
- Institute of Food CropsJiangsu Academy of Agricultural SciencesNanjingChina
| | - Longzhen Ju
- State Key Laboratory of Crop Genetics and Germplasm EnhancementNanjing Agricultural UniversityNanjingChina
| | - Menglan Guo
- Zhejiang Provincial Key Laboratory of Crop Genetic ResourcesInstitute of Crop SciencePlant Precision Breeding AcademyCollege of Agriculture and BiotechnologyZhejiang UniversityHangzhouChina
| | - Huan Mei
- Zhejiang Provincial Key Laboratory of Crop Genetic ResourcesInstitute of Crop SciencePlant Precision Breeding AcademyCollege of Agriculture and BiotechnologyZhejiang UniversityHangzhouChina
| | - Luyao Wang
- Zhejiang Provincial Key Laboratory of Crop Genetic ResourcesInstitute of Crop SciencePlant Precision Breeding AcademyCollege of Agriculture and BiotechnologyZhejiang UniversityHangzhouChina
| | - Bowen Qi
- Zhejiang Provincial Key Laboratory of Crop Genetic ResourcesInstitute of Crop SciencePlant Precision Breeding AcademyCollege of Agriculture and BiotechnologyZhejiang UniversityHangzhouChina
| | - Heng Wang
- Zhejiang Provincial Key Laboratory of Crop Genetic ResourcesInstitute of Crop SciencePlant Precision Breeding AcademyCollege of Agriculture and BiotechnologyZhejiang UniversityHangzhouChina
| | - Xueying Guan
- Zhejiang Provincial Key Laboratory of Crop Genetic ResourcesInstitute of Crop SciencePlant Precision Breeding AcademyCollege of Agriculture and BiotechnologyZhejiang UniversityHangzhouChina
| | - Tianzhen Zhang
- Zhejiang Provincial Key Laboratory of Crop Genetic ResourcesInstitute of Crop SciencePlant Precision Breeding AcademyCollege of Agriculture and BiotechnologyZhejiang UniversityHangzhouChina
| |
Collapse
|
20
|
Wen T, Liu C, Wang T, Wang M, Tang F, He L. Genomic mapping and identification of candidate genes encoding nulliplex-branch trait in sea-island cotton ( Gossypium barbadense L.) by multi-omics analysis. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2021; 41:34. [PMID: 37309326 PMCID: PMC10236067 DOI: 10.1007/s11032-021-01229-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 05/06/2021] [Indexed: 06/14/2023]
Abstract
Nulliplex branch is a key architectural trait in sea-island cotton (Gossypium barbadense L.), but its genetic basis is not well understood. Here we investigated the genetic basis of the nulliplex-branch trait in cotton by combining newly created bulked segregant analysis (BSA)-seq data, published RNA-seq data, and published whole-genome resequencing (WGR) data. We delimited the nulliplex-branch locus (qD07-NB) to D07, region 14.8-17.1 Mb, using various BSA methods and markers. We integrated our BSA data with WGR data of sea-island cotton varieties and detected a missense single-nucleotide polymorphism in the candidate gene (Gbar_D07G011870) of qD07-NB. This gene was under positive selection during sea-island cotton breeding in the Xinjiang Uygur Autonomous Region, China. Notably, the nulliplex-branch varieties possessed a better fiber quality than the long-branch varieties, and a set of high-quality molecular markers was identified for molecular breeding of the nulliplex-branch trait in cotton. We combined BSA-seq and RNA-seq data to compare gene expression profiles between two elite sea-island cotton varieties during three developmental stages. We identified eleven relevant candidate genes, five downregulated and six upregulated, in the qD07-NB locus. This research will expand our understanding of the genetic basis of the nulliplex-branch trait and provide guidance for architecture-focused breeding in cotton. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-021-01229-w.
