1
|
Geng Y, Xie C, Zhang C, Liu X, Zhou Y. Functions and Regulation of HAM Family Genes in Meristems During Gametophyte and Sporophyte Generations. PLANT, CELL & ENVIRONMENT 2025; 48:2125-2131. [PMID: 39558470 PMCID: PMC11788942 DOI: 10.1111/pce.15286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 10/10/2024] [Accepted: 11/03/2024] [Indexed: 11/20/2024]
Abstract
A fascinating feature of land plants is their ability to continually initiate new tissues and organs throughout their lifespan, driven by a pool of pluripotent stem cells located in meristems. In seed plants, various types of meristems are initiated and maintained during the sporophyte generation, while their gametophytes lack meristems and rely on sporophyte tissues for growth. In contrast, seed-free vascular plants, such as ferns, develop meristems during both the sporophyte and gametophyte generations, allowing for the independent growth of both generations. Recent findings have highlighted both conserved and lineage-specific roles of the HAIRY MERISTEM (HAM) family of GRAS-domain transcriptional regulators in various meristems throughout the land plant lifecycle. Here, we review and discuss how HAM genes maintain meristem indeterminacy in both sporophytes and gametophytes, with a focus on studies performed in two model species: the flowering plant Arabidopsis thaliana and the fern Ceratopteris richardii. Additionally, we summarize the crucial and tightly regulated functions of the microRNA171 (miR171)-HAM regulatory modules, which define HAM spatial patterns and activities during meristem development across various meristem identities in land plants.
Collapse
Affiliation(s)
- Yuan Geng
- Department of Botany and Plant PathologyPurdue UniversityWest LafayetteIndianaUSA
- Purdue Center for Plant BiologyPurdue UniversityWest LafayetteIndianaUSA
| | - Chong Xie
- Department of Botany and Plant PathologyPurdue UniversityWest LafayetteIndianaUSA
- Purdue Center for Plant BiologyPurdue UniversityWest LafayetteIndianaUSA
| | - Cankui Zhang
- Purdue Center for Plant BiologyPurdue UniversityWest LafayetteIndianaUSA
- Department of AgronomyPurdue UniversityWest LafayetteIndianaUSA
| | - Xing Liu
- Purdue Center for Plant BiologyPurdue UniversityWest LafayetteIndianaUSA
- Department of BiochemistryPurdue UniversityWest LafayetteIndianaUSA
| | - Yun Zhou
- Department of Botany and Plant PathologyPurdue UniversityWest LafayetteIndianaUSA
- Purdue Center for Plant BiologyPurdue UniversityWest LafayetteIndianaUSA
| |
Collapse
|
2
|
Zhao P, Yu Q, He Y, Sun P, Wang H, Zhou X, Su Y, Guo H. PagHAM4a-PagSCL21 and PagHAM4b-PagTCP20 modules positively regulate cambial activity and its differentiation into secondary xylem in poplar. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:7174-7189. [PMID: 39243137 PMCID: PMC11630012 DOI: 10.1093/jxb/erae375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 09/06/2024] [Indexed: 09/09/2024]
Abstract
Stem secondary xylem produced by cambial division and differentiation is the main source of tree biomass. Secondary xylem formation involves a complex transcriptional regulatory network; however, the underlying mechanism is still being explored. Here, we report that PagHAM4a and PagHAM4b are positive regulators of cambial differentiation into secondary xylem in hybrid poplar (Populus alba × Populus glandulosa clone 84K). Overexpression of PagHAM4a and PagHAM4b enhanced cambial activity and increased the number of secondary xylem cells in the stems of poplar. By contrast, single or double mutations of PagHAM4a and PagHAM4b generated by CRISPR/Cas9 decreased cambial activity, leading to a significant reduction of secondary xylem. Neither overexpression nor mutation of the two genes affected the size of vessels and fibers in xylem. Both PagHAM4a- and PagHAM4b-regulated gene networks were mainly centered at the stage when cambium had just initiated secondary growth, but the molecular networks regulated by the two genes were distinct. Further analysis revealed that PagSCL21 and PagTCP20 are direct targets of PagHAM4a and PagHAM4b, respectively, and their overexpression also promoted cambial differentiation into secondary xylem. Taken together, we identified two novel key regulatory modules in poplar, PagHAM4a-PagSCL21 and PagHAM4b-PagTCP20, which provide new insights into the mechanism of secondary xylem formation in trees.
