1
|
Wang M, Cao Z, Jiang B, Wang K, Xie D, Chen L, Shi S, Yang S, Lu H, Peng Q. Chromosome-level genome assembly and population genomics reveals crucial selection for subgynoecy development in chieh-qua. HORTICULTURE RESEARCH 2024; 11:uhae113. [PMID: 38898961 PMCID: PMC11186066 DOI: 10.1093/hr/uhae113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 04/10/2024] [Indexed: 06/21/2024]
Abstract
Chieh-qua is an important cucurbit crop and very popular in South China and Southeast Asia. Despite its significance, its genetic basis and domestication history are unclear. In this study, we have successfully generated a chromosome-level reference genome assembly for the chieh-qua 'A36' using a hybrid assembly strategy that combines PacBio long reads and Illumina short reads. The assembled genome of chieh-qua is approximately 953.3 Mb in size and is organized into 12 chromosomes, with contig N50 of 6.9 Mb and scaffold N50 of 68.2 Mb. Notably, the chieh-qua genome is comparable in size to the wax gourd genome. Through gene prediction analysis, we have identified a total of 24 593 protein-coding genes in the A36 genome. Additionally, approximately 56.6% (539.3 Mb) of the chieh-qua genome consists of repetitive sequences. Comparative genome analysis revealed that chieh-qua and wax gourd are closely related, indicating a close evolutionary relationship between the two species. Population genomic analysis, employing 129 chieh-qua accessions and 146 wax gourd accessions, demonstrated that chieh-qua exhibits greater genetic diversity compared to wax gourd. We also employed the GWAS method to identify related QTLs associated with subgynoecy, an interested and important trait in chieh-qua. The MYB59 (BhiCQ0880026447) exhibited relatively high expression levels in the shoot apex of four subgynoecious varieties compared with monoecious varieties. Overall, this research provides insights into the domestication history of chieh-qua and offers valuable genomic resources for further molecular research.
Collapse
Affiliation(s)
- Min Wang
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou 510640, China
| | - Zhenqiang Cao
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou 510640, China
| | - Biao Jiang
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou 510640, China
| | - Kejian Wang
- China National Rice Research Institute, Hangzhou 310012, China
| | - Dasen Xie
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou 510640, China
| | - Lin Chen
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou 510640, China
| | - Shaoqi Shi
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou 510640, China
| | - Songguang Yang
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou 510640, China
| | - Hongwei Lu
- China National Rice Research Institute, Hangzhou 310012, China
| | - Qingwu Peng
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou 510640, China
| |
Collapse
|
2
|
Frachon L, Schiestl FP. Rapid genomic evolution in Brassica rapa with bumblebee selection in experimental evolution. BMC Ecol Evol 2024; 24:7. [PMID: 38195402 PMCID: PMC10775529 DOI: 10.1186/s12862-023-02194-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 12/20/2023] [Indexed: 01/11/2024] Open
Abstract
BACKGROUND Insect pollinators shape rapid phenotypic evolution of traits related to floral attractiveness and plant reproductive success. However, the underlying genomic changes remain largely unknown despite their importance in predicting adaptive responses to natural or to artificial selection. Based on a nine-generation experimental evolution study with fast cycling Brassica rapa plants adapting to bumblebees, we investigate the genomic evolution associated with the previously observed parallel phenotypic evolution. In this current evolve and resequencing (E&R) study, we conduct a genomic scan of the allele frequency changes along the genome in bumblebee-pollinated and hand-pollinated plants and perform a genomic principal component analysis (PCA). RESULTS We highlight rapid genomic evolution associated with the observed phenotypic evolution mediated by bumblebees. Controlling for genetic drift, we observe significant changes in allelic frequencies at multiple loci. However, this pattern differs according to the replicate of bumblebee-pollinated plants, suggesting putative non-parallel genomic evolution. Finally, our study underlines an increase in genomic variance implying the putative involvement of multiple loci in short-term pollinator adaptation. CONCLUSIONS Overall, our study enhances our understanding of the complex interactions between pollinator and plants, providing a stepping stone towards unravelling the genetic basis of plant genomic adaptation to biotic factors in the environment.