Collapse
Affiliation(s)
- Tianwang Wen
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045 Jiangxi China
| | - Chunyan Liu
- College of Plant Science, Tarim University, Alaer, 843300 Xinjiang China
| | - Tianyou Wang
- College of Plant Science, Tarim University, Alaer, 843300 Xinjiang China
| | - Mengxing Wang
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045 Jiangxi China
| | - Feiyu Tang
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045 Jiangxi China
| | - Liangrong He
- College of Plant Science, Tarim University, Alaer, 843300 Xinjiang China
| |
Collapse
|
21
|
Elassbli H, Abdelraheem A, Zhu Y, Teng Z, Wheeler TA, Kuraparthy V, Hinze L, Stelly DM, Wedegaertner T, Zhang J. Evaluation and genome-wide association study of resistance to bacterial blight race 18 in U.S. Upland cotton germplasm. Mol Genet Genomics 2021; 296:719-729. [PMID: 33779828 DOI: 10.1007/s00438-021-01779-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 03/19/2021] [Indexed: 11/26/2022]
Abstract
Bacterial blight (BB), caused by Xanthomonas citri pv. malvacearum (Xcm), is a destructive disease to cotton production in many countries. In the U.S., Xcm race 18 is the most virulent and widespread race and can cause serious yield losses. Planting BB-resistant cotton cultivars is the most effective method of controlling this disease. In this study, 335 U.S. Upland cotton accessions were evaluated for resistance to race 18 using artificial inoculations by scratching cotyledons on an individual plant basis in a greenhouse. The analysis of variance detected significant genotypic variation in disease incidence, and 50 accessions were resistant including 38 lines with no symptoms on either cotyledons or true leaves. Many of the resistant lines were developed in the MAR (multi-adversity resistance) breeding program at Texas A&M University, whereas others were developed before race 18 was first reported in the U.S. in 1973, suggesting a broad base of resistance to race 18. A genome-wide association study (GWAS) based on 26,301 single nucleotide polymorphic (SNP) markers detected 11 quantitative trait loci (QTL) anchored by 79 SNPs, including three QTL on each of the three chromosomes A01, A05 and D02, and one QTL on each of D08 and D10. This study has identified a set of obsolete Upland germplasm with resistance to race 18 and specific chromosomal regions delineated by SNPs for resistance. The results will assist in breeding cotton for BB resistance and facilitate further genomic studies in fine mapping resistance genes to enhance the understanding of the genetic basis of BB resistance in cotton.
Collapse
Affiliation(s)
- Hanan Elassbli
- Department of Plant and Environmental Sciences, New Mexico State University, Las Cruces, NM, 88003, USA
| | - Abdelraheem Abdelraheem
- Department of Plant and Environmental Sciences, New Mexico State University, Las Cruces, NM, 88003, USA
| | - Yi Zhu
- Department of Plant and Environmental Sciences, New Mexico State University, Las Cruces, NM, 88003, USA
| | - Zonghua Teng
- Department of Plant and Environmental Sciences, New Mexico State University, Las Cruces, NM, 88003, USA
| | - Terry A Wheeler
- Texas A&M AgriLife Research, 1102 E. Drew St, Lubbock, TX, 79403, USA
| | - Vasu Kuraparthy
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, NC, 27695-7620, USA
| | - Lori Hinze
- Crop Germplasm Research Unit, USDA, Agricultural Research Service, College Station, TX, 77845, USA
| | - David M Stelly
- Department of Soil and Crop Sciences, Texas A&M University, College Station, TX, 77843-2474, USA
| | | | - Jinfa Zhang
- Department of Plant and Environmental Sciences, New Mexico State University, Las Cruces, NM, 88003, USA.
| |
Collapse
|
22
|
Song X, Zhu G, Hou S, Ren Y, Amjid MW, Li W, Guo W. Genome-Wide Association Analysis Reveals Loci and Candidate Genes Involved in Fiber Quality Traits Under Multiple Field Environments in Cotton ( Gossypium hirsutum). FRONTIERS IN PLANT SCIENCE 2021; 12:695503. [PMID: 34421946 PMCID: PMC8374309 DOI: 10.3389/fpls.2021.695503] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 06/16/2021] [Indexed: 05/17/2023]
Abstract
Fiber length, fiber strength, and fiber micronaire are the main fiber quality parameters in cotton. Thus, mining the elite and stable loci/alleles related to fiber quality traits and elucidating the relationship between the two may accelerate genetic improvement of fiber quality in cotton. Here, genome-wide association analysis (GWAS) was performed for fiber quality parameters based on phenotypic data, and 56,010 high-quality single nucleotide polymorphisms (SNPs) using 242 upland cotton accessions under 12 field environments were obtained. Phenotypic analysis exhibited that fiber length (FL) had a positive correlation with fiber strength (FS) and had a negative correlation with fiber micronaire (Mic). Genetic analysis also indicated that FL, FS, and Mic had high heritability of more than 80%. A total of 67 stable quantitative trait loci (QTLs) were identified through GWAS analysis, including 31 for FL, 21 for FS, and 22 for Mic. Of them, three pairs homologous QTLs were detected between A and D subgenomes, and seven co-located QTLs with two fiber quality parameters were found. Compared with the reported QTLs, 34 co-located with previous studies, and 33 were newly revealed. Integrated with transcriptome analysis, we selected 256, 244, and 149 candidate genes for FL, FS, and Mic, respectively. Gene Ontology (GO) analysis showed that most of the genes located in QTLs interval of the three fiber quality traits were involved in sugar biosynthesis, sugar metabolism, microtubule, and cytoskeleton organization, which played crucial roles in fiber development. Through correlation analysis between haplotypes and phenotypes, three genes (GH_A05G1494, GH_D11G3097, and GH_A05G1082) predominately expressed in fiber development stages were indicated to be potentially responsible for FL, FS, and Mic, respectively. The GH_A05G1494 encoded a protein containing SGS-domain, which is related to tubulin-binding and ubiquitin-protein ligase binding. The GH_D11G3097 encoded 20S proteasome beta subunit G1, and was involved in the ubiquitin-dependent protein catabolic process. The GH_A05G1082 encoded RAN binding protein 1 with a molecular function of GTPase activator activity. These results provide new insights and candidate loci/genes for the improvement of fiber quality in cotton.
