1
|
Tang Q, Xu D, Lenzen B, Brachmann A, Yapa MM, Doroodian P, Schmitz-Linneweber C, Masuda T, Hua Z, Leister D, Kleine T. GENOMES UNCOUPLED PROTEIN1 binds to plastid RNAs and promotes their maturation. PLANT COMMUNICATIONS 2024; 5:101069. [PMID: 39169625 PMCID: PMC11671767 DOI: 10.1016/j.xplc.2024.101069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 08/05/2024] [Accepted: 08/20/2024] [Indexed: 08/23/2024]
Abstract
Plastid biogenesis and the coordination of plastid and nuclear genome expression through anterograde and retrograde signaling are essential for plant development. GENOMES UNCOUPLED1 (GUN1) plays a central role in retrograde signaling during early plant development. The putative function of GUN1 has been extensively studied, but its molecular function remains controversial. Here, we evaluate published transcriptome data and generate our own data from gun1 mutants grown under signaling-relevant conditions to show that editing and splicing are not relevant for GUN1-dependent retrograde signaling. Our study of the plastid (post)transcriptome of gun1 seedlings with white and pale cotyledons demonstrates that GUN1 deficiency significantly alters the entire plastid transcriptome. By combining this result with a pentatricopeptide repeat code-based prediction and experimental validation by RNA immunoprecipitation experiments, we identified several putative targets of GUN1, including tRNAs and RNAs derived from ycf1.2, rpoC1, and rpoC2 and the ndhH-ndhA-ndhI-ndhG-ndhE-psaC-ndhD gene cluster. The absence of plastid rRNAs and the significant reduction of almost all plastid transcripts in white gun1 mutants account for the cotyledon phenotype. Our study provides evidence for RNA binding and maturation as the long-sought molecular function of GUN1 and resolves long-standing controversies. We anticipate that our findings will serve as a basis for subsequent studies on mechanisms of plastid gene expression and will help to elucidate the function of GUN1 in retrograde signaling.
Collapse
Affiliation(s)
- Qian Tang
- Plant Molecular Biology (Botany), Faculty of Biology, Ludwig-Maximilians-University München, 82152 Martinsried, Germany
| | - Duorong Xu
- Plant Molecular Biology (Botany), Faculty of Biology, Ludwig-Maximilians-University München, 82152 Martinsried, Germany
| | - Benjamin Lenzen
- Molecular Genetics, Humboldt-University Berlin, Philippstr. 13, 10115 Berlin, Germany
| | - Andreas Brachmann
- Biocenter of the LMU Munich, Genetics Section, Grosshaderner Str. 2-4, 82152 Planegg-Martinsried, Germany
| | - Madhura M Yapa
- Department of Environmental and Plant Biology, Ohio University, Athens, OH 45701, USA
| | - Paymon Doroodian
- Department of Environmental and Plant Biology, Ohio University, Athens, OH 45701, USA
| | | | - Tatsuru Masuda
- Graduate School of Arts and Sciences, The University of Tokyo, Komaba, Meguro-ku 153-8902, Tokyo, Japan
| | - Zhihua Hua
- Department of Environmental and Plant Biology, Ohio University, Athens, OH 45701, USA
| | - Dario Leister
- Plant Molecular Biology (Botany), Faculty of Biology, Ludwig-Maximilians-University München, 82152 Martinsried, Germany
| | - Tatjana Kleine
- Plant Molecular Biology (Botany), Faculty of Biology, Ludwig-Maximilians-University München, 82152 Martinsried, Germany.
| |
Collapse
|
2
|
Rehman S, Bahadur S, Xia W, Runan C, Ali M, Maqbool Z. From genes to traits: Trends in RNA-binding proteins and their role in plant trait development: A review. Int J Biol Macromol 2024; 282:136753. [PMID: 39488325 DOI: 10.1016/j.ijbiomac.2024.136753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/15/2024] [Accepted: 10/19/2024] [Indexed: 11/04/2024]
Abstract
RNA-binding proteins (RBPs) are essential for cellular functions by attaching to RNAs, creating dynamic ribonucleoprotein complexes (RNPs) essential for managing RNA throughout its life cycle. These proteins are critical to all post-transcriptional processes, impacting vital cellular functions during development and adaptation to environmental changes. Notably, in plants, RBPs are critical for adjusting to inconsistent environmental conditions, with recent studies revealing that plants possess, more prominent, and both novel and conserved RBP families compared to other eukaryotes. This comprehensive review delves into the varied RBPs covering their structural attributes, domain base function, and their interactions with RNA in metabolism, spotlighting their role in regulating post-transcription and splicing and their reaction to internal and external stimuli. It highlights the complex regulatory roles of RBPs, focusing on plant trait regulation and the unique functions they facilitate, establishing a foundation for appreciating RBPs' significance in plant growth and environmental response strategies.