Collapse
Affiliation(s)
- Pan Zhao
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Qiulin Yu
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Yumei He
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Pengfang Sun
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Huilin Wang
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Xinyi Zhou
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Yuting Su
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Huihong Guo
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
3
|
Guan Y, Wang K, Zhao J, Miao X, Li X, Song P, Hu H, Zhang S, Li C. Genome-wide identification of TaeGRASs responsive to biotic stresses and functional analysis of TaeSCL6 in wheat resistance to powdery mildew. BMC Genomics 2024; 25:1149. [PMID: 39604842 PMCID: PMC11603631 DOI: 10.1186/s12864-024-11041-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 11/13/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND Powdery mildew is a devastating fungal disease that poses a significant threat to wheat yield and quality worldwide. Identifying resistance genes is highly advantageous for the molecular breeding of resistant cultivars. GRAS proteins are important transcription factors that regulate plant development and stress responses. Nonetheless, their roles in wheat-pathogen interactions remain poorly understood. RESULTS In this study, we used bioinformatics tools to identify and analyze wheat GRAS family genes responsive to biotic stresses and elucidated the function of TaeSCL6 within this family. A total of 179 GRAS genes in wheat were unevenly distributed on 7 chromosomes, and classified into 12 subfamilies based on phylogenetic relationship analysis. Gene duplication analysis revealed 13 pairs of tandem repeats and 142 pairs of segmental duplications, which may account for the rapid expansion of the wheat GRAS family. Expression pattern analysis revealed that 75% of the expressed TaeGRAS genes are responsive to biotic stresses. Few studies have focused on the roles of HAM subfamily genes. Consequently, we concentrated our analysis on the members of the HAM subfamily. Fourteen motifs were identified in the HAM family proteins from both Triticeae species and Arabidopsis, indicating that these motifs were highly conserved during evolution. Promoter analysis indicated that the promoters of HAM genes contain several cis-regulatory elements associated with hormone response, stress response, light response, and growth and development. Both qRT-PCR and RNA-seq data analyses demonstrated that TaeSCL6 responds to Blumeria graminis infection. Therefore, we investigated the role of TaeSCL6 in regulating wheat resistance via RNA interference and barley stripe mosaic virus induced gene silencing. Wheat plants with silenced TaeSCL6 exhibited increased susceptibility to powdery mildew. CONCLUSIONS In summary, this study not only validates the positive role of TaeSCL6 in wheat resistance to powdery mildew, but also provides candidate gene resources for future breeding of disease-resistance wheat cultivars.
Collapse
Affiliation(s)
- Yuanyuan Guan
- School of Life Sciences, Henan Engineering Research Center of Crop Genome Editing, Henan International Joint Laboratory of Plant Genetic Improvement and Soil Remediation, Henan Institute of Science and Technology, Xinxiang, China
| | - Kaige Wang
- School of Life Sciences, Henan Engineering Research Center of Crop Genome Editing, Henan International Joint Laboratory of Plant Genetic Improvement and Soil Remediation, Henan Institute of Science and Technology, Xinxiang, China
| | - Junjie Zhao
- School of Life Sciences, Henan Engineering Research Center of Crop Genome Editing, Henan International Joint Laboratory of Plant Genetic Improvement and Soil Remediation, Henan Institute of Science and Technology, Xinxiang, China
| | - Xiangyang Miao
- School of Agriculture, Henan Engineering Research Center of Crop Genome Editing, Henan International Joint Laboratory of Plant Genetic Improvement and Soil Remediation, Henan Institute of Science and Technology, Xinxiang, China
| | - Xiangyang Li
- Budweiser (Henan) Beer Co., Ltd, Xinxiang, China
| | - Puwen Song
- School of Agriculture, Henan Engineering Research Center of Crop Genome Editing, Henan International Joint Laboratory of Plant Genetic Improvement and Soil Remediation, Henan Institute of Science and Technology, Xinxiang, China
| | - Haiyan Hu
- School of Agriculture, Henan Engineering Research Center of Crop Genome Editing, Henan International Joint Laboratory of Plant Genetic Improvement and Soil Remediation, Henan Institute of Science and Technology, Xinxiang, China
| | - Shengli Zhang
- School of Life Sciences, Henan Engineering Research Center of Crop Genome Editing, Henan International Joint Laboratory of Plant Genetic Improvement and Soil Remediation, Henan Institute of Science and Technology, Xinxiang, China.
| | - Chengwei Li
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China.
| |
Collapse
|
4
|
Geng Y, Xie C, Yan A, Yang X, Lai DN, Liu X, Zhou Y. A conserved GRAS-domain transcriptional regulator links meristem indeterminacy to sex determination in Ceratopteris gametophytes. Curr Biol 2024; 34:3454-3472.e7. [PMID: 39059395 PMCID: PMC11364212 DOI: 10.1016/j.cub.2024.06.064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 05/16/2024] [Accepted: 06/25/2024] [Indexed: 07/28/2024]
Abstract
Most land plants alternate between generations of sexual gametophytes and asexual sporophytes. Unlike seed plants, fern gametophytes are free living and grow independently of their sporophytes. In homosporous ferns such as Ceratopteris, gametophytes derived from genetically identical spores exhibit sexual dimorphism, developing as either males or hermaphrodites. Males lack meristems and promote cell differentiation into sperm-producing antheridia. In contrast, hermaphrodites initiate multicellular meristems that stay undifferentiated, sustain cell division and prothallus expansion, and drive the formation of egg-producing archegonia. Once initiating the meristem, hermaphrodites secrete the pheromone antheridiogen, which triggers neighboring slower-growing gametophytes to develop as males, while the hermaphrodites themselves remain insensitive to antheridiogen. This strategy promotes outcrossing and prevents all individuals in the colony from becoming males. This study reveals that an evolutionarily conserved GRAS-domain transcriptional regulator (CrHAM), directly repressed by Ceratopteris microRNA171 (CrmiR171), promotes meristem development in Ceratopteris gametophytes and determines the male-to-hermaphrodite ratio in the colony. CrHAM preferentially accumulates within the meristems of hermaphrodites but is excluded from differentiated antheridia. CrHAM sustains meristem proliferation and cell division through conserved hormone pathways. In the meantime, CrHAM inhibits the antheridiogen-induced conversion of hermaphrodites to males by suppressing the male program expression and preventing meristem cells from differentiating into sperm-producing antheridia. This finding establishes a connection between meristem indeterminacy and sex determination in ferns, suggesting both conserved and diversified roles of meristem regulators in land plants.