Collapse
Affiliation(s)
- Léa Frachon
- Department of Systematic and Evolutionary Botany, University of Zürich, Zürich, Switzerland.
| | - Florian P Schiestl
- Department of Systematic and Evolutionary Botany, University of Zürich, Zürich, Switzerland
| |
Collapse
|
3
|
Strazzer P, Verbree B, Bliek M, Koes R, Quattrocchio FM. The Amsterdam petunia germplasm collection: A tool in plant science. FRONTIERS IN PLANT SCIENCE 2023; 14:1129724. [PMID: 37025133 PMCID: PMC10070740 DOI: 10.3389/fpls.2023.1129724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 02/24/2023] [Indexed: 06/19/2023]
Abstract
Petunia hybrida is a plant model system used by many researchers to investigate a broad range of biological questions. One of the reasons for the success of this organism as a lab model is the existence of numerous mutants, involved in a wide range of processes, and the ever-increasing size of this collection owing to a highly active and efficient transposon system. We report here on the origin of petunia-based research and describe the collection of petunia lines housed in the University of Amsterdam, where many of the existing genotypes are maintained.
Collapse
|
4
|
Binaghi M, Esfeld K, Mandel T, Freitas LB, Roesti M, Kuhlemeier C. Genetic architecture of a pollinator shift and its fate in secondary hybrid zones of two Petunia species. BMC Biol 2023; 21:58. [PMID: 36941631 PMCID: PMC10029178 DOI: 10.1186/s12915-023-01561-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 03/10/2023] [Indexed: 03/23/2023] Open
Abstract
BACKGROUND Theory suggests that the genetic architecture of traits under divergent natural selection influences how easily reproductive barriers evolve and are maintained between species. Divergently selected traits with a simple genetic architecture (few loci with major phenotypic effects) should facilitate the establishment and maintenance of reproductive isolation between species that are still connected by some gene flow. While empirical support for this idea appears to be mixed, most studies test the influence of trait architectures on reproductive isolation only indirectly. Petunia plant species are, in part, reproductively isolated by their different pollinators. To investigate the genetic causes and consequences of this ecological isolation, we deciphered the genetic architecture of three floral pollination syndrome traits in naturally occurring hybrids between the widespread Petunia axillaris and the highly endemic and endangered P. exserta. RESULTS Using population genetics, Bayesian linear mixed modelling and genome-wide association studies, we found that the three pollination syndrome traits vary in genetic architecture. Few genome regions explain a majority of the variation in flavonol content (defining UV floral colour) and strongly predict the trait value in hybrids irrespective of interspecific admixture in the rest of their genomes. In contrast, variation in pistil exsertion and anthocyanin content (defining visible floral colour) is controlled by many genome-wide loci. Opposite to flavonol content, the genome-wide proportion of admixture between the two species predicts trait values in their hybrids. Finally, the genome regions strongly associated with the traits do not show extreme divergence between individuals representing the two species, suggesting that divergent selection on these genome regions is relatively weak within their contact zones. CONCLUSIONS Among the traits analysed, those with a more complex genetic architecture are best maintained in association with the species upon their secondary contact. We propose that this maintained genotype-phenotype association is a coincidental consequence of the complex genetic architectures of these traits: some of their many underlying small-effect loci are likely to be coincidentally linked with the actual barrier loci keeping these species partially isolated upon secondary contact. Hence, the genetic architecture of a trait seems to matter for the outcome of hybridization not only then when the trait itself is under selection.