Collapse
Affiliation(s)
- Shazia Rehman
- Sanya Nanfan Research Institution/College of Tropical Crops, Hainan University, Sanya, 572025, China
| | - Saraj Bahadur
- College of Forestry, Hainan University, Haikou 570228, China; College of Life and Health Science, Hainan University, Haikou 570228, China.
| | - Wei Xia
- Sanya Nanfan Research Institution Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China.
| | - Chen Runan
- Sanya Nanfan Research Institution/College of Tropical Crops, Hainan University, Sanya, 572025, China
| | - Maroof Ali
- Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, Yunnan, 666303, China
| | - Zainab Maqbool
- Botany Department, Lahore College for Women University, Lahore, Pakistan
| |
Collapse
|
3
|
Mangilet AF, Weber J, Schüler S, Adler M, Mjema EY, Heilmann P, Herold A, Renneberg M, Nagel L, Droste-Borel I, Streicher S, Schmutzer T, Rot G, Macek B, Schmidtke C, Laubinger S. The Arabidopsis U1 snRNP regulates mRNA 3'-end processing. NATURE PLANTS 2024; 10:1514-1531. [PMID: 39313562 PMCID: PMC11489095 DOI: 10.1038/s41477-024-01796-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 08/27/2024] [Indexed: 09/25/2024]
Abstract
The removal of introns by the spliceosome is a key gene regulatory mechanism in eukaryotes, with the U1 snRNP subunit playing a crucial role in the early stages of splicing. Studies in metazoans show that the U1 snRNP also conducts splicing-independent functions, but the lack of genetic tools and knowledge about U1 snRNP-associated proteins have limited the study of such splicing-independent functions in plants. Here we describe an RNA-centric approach that identified more than 200 proteins associated with the Arabidopsis U1 snRNP and revealed a tight link to mRNA cleavage and polyadenylation factors. Interestingly, we found that the U1 snRNP protects mRNAs against premature cleavage and polyadenylation within introns-a mechanism known as telescripting in metazoans-while also influencing alternative polyadenylation site selection in 3'-UTRs. Overall, our work provides a comprehensive view of U1 snRNP interactors and reveals novel functions in regulating mRNA 3'-end processing in Arabidopsis, laying the groundwork for understanding non-canonical functions of plant U1 snRNPs.
Collapse
Affiliation(s)
- Anchilie F Mangilet
- Institute of Biology and Environmental Sciences, University of Oldenburg, Oldenburg, Germany
- Max Planck Institute for Plant Breeding Research (MPIPZ), Cologne, Germany
| | - Joachim Weber
- Institute of Biology and Environmental Sciences, University of Oldenburg, Oldenburg, Germany
- Institute of Biology, Department of Genetics, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Sandra Schüler
- Institute of Biology and Environmental Sciences, University of Oldenburg, Oldenburg, Germany
- Institute of Biology, Department of Genetics, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Manon Adler
- Institute of Biology and Environmental Sciences, University of Oldenburg, Oldenburg, Germany
- Institute of Biology, Department of Genetics, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Eneza Yoeli Mjema
- Institute of Biology and Environmental Sciences, University of Oldenburg, Oldenburg, Germany
- Institute of Biology, Department of Genetics, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Paula Heilmann
- Institute of Biology, Department of Genetics, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Angie Herold
- Institute of Biology, Department of Genetics, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Monique Renneberg
- Institute of Biology, Department of Genetics, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Luise Nagel
- Institute of Biology, Department of Genetics, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | | | - Samuel Streicher
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Thomas Schmutzer
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Gregor Rot
- Institute of Molecular Life Sciences of the University of Zurich and Swiss Institute of Bioinformatics, Zurich, Switzerland
| | - Boris Macek
- Proteome Center, University of Tuebingen, Tuebingen, Germany
| | - Cornelius Schmidtke
- Institute of Biology, Department of Genetics, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Sascha Laubinger
- Institute of Biology and Environmental Sciences, University of Oldenburg, Oldenburg, Germany.