Collapse
Affiliation(s)
- Yuan Geng
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, USA; Purdue Center for Plant Biology, Purdue University, West Lafayette, IN 47907, USA
| | - Chong Xie
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, USA; Purdue Center for Plant Biology, Purdue University, West Lafayette, IN 47907, USA
| | - An Yan
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA 91125, USA
| | - Xi Yang
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, USA; Purdue Center for Plant Biology, Purdue University, West Lafayette, IN 47907, USA
| | - Dinh Nhan Lai
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, USA; Purdue Center for Plant Biology, Purdue University, West Lafayette, IN 47907, USA
| | - Xing Liu
- Purdue Center for Plant Biology, Purdue University, West Lafayette, IN 47907, USA; Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Yun Zhou
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, USA; Purdue Center for Plant Biology, Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|
5
|
Hao X, Gong Y, Chen S, Ma C, Duanmu H. Genome-Wide Identification of GRAS Transcription Factors and Their Functional Analysis in Salt Stress Response in Sugar Beet. Int J Mol Sci 2024; 25:7132. [PMID: 39000240 PMCID: PMC11241673 DOI: 10.3390/ijms25137132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/08/2024] [Accepted: 06/25/2024] [Indexed: 07/16/2024] Open
Abstract
GAI-RGA-and-SCR (GRAS) transcription factors can regulate many biological processes such as plant growth and development and stress defense, but there are few related studies in sugar beet. Salt stress can seriously affect the yield and quality of sugar beet (Beta vulgaris). Therefore, this study used bioinformatics methods to identify GRAS transcription factors in sugar beet and analyzed their structural characteristics, evolutionary relationships, regulatory networks and salt stress response patterns. A total of 28 BvGRAS genes were identified in the whole genome of sugar beet, and the sequence composition was relatively conservative. According to the topology of the phylogenetic tree, BvGRAS can be divided into nine subfamilies: LISCL, SHR, PAT1, SCR, SCL3, LAS, SCL4/7, HAM and DELLA. Synteny analysis showed that there were two pairs of fragment replication genes in the BvGRAS gene, indicating that gene replication was not the main source of BvGRAS family members. Regulatory network analysis showed that BvGRAS could participate in the regulation of protein interaction, material transport, redox balance, ion homeostasis, osmotic substance accumulation and plant morphological structure to affect the tolerance of sugar beet to salt stress. Under salt stress, BvGRAS and its target genes showed an up-regulated expression trend. Among them, BvGRAS-15, BvGRAS-19, BvGRAS-20, BvGRAS-21, LOC104892636 and LOC104893770 may be the key genes for sugar beet's salt stress response. In this study, the structural characteristics and biological functions of BvGRAS transcription factors were analyzed, which provided data for the further study of the molecular mechanisms of salt stress and molecular breeding of sugar beet.
Collapse
Affiliation(s)
- Xiaolin Hao
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin 150080, China; (X.H.); (Y.G.); (C.M.)
- Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region, School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Yongyong Gong
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin 150080, China; (X.H.); (Y.G.); (C.M.)
- Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region, School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Sixue Chen
- Department of Biology, University of Mississippi, Oxford, MS 38677, USA;
| | - Chunquan Ma
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin 150080, China; (X.H.); (Y.G.); (C.M.)
- Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region, School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Huizi Duanmu
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin 150080, China; (X.H.); (Y.G.); (C.M.)
- Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region, School of Life Sciences, Heilongjiang University, Harbin 150080, China
| |
Collapse
|
6
|
Xing JX, Zang QL, Ye ZL, Qi LW, Yang L, Li WF. Overexpression of Larch SCL6 Inhibits Transitions from Vegetative Meristem to Inflorescence and Flower Meristem in Arabidopsis thaliana (L.) Heynh. PLANTS (BASEL, SWITZERLAND) 2024; 13:1232. [PMID: 38732446 PMCID: PMC11085395 DOI: 10.3390/plants13091232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/22/2024] [Accepted: 04/27/2024] [Indexed: 05/13/2024]
Abstract
SCARECROW-LIKE6 (SCL6) plays a role in the formation and maintenance of the meristem. In Larix kaempferi (Lamb.) Carr., an important afforestation tree species in China, SCL6 (LaSCL6) has two alternative splicing variants-LaSCL6-var1 and LaSCL6-var2-which are regulated by microRNA171. However, their roles are still unclear. In this study, LaSCL6-var1 and LaSCL6-var2 were transformed into the Arabidopsis thaliana (L.) Heynh. genome, and the phenotypic characteristics of transgenic A. thaliana, including the germination percentage, root length, bolting time, flower and silique formation times, inflorescence axis length, and branch and silique numbers, were analyzed to reveal their functions. It was found that LaSCL6-var1 and LaSCL6-var2 overexpression shortened the root length by 41% and 31%, respectively, and increased the inflorescence axis length. Compared with the wild type, the bolting time in transgenic plants was delayed by approximately 2-3 days, the first flower and silique formation times were delayed by approximately 3-4 days, and the last flower and silique formation times were delayed by about 5 days. Overall, the life cycle in transgenic plants was prolonged by approximately 5 days. These results show that LaSCL6 overexpression inhibited the transitions from the vegetative meristem to inflorescence meristem and from the flower meristem to meristem arrest in A. thaliana, revealing the roles of LaSCL6-var1 and LaSCL6-var2 in the fate transition and maintenance of the meristem.
Collapse
Affiliation(s)
- Jun-Xia Xing
- State Key Laboratory of Tree Genetics and Breeding, School of Forestry, Northeast Forestry University, Harbin 150040, China;
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China; (Q.-L.Z.); (Z.-L.Y.); (L.-W.Q.)
| | - Qiao-Lu Zang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China; (Q.-L.Z.); (Z.-L.Y.); (L.-W.Q.)
