1
|
Calvo‐Baltanás V, De Jaeger‐Braet J, Cher WY, Schönbeck N, Chae E, Schnittger A, Wijnker E. Knock-down of gene expression throughout meiosis and pollen formation by virus-induced gene silencing in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 111:19-37. [PMID: 35340073 PMCID: PMC9543169 DOI: 10.1111/tpj.15733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 02/16/2022] [Accepted: 02/18/2022] [Indexed: 06/14/2023]
Abstract
Through the inactivation of genes that act during meiosis it is possible to direct the genetic make-up of plants in subsequent generations and optimize breeding schemes. Offspring may show higher recombination of parental alleles resulting from elevated crossover (CO) incidence, or by omission of meiotic divisions, offspring may become polyploid. However, stable mutations in genes essential for recombination, or for either one of the two meiotic divisions, can have pleiotropic effects on plant morphology and line stability, for instance by causing lower fertility. Therefore, it is often favorable to temporarily change gene expression during meiosis rather than relying on stable null mutants. It was previously shown that virus-induced gene silencing (VIGS) can be used to transiently reduce CO frequencies. We asked if VIGS could also be used to modify other processes throughout meiosis and during pollen formation in Arabidopsis thaliana. Here, we show that VIGS-mediated knock-down of FIGL1, RECQ4A/B, OSD1 and QRT2 can induce (i) an increase in chiasma numbers, (ii) unreduced gametes and (iii) pollen tetrads. We further show that VIGS can target both sexes and different genetic backgrounds and can simultaneously silence different gene copies. The successful knock-down of these genes in A. thaliana suggests that VIGS can be exploited to manipulate any process during or shortly after meiosis. Hence, the transient induction of changes in inheritance patterns can be used as a powerful tool for applied research and biotechnological applications.
Collapse
Affiliation(s)
- Vanesa Calvo‐Baltanás
- Laboratory of GeneticsWageningen University & ResearchDroevendaalsesteeg 1Wageningen6700 AAthe Netherlands
- Department of Developmental Biology, Institut für Pflanzenwissenschaften und MikrobiologieUniversity of HamburgOhnhorststrasse 18Hamburg22609Germany
- Department of Biological SciencesNational University of Singapore14 Science Drive 4Singapore117543Singapore
| | - Joke De Jaeger‐Braet
- Department of Developmental Biology, Institut für Pflanzenwissenschaften und MikrobiologieUniversity of HamburgOhnhorststrasse 18Hamburg22609Germany
| | - Wei Yuan Cher
- A*STAR, Institute of Molecular and Cell Biology (IMCB)61 Biopolis DriveProteos138673Singapore
| | - Nils Schönbeck
- Department of Developmental Biology, Institut für Pflanzenwissenschaften und MikrobiologieUniversity of HamburgOhnhorststrasse 18Hamburg22609Germany
- UKEMartinistrasse 5220251HamburgGermany
| | - Eunyoung Chae
- Department of Biological SciencesNational University of Singapore14 Science Drive 4Singapore117543Singapore
| | - Arp Schnittger
- Department of Developmental Biology, Institut für Pflanzenwissenschaften und MikrobiologieUniversity of HamburgOhnhorststrasse 18Hamburg22609Germany
| | - Erik Wijnker
- Laboratory of GeneticsWageningen University & ResearchDroevendaalsesteeg 1Wageningen6700 AAthe Netherlands
| |
Collapse
|
2
|
Liu W, Zhang Y, He H, He G, Deng XW. From hybrid genomes to heterotic trait output: Challenges and opportunities. CURRENT OPINION IN PLANT BIOLOGY 2022; 66:102193. [PMID: 35219140 DOI: 10.1016/j.pbi.2022.102193] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 12/19/2021] [Accepted: 01/23/2022] [Indexed: 06/14/2023]
Abstract
Heterosis (or hybrid vigor) has been widely used in crop seed breeding to improve many key economic traits. Nevertheless, the genetic and molecular basis of this important phenomenon has long remained elusive, constraining its flexible and effective exploitation. Advanced genomic approaches are efficient in characterizing the mechanism of heterosis. Here, we review how the omics approaches, including genomic, transcriptomic, and population genetics methods such as genome-wide association studies, can reveal how hybrid genomes outperform parental genomes in plants. This information opens up opportunities for genomic exploration and manipulation of heterosis in crop breeding.