- Institute of Biology, Department of Genetics, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany.
| |
Collapse
|
4
|
Atanasov V, Schumacher J, Muiño JM, Larasati C, Wang L, Kaufmann K, Leister D, Kleine T. Arabidopsis BBX14 is involved in high light acclimation and seedling development. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:141-158. [PMID: 38128030 DOI: 10.1111/tpj.16597] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 11/22/2023] [Accepted: 12/01/2023] [Indexed: 12/23/2023]
Abstract
The development of photosynthetically competent seedlings requires both light and retrograde biogenic signaling pathways. The transcription factor GLK1 functions at the interface between these pathways and receives input from the biogenic signal integrator GUN1. BBX14 was previously identified, together with GLK1, in a core module that mediates the response to high light (HL) levels and biogenic signals, which was studied by using inhibitors of chloroplast development. Our chromatin immunoprecipitation-Seq experiments revealed that BBX14 is a direct target of GLK1, and RNA-Seq analysis suggests that BBX14 may function as a regulator of the circadian clock. In addition, BBX14 plays a role in chlorophyll biosynthesis during early onset of light. Knockout of BBX14 results in a long hypocotyl phenotype dependent on a retrograde signal. Furthermore, the expression of BBX14 and BBX15 during biogenic signaling requires GUN1. Investigation of the role of BBX14 and BBX15 in GUN-type biogenic (gun) signaling showed that the overexpression of BBX14 or BBX15 caused de-repression of CA1 mRNA levels, when seedlings were grown on norflurazon. Notably, transcripts of the LHCB1.2 marker are not de-repressed. Furthermore, BBX14 is required to acclimate plants to HL stress. We propose that BBX14 is an integrator of biogenic signals and that BBX14 is a nuclear target of retrograde signals downstream of the GUN1/GLK1 module. However, we do not classify BBX14 or BBX15 overexpressors as gun mutants based on a critical evaluation of our results and those reported in the literature. Finally, we discuss a classification system necessary for the declaration of new gun mutants.
Collapse
Affiliation(s)
- Vasil Atanasov
- Plant Molecular Biology (Botany), Department Biology I, Ludwig-Maximilians-University München, 82152, Martinsried, Germany
| | - Julia Schumacher
- Chair for Plant Cell and Molecular Biology, Institute of Biology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Jose M Muiño
- Chair for Plant Cell and Molecular Biology, Institute of Biology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Catharina Larasati
- Plant Molecular Biology (Botany), Department Biology I, Ludwig-Maximilians-University München, 82152, Martinsried, Germany
| | - Liangsheng Wang
- Plant Molecular Biology (Botany), Department Biology I, Ludwig-Maximilians-University München, 82152, Martinsried, Germany
| | - Kerstin Kaufmann
- Chair for Plant Cell and Molecular Biology, Institute of Biology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Dario Leister
- Plant Molecular Biology (Botany), Department Biology I, Ludwig-Maximilians-University München, 82152, Martinsried, Germany
| | - Tatjana Kleine
- Plant Molecular Biology (Botany), Department Biology I, Ludwig-Maximilians-University München, 82152, Martinsried, Germany
| |
Collapse
|
5
|
Ma L, Tao X, Wang W, Jiao J, Pu Y, Yang G, Liu L, Fang Y, Wu J, Sun W. Genome-wide identification of RNA recognition motif (RRM1) in Brassica rapa and functional analysis of RNA-binding protein (BrRBP) under low-temperature stress. BMC PLANT BIOLOGY 2023; 23:621. [PMID: 38057714 DOI: 10.1186/s12870-023-04639-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 11/29/2023] [Indexed: 12/08/2023]
Abstract
BACKGROUND The RNA recognition motif (RRM) is primarily engaged in the processing of mRNA and rRNA following gene transcription as well as the regulation of RNA transport; it is critical in preserving RNA stability. RESULTS In this study, we identified 102 members of the RRM1 gene family in Brassica rapa, which were dispersed across 10 chromosomes with the ninth chromosome being the most extensively distributed. The RRM1 gene family members of Brassica rapa and Arabidopsis thaliana were grouped into 14 subclades (I-XIV) using phylogenetic analysis. Moreover, the results of transcriptome analysis and RT-qPCR indicated that the expression of Brapa05T000840 was upregulated in the cultivars 'Longyou 7' and 'Longyou 99' following exposure to cold stress at a temperature of 4 °C for 24 h. The levels of expression in the leaves and growth cones of the 'Longyou 7' variety were found to be significantly higher than those observed in the 'Longyou 99' variety under conditions of low temperature and NaCl stress. It illustrates the involvement of the RRM1 gene in the physiological response to both low temperature and salt stress. In addition, it was observed that the survival rate of transgenic BrRBP (Brapa05T000840) Arabidopsis thaliana plants was notably higher compared to that of wild-type plants when subjected to varying durations of low temperature treatment. Furthermore, the expression of the BrRBP gene in transgenic plants exhibited an upward trend as the duration of low temperature treatment increased, reaching its peak at 24 h. The in-vivo enzymatic activity of reactive oxygen species-scavenging enzymes were found to be significantly elevated in comparison to wild-type plants, suggesting that the BrRBP gene may enhance the cold tolerance of Arabidopsis thaliana. CONCLUSIONS This study offers a significant foundation for comprehending the regulation mechanism of the RRM1 gene family in winter Brassica rapa subjected to cold stress, as well as for finding key genes associated with cold resistance.