- College of Horticulture, Shanxi Agricultural University, Taigu 030801, China
| | - Zha-Long Ye
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China; (Q.-L.Z.); (Z.-L.Y.); (L.-W.Q.)
| | - Li-Wang Qi
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China; (Q.-L.Z.); (Z.-L.Y.); (L.-W.Q.)
| | - Ling Yang
- State Key Laboratory of Tree Genetics and Breeding, School of Forestry, Northeast Forestry University, Harbin 150040, China;
| | - Wan-Feng Li
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China; (Q.-L.Z.); (Z.-L.Y.); (L.-W.Q.)
| |
Collapse
|
7
|
Arnoux-Courseaux M, Coudert Y. Re-examining meristems through the lens of evo-devo. TRENDS IN PLANT SCIENCE 2024; 29:413-427. [PMID: 38040554 DOI: 10.1016/j.tplants.2023.11.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/25/2023] [Accepted: 11/03/2023] [Indexed: 12/03/2023]
Abstract
The concept of the meristem was introduced in 1858 to characterize multicellular, formative, and proliferative tissues that give rise to the entire plant body, based on observations of vascular plants. Although its original definition did not encompass bryophytes, this concept has been used and continuously refined over the past 165 years to describe the diverse apices of all land plants. Here, we re-examine this matter in light of recent evo-devo research and show that, despite displaying high anatomical diversity, land plant meristems are unified by shared genetic control. We also propose a modular view of meristem function and highlight multiple evolutionary mechanisms that are likely to have contributed to the assembly and diversification of the varied meristems during the course of plant evolution.
Collapse
Affiliation(s)
- Moïra Arnoux-Courseaux
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, INRIA, Lyon 69007, France; Laboratoire Physiologie Cellulaire et Végétale, Université Grenoble Alpes, CNRS, CEA, INRAE, IRIG-DBSCI-LPCV, 17 avenue des Martyrs, F-38054, Grenoble, France
| | - Yoan Coudert
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, INRIA, Lyon 69007, France.
| |
Collapse
|
8
|
Neves C, Ribeiro B, Amaro R, Expósito J, Grimplet J, Fortes AM. Network of GRAS transcription factors in plant development, fruit ripening and stress responses. HORTICULTURE RESEARCH 2023; 10:uhad220. [PMID: 38077496 PMCID: PMC10699852 DOI: 10.1093/hr/uhad220] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 10/20/2023] [Indexed: 06/23/2024]
Abstract
The plant-specific family of GRAS transcription factors has been wide implicated in the regulation of transcriptional reprogramming associated with a diversity of biological functions ranging from plant development processes to stress responses. Functional analyses of GRAS transcription factors supported by in silico structural and comparative analyses are emerging and clarifying the regulatory networks associated with their biological roles. In this review, a detailed analysis of GRAS proteins' structure and biochemical features as revealed by recent discoveries indicated how these characteristics may impact subcellular location, molecular mechanisms, and function. Nomenclature issues associated with GRAS classification into different subfamilies in diverse plant species even in the presence of robust genomic resources are discussed, in particular how it affects assumptions of biological function. Insights into the mechanisms driving evolution of this gene family and how genetic and epigenetic regulation of GRAS contributes to subfunctionalization are provided. Finally, this review debates challenges and future perspectives on the application of this complex but promising gene family for crop improvement to cope with challenges of environmental transition.
Collapse
Affiliation(s)
- Catarina Neves
- BioISI–Biosystems and Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, Campo Grande, 1749-016 Lisboa, Portugal
| | - Beatriz Ribeiro
- BioISI–Biosystems and Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, Campo Grande, 1749-016 Lisboa, Portugal
| | - Rute Amaro
- BioISI–Biosystems and Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, Campo Grande, 1749-016 Lisboa, Portugal
| | - Jesús Expósito
- BioISI–Biosystems and Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, Campo Grande, 1749-016 Lisboa, Portugal
| | - Jérôme Grimplet
- Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), Departamento de Ciencia Vegetal, Gobierno de Aragón, Avda. Montañana 930, 50059 Zaragoza, Spain
- Instituto Agroalimentario de Aragón—IA2 (CITA-Universidad de Zaragoza), Calle Miguel Servet 177, 50013 Zaragoza, Spain
| | - Ana Margarida Fortes
- BioISI–Biosystems and Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, Campo Grande, 1749-016 Lisboa, Portugal
| |
Collapse
|
9
|
Zhang Z, Huo W, Wang X, Ren Z, Zhao J, Liu Y, He K, Zhang F, Li W, Jin S, Yang D. Origin, evolution, and diversification of the wall-associated kinase gene family in plants. PLANT CELL REPORTS 2023; 42:1891-1906. [PMID: 37743376 DOI: 10.1007/s00299-023-03068-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 09/08/2023] [Indexed: 09/26/2023]
Abstract
KEY MESSAGE The study of the origin, evolution, and diversification of the wall-associated kinase gene family in plants facilitates their functional investigations in the future. Wall-associated kinases (WAKs) make up one subfamily of receptor-like kinases (RLKs), and function directly in plant cell elongation and responses to biotic and abiotic stresses. The biological functions of WAKs have been extensively characterized in angiosperms; however, the origin and evolutionary history of the WAK family in green plants remain unclear. Here, we performed a comprehensive analysis of the WAK family to reveal its origin, evolution, and diversification in green plants. In total, 1061 WAK genes were identified in 37 species from unicellular algae to multicellular plants, and the results showed that WAK genes probably originated before bryophyte differentiation and were widely distributed in land plants, especially angiosperms. The phylogeny indicated that the land plant WAKs gave rise to five clades and underwent lineage-specific expansion after species differentiation. Cis-acting elements and expression patterns analyses of WAK genes in Arabidopsis and rice demonstrated the functional diversity of WAK genes in these two species. Many gene gains and losses have occurred in angiosperms, leading to an increase in the number of gene copies. The evolutionary trajectory of the WAK family during polyploidization was uncovered using Gossypium species. Our results provide insights into the evolution of WAK genes in green plants, facilitating their functional investigations in the future.