Collapse
Affiliation(s)
- Marta Binaghi
- Institute of Plant Sciences, University of Bern, 3013, Bern, Switzerland
| | - Korinna Esfeld
- Institute of Plant Sciences, University of Bern, 3013, Bern, Switzerland
| | - Therese Mandel
- Institute of Plant Sciences, University of Bern, 3013, Bern, Switzerland
| | - Loreta B Freitas
- Department of Genetics, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, 91501-970, Brazil
| | - Marius Roesti
- Institute of Ecology and Evolution, University of Bern, 3012, Bern, Switzerland
| | - Cris Kuhlemeier
- Institute of Plant Sciences, University of Bern, 3013, Bern, Switzerland.
| |
Collapse
|
5
|
Li C, Binaghi M, Pichon V, Cannarozzi G, Brandão de Freitas L, Hanemian M, Kuhlemeier C. Tight genetic linkage of genes causing hybrid necrosis and pollinator isolation between young species. NATURE PLANTS 2023; 9:420-432. [PMID: 36805038 PMCID: PMC10027609 DOI: 10.1038/s41477-023-01354-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 01/19/2023] [Indexed: 05/18/2023]
Abstract
The mechanisms of reproductive isolation that cause phenotypic diversification and eventually speciation are a major topic of evolutionary research. Hybrid necrosis is a post-zygotic isolation mechanism in which cell death develops in the absence of pathogens. It is often due to the incompatibility between proteins from two parents. Here we describe a unique case of hybrid necrosis due to an incompatibility between loci on chromosomes 2 and 7 between two pollinator-isolated Petunia species. Typical immune responses as well as endoplasmic reticulum stress responses are induced in the necrotic line. The locus on chromosome 2 encodes ChiA1, a bifunctional GH18 chitinase/lysozyme. The enzymatic activity of ChiA1 is dispensable for the development of necrosis. We propose that the extremely high expression of ChiA1 involves a positive feedback loop between the loci on chromosomes 2 and 7. ChiA1 is tightly linked to major genes involved in the adaptation to different pollinators, a form of pre-zygotic isolation. This linkage of pre- and post-zygotic barriers strengthens reproductive isolation and probably contributes to rapid diversification and speciation.
Collapse
Affiliation(s)
- Chaobin Li
- Institute of Plant Sciences, University of Bern, Bern, Switzerland
| | - Marta Binaghi
- Institute of Plant Sciences, University of Bern, Bern, Switzerland
| | - Vivien Pichon
- Institute of Plant Sciences, University of Bern, Bern, Switzerland
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Gina Cannarozzi
- Institute of Plant Sciences, University of Bern, Bern, Switzerland
- Chemistry/Biology/Pharmacy Information Center, ETH Zürich, Zürich, Switzerland
| | - Loreta Brandão de Freitas
- Department of Genetics, Laboratory of Molecular Evolution, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Mathieu Hanemian
- Institute of Plant Sciences, University of Bern, Bern, Switzerland.
- Laboratoire des Interactions Plantes-Microbes-Environnement (LIPME), INRAE, CNRS, Université de Toulouse, Castanet-Tolosan, France.
| | - Cris Kuhlemeier
- Institute of Plant Sciences, University of Bern, Bern, Switzerland.
| |
Collapse
|
6
|
Ding B, Li J, Gurung V, Lin Q, Sun X, Yuan YW. The leaf polarity factors SGS3 and YABBYs regulate style elongation through auxin signaling in Mimulus lewisii. THE NEW PHYTOLOGIST 2021; 232:2191-2206. [PMID: 34449905 DOI: 10.1111/nph.17702] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 08/18/2021] [Indexed: 06/13/2023]
Abstract
Style length is a major determinant of breeding strategies in flowering plants and can vary dramatically between and within species. However, little is known about the genetic and developmental control of style elongation. We characterized the role of two classes of leaf adaxial-abaxial polarity factors, SUPPRESSOR OF GENE SILENCING3 (SGS3) and the YABBY family transcription factors, in the regulation of style elongation in Mimulus lewisii. We also examined the spatiotemporal patterns of auxin response during style development. Loss of SGS3 function led to reduced style length via limiting cell division, and downregulation of YABBY genes by RNA interference resulted in shorter styles by decreasing both cell division and cell elongation. We discovered an auxin response minimum between the stigma and ovary during the early stages of pistil development that marks style differentiation. Subsequent redistribution of auxin response to this region was correlated with style elongation. Auxin response was substantially altered when both SGS3 and YABBY functions were disrupted. We suggest that auxin signaling plays a central role in style elongation and that the way in which auxin signaling controls the different cell division and elongation patterns underpinning natural style length variation is a major question for future research.