Collapse
Affiliation(s)
- Wenwen Liu
- School of Advanced Agricultural Sciences and School of Life Sciences, State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Yilin Zhang
- School of Advanced Agricultural Sciences and School of Life Sciences, State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Hang He
- Peking University Institute of Advanced Agricultural Sciences, 699 Binhu Road, Xiashan Ecological and Economic Development Zone, Weifang, Shandong, 261325, China
| | - Guangming He
- School of Advanced Agricultural Sciences and School of Life Sciences, State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China.
| | - Xing Wang Deng
- School of Advanced Agricultural Sciences and School of Life Sciences, State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China; Peking University Institute of Advanced Agricultural Sciences, 699 Binhu Road, Xiashan Ecological and Economic Development Zone, Weifang, Shandong, 261325, China.
| |
Collapse
|
3
|
Wang Z, Wang XY, Martinho C, Baulcombe DC. Post-transcriptional Gene Silencing Using Virus-Induced Gene Silencing to Study Plant Gametogenesis in Tomato. Methods Mol Biol 2022; 2484:201-212. [PMID: 35461454 DOI: 10.1007/978-1-0716-2253-7_15] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Loss-of-function analyses are essential to dissect the complex nature of biological processes, including gametogenesis. Virus-induced gene silencing (VIGS) has been widely used in crop species as an amenable and rapid way to generate gene knockdowns. As a transient assay, VIGS circumvents the generation of stable transgenic lines through laborious and time-consuming tissue culture techniques. VIGS involves inoculating plants during early development with genetically manipulated viral constructs carrying an endogenous gene target sequence. The viral infection triggers the host plant gene silencing machinery to process the viral genomic RNA into small RNAs (sRNAs) including the gene complementary region. The sRNAs with complementary sequences to the endogenous gene mediate posttranscriptional gene silencing of the targeted gene. Here, we provide a simple and reproducible VIGS protocol employing the tobacco rattle virus (TRV) in tomato (Solanum lycopersicum cv. M82). As it is stable at later developmental stages this approach is suitable for many traits in tomato including gametogenesis and it can be adapted to other crop species.
Collapse
Affiliation(s)
- Zhengming Wang
- Department of Plant Sciences, University of Cambridge, Cambridge, UK.
- Key Laboratory of Horticulture Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei, China.
| | - Xiao Yu Wang
- Department of Plant Sciences, University of Cambridge, Cambridge, UK
| | - Claudia Martinho
- Department of Plant Sciences, University of Cambridge, Cambridge, UK
| | - David C Baulcombe
- Department of Plant Sciences, University of Cambridge, Cambridge, UK
| |
Collapse
|
4
|
Kuo P, Da Ines O, Lambing C. Rewiring Meiosis for Crop Improvement. FRONTIERS IN PLANT SCIENCE 2021; 12:708948. [PMID: 34349775 PMCID: PMC8328115 DOI: 10.3389/fpls.2021.708948] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 06/17/2021] [Indexed: 05/10/2023]
Abstract
Meiosis is a specialized cell division that contributes to halve the genome content and reshuffle allelic combinations between generations in sexually reproducing eukaryotes. During meiosis, a large number of programmed DNA double-strand breaks (DSBs) are formed throughout the genome. Repair of meiotic DSBs facilitates the pairing of homologs and forms crossovers which are the reciprocal exchange of genetic information between chromosomes. Meiotic recombination also influences centromere organization and is essential for proper chromosome segregation. Accordingly, meiotic recombination drives genome evolution and is a powerful tool for breeders to create new varieties important to food security. Modifying meiotic recombination has the potential to accelerate plant breeding but it can also have detrimental effects on plant performance by breaking beneficial genetic linkages. Therefore, it is essential to gain a better understanding of these processes in order to develop novel strategies to facilitate plant breeding. Recent progress in targeted recombination technologies, chromosome engineering, and an increasing knowledge in the control of meiotic chromosome segregation has significantly increased our ability to manipulate meiosis. In this review, we summarize the latest findings and technologies on meiosis in plants. We also highlight recent attempts and future directions to manipulate crossover events and control the meiotic division process in a breeding perspective.