Collapse
Affiliation(s)
- Zhiqiang Zhang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wenqi Huo
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Xingxing Wang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Zhongying Ren
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Junjie Zhao
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Yangai Liu
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Kunlun He
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Fei Zhang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Wei Li
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China.
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China.
| | - Shuangxia Jin
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Daigang Yang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China.
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
10
|
Kuznetsova K, Efremova E, Dodueva I, Lebedeva M, Lutova L. Functional Modules in the Meristems: "Tinkering" in Action. PLANTS (BASEL, SWITZERLAND) 2023; 12:3661. [PMID: 37896124 PMCID: PMC10610496 DOI: 10.3390/plants12203661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/13/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023]
Abstract
BACKGROUND A feature of higher plants is the modular principle of body organisation. One of these conservative morphological modules that regulate plant growth, histogenesis and organogenesis is meristems-structures that contain pools of stem cells and are generally organised according to a common principle. Basic content: The development of meristems is under the regulation of molecular modules that contain conservative interacting components and modulate the expression of target genes depending on the developmental context. In this review, we focus on two molecular modules that act in different types of meristems. The WOX-CLAVATA module, which includes the peptide ligand, its receptor and the target transcription factor, is responsible for the formation and control of the activity of all meristem types studied, but it has its own peculiarities in different meristems. Another regulatory module is the so-called florigen-activated complex, which is responsible for the phase transition in the shoot vegetative meristem (e.g., from the vegetative shoot apical meristem to the inflorescence meristem). CONCLUSIONS The review considers the composition and functions of these two functional modules in different developmental programmes, as well as their appearance, evolution and use in plant breeding.
Collapse
Affiliation(s)
| | | | - Irina Dodueva
- Department of Genetics and Biotechnology, Saint Petersburg State University, Universitetskaya Emb. 7/9, 199034 Saint Petersburg, Russia; (K.K.); (E.E.); (M.L.); (L.L.)
| | | | | |
Collapse
|
11
|
Pei LL, Zhang LL, Liu X, Jiang J. Role of microRNA miR171 in plant development. PeerJ 2023; 11:e15632. [PMID: 37456878 PMCID: PMC10340099 DOI: 10.7717/peerj.15632] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 06/02/2023] [Indexed: 07/18/2023] Open
Abstract
MicroRNAs (miRNAs) are endogenous non-coding small RNA with 19-24 nucleotides (nts) in length, which play an essential role in regulating gene expression at the post-transcriptional level. As one of the first miRNAs found in plants, miR171 is a typical class of conserved miRNAs. The miR171 sequences among different species are highly similar, and the vast majority of them have both "GAGCCG" and "CAAUAU" fragments. In addition to being involved in plant growth and development, hormone signaling and stress response, miR171 also plays multiple and important roles in plants through interactions with microbe and other small-RNAs. The miRNA functions by regulating the expression of target genes. Most of miR171's target genes are in the GRAS gene family, but also include some NSP, miRNAs, lncRNAs, and other genes. This review is intended to summarize recent updates on miR171 regarding its function in plant life and hopefully provide new ideas for understanding miR171 function and regulatory mechanisms.
Collapse
Affiliation(s)
- Ling Ling Pei
- College of Horticulture, Shenyang Agricultural University, Shenyang, Shenhe District, China
| | - Ling Ling Zhang
- College of Horticulture, Shenyang Agriculture University, Shenyang, Shenhe District, China
| | - Xin Liu
- Horticulture Department, Shenyang Agricultural University, Shenyang, Shenhe District, China
| | - Jing Jiang
- Horticulture Department, Shenyang Agricultural University, Shenyang, Shenhe District, China
| |
Collapse
|
12
|
Wu X, Liu X, Zhang S, Zhou Y. Cell Division and Meristem Dynamics in Fern Gametophytes. PLANTS (BASEL, SWITZERLAND) 2023; 12:209. [PMID: 36616337 PMCID: PMC9823664 DOI: 10.3390/plants12010209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 12/31/2022] [Accepted: 12/31/2022] [Indexed: 06/17/2023]
Abstract
One of the most important questions in all multicellular organisms is how to define and maintain different cell fates during continuous cell division and proliferation. Plant meristems provide a unique research system to address this fundamental question because meristems dynamically maintain themselves and sustain organogenesis through balancing cell division and cell differentiation. Different from the gametophytes of seed plants that depend on their sporophytes and lack meristems, the gametophytes of seed-free ferns develop different types of meristems (including apical cell-based meristems and multicellular apical and marginal meristems) to promote independent growth and proliferation during the sexual gametophyte phase. Recent studies combining confocal time-lapse imaging and computational image analysis reveal the cellular basis of the initiation and proliferation of different types of meristems in fern gametophytes, providing new insights into the evolution of meristems in land plants. In this review, we summarize the recent progress in understanding the cell growth dynamics in fern gametophytes and discuss both conserved and diversified mechanisms underlying meristem cell proliferation in seed-free vascular plants.