Collapse
Affiliation(s)
- Baoqing Ding
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, 06269, USA
| | - Jingjian Li
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, 06269, USA
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Vandana Gurung
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, 06269, USA
| | - Qiaoshan Lin
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, 06269, USA
| | - Xuemei Sun
- Qinghai Key Laboratory of Genetics and Physiology of Vegetables, Qinghai University, Xining, 810008, China
| | - Yao-Wu Yuan
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, 06269, USA
- Institute for Systems Genomics, University of Connecticut, Storrs, CT, 06269, USA
| |
Collapse
|
7
|
Berardi AE, Esfeld K, Jäggi L, Mandel T, Cannarozzi GM, Kuhlemeier C. Complex evolution of novel red floral color in Petunia. THE PLANT CELL 2021; 33:2273-2295. [PMID: 33871652 PMCID: PMC8364234 DOI: 10.1093/plcell/koab114] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 04/12/2021] [Indexed: 05/20/2023]
Abstract
Red flower color has arisen multiple times and is generally associated with hummingbird pollination. The majority of evolutionary transitions to red color proceeded from purple lineages and tend to be genetically simple, almost always involving a few loss-of-function mutations of major phenotypic effect. Here we report on the complex evolution of a novel red floral color in the hummingbird-pollinated Petunia exserta (Solanaceae) from a colorless ancestor. The presence of a red color is remarkable because the genus cannot synthesize red anthocyanins and P. exserta retains a nonfunctional copy of the key MYB transcription factor AN2. We show that moderate upregulation and a shift in tissue specificity of an AN2 paralog, DEEP PURPLE, restores anthocyanin biosynthesis in P. exserta. An essential shift in anthocyanin hydroxylation occurred through rebalancing the expression of three hydroxylating genes. Furthermore, the downregulation of an acyltransferase promotes reddish hues in typically purple pigments by preventing acyl group decoration of anthocyanins. This study presents a rare case of a genetically complex evolutionary transition toward the gain of a novel red color.
Collapse
Affiliation(s)
- Andrea E. Berardi
- Institute of Plant Sciences, University of Bern, Bern 3013, Switzerland
| | - Korinna Esfeld
- Institute of Plant Sciences, University of Bern, Bern 3013, Switzerland
| | - Lea Jäggi
- Institute of Plant Sciences, University of Bern, Bern 3013, Switzerland
| | - Therese Mandel
- Institute of Plant Sciences, University of Bern, Bern 3013, Switzerland
| | | | - Cris Kuhlemeier
- Institute of Plant Sciences, University of Bern, Bern 3013, Switzerland
- Author for correspondence:
| |
Collapse
|
8
|
Robinson S. Mechanobiology of cell division in plant growth. THE NEW PHYTOLOGIST 2021; 231:559-564. [PMID: 33774836 DOI: 10.1111/nph.17369] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 03/10/2021] [Indexed: 06/12/2023]
Abstract
Cell division in plants is particularly important as cells cannot rearrange. It therefore determines the arrangement of cells (topology) and their size and shape (geometry). Cell division reduces mechanical stress locally by producing smaller cells and alters mechanical properties by reinforcing the mechanical wall network, both of which can alter overall tissue morphology. Division orientation is often regarded as following geometric rules, however recent work has suggested that divisions align with the direction of maximal tensile stress. Mechanical stress has already been shown to feed into many processes of development including those that alter mechanical properties. Such an alignment may enable cell division to selectively reinforce the cell wall network in the direction of maximal tensile stress. Therefore there exists potential feedback between cell division, mechanical stress and growth. Improving our understanding of this topic will help to shed light on the debated role of cell division in organ scale growth.
Collapse
Affiliation(s)
- Sarah Robinson
- Sainsbury Laboratory, Cambridge University, Bateman St., Cambridge, CB2 1LR, UK
| |
Collapse
|
9
|
Verhage L. The evolution of (the) style: how pollinators get in fashion. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 104:287-288. [PMID: 33617064 DOI: 10.1111/tpj.14991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
|