Collapse
|
23
|
Su X, Zhu G, Song X, Xu H, Li W, Ning X, Chen Q, Guo W. Genome-wide association analysis reveals loci and candidate genes involved in fiber quality traits in sea island cotton (Gossypium barbadense). BMC PLANT BIOLOGY 2020; 20:289. [PMID: 32571222 PMCID: PMC7310526 DOI: 10.1186/s12870-020-02502-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 06/17/2020] [Indexed: 05/13/2023]
Abstract
BACKGROUND Sea island cotton (Gossypium barbadense) has markedly superior high quality fibers, which plays an important role in the textile industry and acts as a donor for upland cotton (G. hirsutum) fiber quality improvement. The genetic characteristics analysis and the identification of key genes will be helpful to understand the mechanism of fiber development and breeding utilization in sea island cotton. RESULTS In this study, 279 sea island cotton accessions were collected from different origins for genotyping and phenotyping fiber quality traits. A set of 6303 high quality single nucleotide polymorphisms (SNPs) were obtained by high-density CottonSNP80K array. The population characteristics showed that the sea island cotton accessions had wide genetic diversity and were clustered into three groups, with Group1 closely related to Menoufi, an original sea island cotton landrace, and Group2 and Group3 related to widely introduced accessions from Egypt, USA and Former Soviet Union. Further, we used 249 accessions and evaluated five fiber quality traits under normal and salt environments over 2 years. Except for fiber uniformity (FU), fiber length (FL) and fiber elongation (FE) were significantly decreased in salt conditions, while fiber strength (FS) and fiber micronaire (MIC) were increased. Based on 6303 SNPs and genome-wide association study (GWAS) analysis, a total of 34 stable quantitative trait loci (QTLs) were identified for the five fiber quality traits with 25 detected simultaneously under normal and salt environments. Gene Ontology (GO) analysis indicated that candidate genes in the 25 overlapped QTLs were enriched mostly in "cellular and biological process". In addition, "xylem development" and "response to hormone" pathways were also found. Haplotype analyses found that GB_A03G0335 encoding an E3 ubiquitin-protein ligase in QTL TM6004 had SNP variation (A/C) in gene region, was significantly correlated with FL, FS, FU, and FE, implying a crucial role in fiber quality. CONCLUSIONS The present study provides a foundation for genetic diversity of sea island cotton accessions and will contribute to fiber quality improvement in breeding practice.
Collapse
Affiliation(s)
- Xiujuan Su
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Engineering Research Center of Hybrid Cotton Development (the Ministry of Education), Nanjing Agricultural University, Nanjing, 210095 China
- Engineering Research Center for Cotton (the Ministry of Education), Xinjiang Agricultural University, Urumqi, 830052 China
| | - Guozhong Zhu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Engineering Research Center of Hybrid Cotton Development (the Ministry of Education), Nanjing Agricultural University, Nanjing, 210095 China
| | - Xiaohui Song
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Engineering Research Center of Hybrid Cotton Development (the Ministry of Education), Nanjing Agricultural University, Nanjing, 210095 China
| | - Haijiang Xu
- Institute of Industrial Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, 830091 China
| | - Weixi Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Engineering Research Center of Hybrid Cotton Development (the Ministry of Education), Nanjing Agricultural University, Nanjing, 210095 China
| | - Xinzhu Ning
- Cotton Research Institute, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, 832000 China
| | - Quanjia Chen
- Engineering Research Center for Cotton (the Ministry of Education), Xinjiang Agricultural University, Urumqi, 830052 China
| | - Wangzhen Guo
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Engineering Research Center of Hybrid Cotton Development (the Ministry of Education), Nanjing Agricultural University, Nanjing, 210095 China
| |
Collapse
|