Collapse
Affiliation(s)
- Xiao Wu
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, USA
- Purdue Center for Plant Biology, Purdue University, West Lafayette, IN 47907, USA
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Xing Liu
- Purdue Center for Plant Biology, Purdue University, West Lafayette, IN 47907, USA
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Shaoling Zhang
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Yun Zhou
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, USA
- Purdue Center for Plant Biology, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
13
|
Fouracre JP, Harrison CJ. How was apical growth regulated in the ancestral land plant? Insights from the development of non-seed plants. PLANT PHYSIOLOGY 2022; 190:100-112. [PMID: 35771646 PMCID: PMC9434304 DOI: 10.1093/plphys/kiac313] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 06/27/2022] [Indexed: 06/15/2023]
Abstract
Land plant life cycles are separated into distinct haploid gametophyte and diploid sporophyte stages. Indeterminate apical growth evolved independently in bryophyte (moss, liverwort, and hornwort) and fern gametophytes, and tracheophyte (vascular plant) sporophytes. The extent to which apical growth in tracheophytes co-opted conserved gametophytic gene networks, or exploited ancestral sporophytic networks, is a long-standing question in plant evolution. The recent phylogenetic confirmation of bryophytes and tracheophytes as sister groups has led to a reassessment of the nature of the ancestral land plant. Here, we review developmental genetic studies of apical regulators and speculate on their likely evolutionary history.
Collapse
Affiliation(s)
- Jim P Fouracre
- School of Biological Sciences, University of Bristol, Bristol BS8 1TQ, UK
| | - C Jill Harrison
- School of Biological Sciences, University of Bristol, Bristol BS8 1TQ, UK
| |
Collapse
|
14
|
Geng Y, Yan A, Zhou Y. Positional cues and cell division dynamics drive meristem development and archegonium formation in Ceratopteris gametophytes. Commun Biol 2022; 5:650. [PMID: 35778477 PMCID: PMC9249879 DOI: 10.1038/s42003-022-03627-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 06/22/2022] [Indexed: 11/17/2022] Open
Abstract
Fern gametophytes are autotrophic and independent of sporophytes, and they develop pluripotent meristems that drive prothallus development and sexual reproduction. To reveal cellular dynamics during meristem development in fern gametophytes, we performed long-term time-lapse imaging and determined the real-time lineage, identity and division activity of each single cell from meristem initiation to establishment in gametophytes of the fern Ceratopteris richardii. Our results demonstrate that in Ceratopteris gametophytes, only a few cell lineages originated from the marginal layer contribute to meristem initiation and proliferation, and the meristem lacks a distinguishable central zone or apical cell with low division activity. Within the meristem, cell division is independent of cell lineages and cells at the marginal layer are more actively dividing than inner cells. Furthermore, the meristem triggers differentiation of adjacent cells into egg-producing archegonia in a position-dependent manner. These findings advance the understanding of diversified meristem and gametophyte development in land plants. Time-lapse imaging of the fern Ceratopteris richardii during meristem initiation and proliferation provides insights into the lineage, identity and division activity of each cell throughout the growth of gametophytes.
Collapse
Affiliation(s)
- Yuan Geng
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA.,Purdue Center for Plant Biology, Purdue University, West Lafayette, IN, 47907, USA
| | - An Yan
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA.,Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Yun Zhou
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA. .,Purdue Center for Plant Biology, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
15
|
Wong A, Gehring C. New Horizons in Plant Cell Signaling. Int J Mol Sci 2022; 23:5826. [PMID: 35628641 PMCID: PMC9147848 DOI: 10.3390/ijms23105826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 05/13/2022] [Indexed: 12/04/2022] Open
Abstract
Responding to environmental stimuli with appropriate molecular mechanisms is essential to all life forms and particularly so in sessile organisms such as plants [...].
Collapse
Affiliation(s)
- Aloysius Wong
- Department of Biology, College of Science and Technology, Wenzhou-Kean University, 88 Daxue Road, Wenzhou 325060, China
- Zhejiang Bioinformatics International Science and Technology Cooperation Center, Wenzhou 325060, China
- Wenzhou Municipal Key Lab for Applied Biomedical and Biopharmaceutical Informatics, Wenzhou 325060, China
| | - Christoph Gehring
- Department of Chemistry, Biology & Biotechnology, University of Perugia, Borgo XX Giugno, 74, 06121 Perugia, Italy
| |
Collapse
|
16
|
Han H, Zhou Y. Function and Regulation of microRNA171 in Plant Stem Cell Homeostasis and Developmental Programing. Int J Mol Sci 2022; 23:2544. [PMID: 35269685 PMCID: PMC8910752 DOI: 10.3390/ijms23052544] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/21/2022] [Accepted: 02/22/2022] [Indexed: 12/17/2022] Open
Abstract
MicroRNA171 (miR171), a group of 21-nucleotide single-strand small RNAs, is one ancient and conserved microRNA family in land plants. This review focuses on the recent progress in understanding the role of miR171 in plant stem cell homeostasis and developmental patterning, and the regulation of miR171 by developmental cues and environmental signals. Specifically, miR171 regulates shoot meristem activity and phase transition through repressing the HAIRYMERISTEM (HAM) family genes. In the model species Arabidopsis, miR171 serves as a short-range mobile signal, which initiates in the epidermal layer of shoot meristems and moves downwards within a limited distance, to pattern the apical-basal polarity of gene expression and drive stem cell dynamics. miR171 levels are regulated by light and various abiotic stresses, suggesting miR171 may serve as a linkage between environmental factors and cell fate decisions. Furthermore, miR171 family members also demonstrate both conserved and lineage-specific functions in land plants, which are summarized and discussed here.