Collapse
Affiliation(s)
- Pallas Kuo
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Olivier Da Ines
- Institut Génétique Reproduction et Développement (iGReD), Université Clermont Auvergne, UMR 6293 CNRS, U1103 INSERM, Clermont-Ferrand, France
| | - Christophe Lambing
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
5
|
Calvo-Baltanás V, Wang J, Chae E. Hybrid Incompatibility of the Plant Immune System: An Opposite Force to Heterosis Equilibrating Hybrid Performances. FRONTIERS IN PLANT SCIENCE 2021; 11:576796. [PMID: 33717206 PMCID: PMC7953517 DOI: 10.3389/fpls.2020.576796] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 12/28/2020] [Indexed: 06/12/2023]
Abstract
Hybridization is a core element in modern rice breeding as beneficial combinations of two parental genomes often result in the expression of heterosis. On the contrary, genetic incompatibility between parents can manifest as hybrid necrosis, which leads to tissue necrosis accompanied by compromised growth and/or reduced reproductive success. Genetic and molecular studies of hybrid necrosis in numerous plant species revealed that such self-destructing symptoms in most cases are attributed to autoimmunity: plant immune responses are inadvertently activated in the absence of pathogenic invasion. Autoimmunity in hybrids predominantly occurs due to a conflict involving a member of the major plant immune receptor family, the nucleotide-binding domain and leucine-rich repeat containing protein (NLR; formerly known as NBS-LRR). NLR genes are associated with disease resistance traits, and recent population datasets reveal tremendous diversity in this class of immune receptors. Cases of hybrid necrosis involving highly polymorphic NLRs as major causes suggest that diversified R gene repertoires found in different lineages would require a compatible immune match for hybridization, which is a prerequisite to ensure increased fitness in the resulting hybrids. In this review, we overview recent genetic and molecular findings on hybrid necrosis in multiple plant species to provide an insight on how the trade-off between growth and immunity is equilibrated to affect hybrid performances. We also revisit the cases of hybrid weakness in which immune system components are found or implicated to play a causative role. Based on our understanding on the trade-off, we propose that the immune system incompatibility in plants might play an opposite force to restrict the expression of heterosis in hybrids. The antagonism is illustrated under the plant fitness equilibrium, in which the two extremes lead to either hybrid necrosis or heterosis. Practical proposition from the equilibrium model is that breeding efforts for combining enhanced disease resistance and high yield shall be achieved by balancing the two forces. Reverse breeding toward utilizing genomic data centered on immune components is proposed as a strategy to generate elite hybrids with balanced immunity and growth.
Collapse
|
6
|
Raz A, Dahan-Meir T, Melamed-Bessudo C, Leshkowitz D, Levy AA. Redistribution of Meiotic Crossovers Along Wheat Chromosomes by Virus-Induced Gene Silencing. FRONTIERS IN PLANT SCIENCE 2020; 11:635139. [PMID: 33613593 PMCID: PMC7890124 DOI: 10.3389/fpls.2020.635139] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 12/31/2020] [Indexed: 05/08/2023]
Abstract
Meiotic recombination is the main driver of genetic diversity in wheat breeding. The rate and location of crossover (CO) events are regulated by genetic and epigenetic factors. In wheat, most COs occur in subtelomeric regions but are rare in centromeric and pericentric areas. The aim of this work was to increase COs in both "hot" and "cold" chromosomal locations. We used Virus-Induced gene Silencing (VIGS) to downregulate the expression of recombination-suppressing genes XRCC2 and FANCM and of epigenetic maintenance genes MET1 and DDM1 during meiosis. VIGS suppresses genes in a dominant, transient and non-transgenic manner, which is convenient in wheat, a hard-to-transform polyploid. F1 hybrids of a cross between two tetraploid lines whose genome was fully sequenced (wild emmer and durum wheat), were infected with a VIGS vector ∼ 2 weeks before meiosis. Recombination was measured in F2 seedlings derived from F1-infected plants and non-infected controls. We found significant up and down-regulation of CO rates along subtelomeric regions as a result of silencing either MET1, DDM1 or XRCC2 during meiosis. In addition, we found up to 93% increase in COs in XRCC2-VIGS treatment in the pericentric regions of some chromosomes. Silencing FANCM showed no effect on CO. Overall, we show that CO distribution was affected by VIGS treatments rather than the total number of COs which did not change. We conclude that transient silencing of specific genes during meiosis can be used as a simple, fast and non-transgenic strategy to improve breeding abilities in specific chromosomal regions.
Collapse
Affiliation(s)
- Amir Raz
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
- Department of Plant Science, MIGAL Galilee Research Institute, Kiryat Shmona, Israel
- Amir Raz,
| | - Tal Dahan-Meir
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Cathy Melamed-Bessudo
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Dena Leshkowitz
- Bioinformatics Unit, Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Avraham A. Levy
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
- *Correspondence: Avraham A. Levy,
| |
Collapse
|