Collapse
Affiliation(s)
- Han Han
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, USA;
- Purdue Center for Plant Biology, Purdue University, West Lafayette, IN 47907, USA
| | - Yun Zhou
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, USA;
- Purdue Center for Plant Biology, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
17
|
Fang Y, Jiang J, Hou X, Guo J, Li X, Zhao D, Xie X. Plant protein-coding gene families: Their origin and evolution. FRONTIERS IN PLANT SCIENCE 2022; 13:995746. [PMID: 36160967 PMCID: PMC9490259 DOI: 10.3389/fpls.2022.995746] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 08/15/2022] [Indexed: 05/13/2023]
Abstract
Steady advances in genome sequencing methods have provided valuable insights into the evolutionary processes of several gene families in plants. At the core of plant biodiversity is an extensive genetic diversity with functional divergence and expansion of genes across gene families, representing unique phenomena. The evolution of gene families underpins the evolutionary history and development of plants and is the subject of this review. We discuss the implications of the molecular evolution of gene families in plants, as well as the potential contributions, challenges, and strategies associated with investigating phenotypic alterations to explain the origin of plants and their tolerance to environmental stresses.
Collapse
Affiliation(s)
- Yuanpeng Fang
- Key Laboratory of Agricultural Microbiology, College of Agriculture, Guizhou University, Guiyang, China
| | - Junmei Jiang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
| | - Xiaolong Hou
- Key Laboratory of Agricultural Microbiology, College of Agriculture, Guizhou University, Guiyang, China
| | - Jiyuan Guo
- Department of Resources and Environment, Moutai Institute, Zunyi, China
| | - Xiangyang Li
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
| | - Degang Zhao
- Key Laboratory of Mountain Plant Resources Protection and Germplasm Innovation, Ministry of Education, College of Life Sciences, Institute of Agricultural Bioengineering, Guizhou University, Guiyang, China
- Guizhou Conservation Technology Application Engineering Research Center, Guizhou Institute of Prataculture/Guizhou Institute of Biotechnology/Guizhou Academy of Agricultural Sciences, Guiyang, China
- *Correspondence: Degang Zhao,
| | - Xin Xie
- Key Laboratory of Agricultural Microbiology, College of Agriculture, Guizhou University, Guiyang, China
- Guizhou Conservation Technology Application Engineering Research Center, Guizhou Institute of Prataculture/Guizhou Institute of Biotechnology/Guizhou Academy of Agricultural Sciences, Guiyang, China
- Xin Xie,
| |
Collapse
|
18
|
Wu X, Yan A, Liu X, Zhang S, Zhou Y. Quantitative live-imaging reveals the dynamics of apical cells during gametophyte development in ferns. QUANTITATIVE PLANT BIOLOGY 2022; 3:e25. [PMID: 37077984 PMCID: PMC10095955 DOI: 10.1017/qpb.2022.21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 09/19/2022] [Accepted: 10/08/2022] [Indexed: 05/02/2023]
Abstract
Meristems in land plants share conserved functions but develop highly variable structures. Meristems in seed-free plants, including ferns, usually contain one or a few pyramid-/wedge-shaped apical cells (ACs) as initials, which are lacking in seed plants. It remained unclear how ACs promote cell proliferation in fern gametophytes and whether any persistent AC exists to sustain fern gametophyte development continuously. Here, we uncovered previously undefined ACs maintained even at late developmental stages in fern gametophytes. Through quantitative live-imaging, we determined division patterns and growth dynamics that maintain the persistent AC in Sphenomeris chinensis, a representative fern. The AC and its immediate progenies form a conserved cell packet, driving cell proliferation and prothallus expansion. At the apical centre of gametophytes, the AC and its adjacent progenies display small dimensions resulting from active cell division instead of reduced cell expansion. These findings provide insight into diversified meristem development in land plants.
Collapse
Affiliation(s)
- Xiao Wu
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana47907, USA
- Purdue Centre for Plant Biology, Purdue University, West Lafayette, Indiana47907, USA
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - An Yan
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California91125, USA
- Howard Hughes Medical Institute, California Institute of Technology, Pasadena, California91125, USA
| | - Xing Liu
- Purdue Centre for Plant Biology, Purdue University, West Lafayette, Indiana47907, USA
- Department of Biochemistry, Purdue University, West Lafayette, Indiana47907, USA
| | - Shaoling Zhang
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
- Authors for correspondence: S. Zhang, Y. Zhou, E-mail: ;
| | - Yun Zhou
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana47907, USA
- Purdue Centre for Plant Biology, Purdue University, West Lafayette, Indiana47907, USA
- Authors for correspondence: S. Zhang, Y. Zhou, E-mail: ;
| |
Collapse
|
19
|
Geng Y, Zhou Y. N-terminal region is required for functions of the HAM family member. PLANT SIGNALING & BEHAVIOR 2021; 16:1940001. [PMID: 34152254 PMCID: PMC8331016 DOI: 10.1080/15592324.2021.1940001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/02/2021] [Accepted: 06/03/2021] [Indexed: 05/29/2023]
Abstract
Shoot meristems contain stem cells, and they sustain growth and development of the above-ground tissues in land plants. The HAIRY MERISTEM (HAM) family genes, encoding GRAS-domain transcriptional regulators, play essential roles in the control of shoot meristem development and stem cell homeostasis in several flowering plants. Similar to other GRAS proteins, the C-terminal regions of HAM family proteins across land plants are conserved, containing signature motifs that define the GRAS domain. In contrast, the N-terminal regions of HAM family proteins display substantial divergence in sequence and length. Whether the variable and divergent N-termini are required for the conserved functions of HAM proteins is unknown. Our recent work showed that CrHAM - the HAM homolog in the fern Ceratopteris richardii was able to replace the role of type-II HAM genes in Arabidopsis, maintaining established shoot apical meristems and promoting the initiation of new stem cell niches. Here, we provide additional information and show that CrHAM contains a much longer N-terminal region compared to Arabidopsis HAM proteins, which is conserved among different fern HAM homologs. The deletion of this region largely compromises the ability of CrHAM to replace the function of Arabidopsis HAM proteins in shoot meristems. These new data together with previous results suggest that, although lacking the sequence conservation among HAM homologs from different plant lineages, the N-termini are important for the conserved functions of HAM family proteins.
Collapse
Affiliation(s)
- Yuan Geng
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, USA
- Purdue Center for Plant Biology, Purdue University, West Lafayette, IN, USA
| | - Yun Zhou
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, USA
- Purdue Center for Plant Biology, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
20
|
Geng Y, Cai C, McAdam SAM, Banks JA, Wisecaver JH, Zhou Y. A De Novo Transcriptome Assembly of Ceratopteris richardii Provides Insights into the Evolutionary Dynamics of Complex Gene Families in Land Plants. Genome Biol Evol 2021; 13:6157829. [PMID: 33681974 PMCID: PMC7975763 DOI: 10.1093/gbe/evab042] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/26/2021] [Indexed: 01/26/2023] Open
Abstract
As the closest extant sister group to seed plants, ferns are an important reference point to study the origin and evolution of plant genes and traits. One bottleneck to the use of ferns in phylogenetic and genetic studies is the fact that genome-level sequence information of this group is limited, due to the extreme genome sizes of most ferns. Ceratopteris richardii (hereafter Ceratopteris) has been widely used as a model system for ferns. In this study, we generated a transcriptome of Ceratopteris, through the de novo assembly of the RNA-seq data from 17 sequencing libraries that are derived from two sexual types of gametophytes and five different sporophyte tissues. The Ceratopteris transcriptome, together with 38 genomes and transcriptomes from other species across the Viridiplantae, were used to uncover the evolutionary dynamics of orthogroups (predicted gene families using OrthoFinder) within the euphyllophytes and identify proteins associated with the major shifts in plant morphology and physiology that occurred in the last common ancestors of euphyllophytes, ferns, and seed plants. Furthermore, this resource was used to identify and classify the GRAS domain transcriptional regulators of many developmental processes in plants. Through the phylogenetic analysis within each of the 15 GRAS orthogroups, we uncovered which GRAS family members are conserved or have diversified in ferns and seed plants. Taken together, the transcriptome database and analyses reported here provide an important platform for exploring the evolution of gene families in land plants and for studying gene function in seed-free vascular plants.
Collapse
Affiliation(s)
- Yuan Geng
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana, USA.,Purdue Center for Plant Biology, Purdue University, West Lafayette, Indiana, USA
| | - Chao Cai
- Purdue University Libraries and School of Information Studies, Purdue University, West Lafayette, Indiana, USA
| | - Scott A M McAdam
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana, USA.,Purdue Center for Plant Biology, Purdue University, West Lafayette, Indiana, USA
| | - Jo Ann Banks
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana, USA.,Purdue Center for Plant Biology, Purdue University, West Lafayette, Indiana, USA
| | - Jennifer H Wisecaver
- Purdue Center for Plant Biology, Purdue University, West Lafayette, Indiana, USA.,Department of Biochemistry, Purdue University, West Lafayette, Indiana, USA
| | - Yun Zhou
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana, USA.,Purdue Center for Plant Biology, Purdue University, West Lafayette, Indiana, USA
| |
Collapse
|
21
|
Geng Y, Zhou Y. HAM Gene Family and Shoot Meristem Development. FRONTIERS IN PLANT SCIENCE 2021; 12:800332. [PMID: 34987539 PMCID: PMC8720772 DOI: 10.3389/fpls.2021.800332] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 11/19/2021] [Indexed: 05/18/2023]
Abstract
Land plants develop highly diversified shoot architectures, all of which are derived from the pluripotent stem cells in shoot apical meristems (SAMs). As sustainable resources for continuous organ formation in the aboveground tissues, SAMs play an important role in determining plant yield and biomass production. In this review, we summarize recent advances in understanding one group of key regulators - the HAIRY MERISTEM (HAM) family GRAS domain proteins - in shoot meristems. We highlight the functions of HAM family members in dictating shoot stem cell initiation and proliferation, the signaling cascade that shapes HAM expression domains in shoot meristems, and the conservation and diversification of HAM family members in land plants. We also discuss future directions that potentially lead to a more comprehensive view of the HAM gene family and stem cell homeostasis in land plants.
Collapse
Affiliation(s)
- Yuan Geng
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, United States
- Purdue Center for Plant Biology, Purdue University, West Lafayette, IN, United States
| | - Yun Zhou
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, United States
- Purdue Center for Plant Biology, Purdue University, West Lafayette, IN, United States
- *Correspondence: Yun Zhou,
| |
Collapse
|