Collapse
Affiliation(s)
- Li Ma
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070, China
| | - Xiaolei Tao
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070, China
- College of Agronomy, Gansu Agricultural University, Lanzhou, 730070, China
| | - Wangtian Wang
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070, China
| | - Jintang Jiao
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070, China
- College of Agronomy, Gansu Agricultural University, Lanzhou, 730070, China
| | - Yuanyuan Pu
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070, China
- College of Agronomy, Gansu Agricultural University, Lanzhou, 730070, China
| | - Gang Yang
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070, China
- College of Agronomy, Gansu Agricultural University, Lanzhou, 730070, China
| | - Lijun Liu
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070, China
| | - Yan Fang
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070, China
| | - Junyan Wu
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070, China.
- College of Agronomy, Gansu Agricultural University, Lanzhou, 730070, China.
| | - Wancang Sun
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070, China.
- College of Agronomy, Gansu Agricultural University, Lanzhou, 730070, China.
| |
Collapse
|
6
|
Hodaei A, Werbrouck SPO. Unlocking Nature's Clock: CRISPR Technology in Flowering Time Engineering. PLANTS (BASEL, SWITZERLAND) 2023; 12:4020. [PMID: 38068655 PMCID: PMC10708119 DOI: 10.3390/plants12234020] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/24/2023] [Accepted: 11/27/2023] [Indexed: 12/23/2024]
Abstract
Flowering is a crucial process in the life cycle of most plants as it is essential for the reproductive success and genetic diversity of the species. There are situations in which breeders want to expedite, delay, or prevent flowering, for example, to shorten or prolong vegetative growth, to prevent unwanted pollination, to reduce the risk of diseases or pests, or to modify the plant's phenotypes. This review aims to provide an overview of the current state of knowledge to use CRISPR/Cas9, a powerful genome-editing technology to modify specific DNA sequences related to flowering induction. We discuss the underlying molecular mechanisms governing the regulation of the photoperiod, autonomous, vernalization, hormonal, sugar, aging, and temperature signal pathways regulating the flowering time. In addition, we are investigating the most effective strategies for nominating target genes. Furthermore, we have collected a dataset showing successful applications of CRISPR technology to accelerate flowering in several plant species from 2015 up to date. Finally, we explore the opportunities and challenges of using the potential of CRISPR technology in flowering time engineering.
Collapse
Affiliation(s)
| | - Stefaan P. O. Werbrouck
- Laboratory for Applied In Vitro Plant Biotechnology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium;
| |
Collapse
|
7
|
Nadi R, Juan-Vicente L, Mateo-Bonmatí E, Micol JL. The unequal functional redundancy of Arabidopsis INCURVATA11 and CUPULIFORMIS2 is not dependent on genetic background. FRONTIERS IN PLANT SCIENCE 2023; 14:1239093. [PMID: 38034561 PMCID: PMC10684699 DOI: 10.3389/fpls.2023.1239093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 10/26/2023] [Indexed: 12/02/2023]
Abstract
The paralogous genes INCURVATA11 (ICU11) and CUPULIFORMIS2 (CP2) encode components of the epigenetic machinery in Arabidopsis and belong to the 2-oxoglutarate and Fe (II)-dependent dioxygenase superfamily. We previously inferred unequal functional redundancy between ICU11 and CP2 from a study of the synergistic phenotypes of the double mutant and sesquimutant combinations of icu11 and cp2 mutations, although they represented mixed genetic backgrounds. To avoid potential confounding effects arising from different genetic backgrounds, we generated the icu11-5 and icu11-6 mutants via CRISPR/Cas genome editing in the Col-0 background and crossed them to cp2 mutants in Col-0. The resulting mutants exhibited a postembryonic-lethal phenotype reminiscent of strong embryonic flower (emf) mutants. Double mutants involving icu11-5 and mutations affecting epigenetic machinery components displayed synergistic phenotypes, whereas cp2-3 did not besides icu11-5. Our results confirmed the unequal functional redundancy between ICU11 and CP2 and demonstrated that it is not allele or genetic background specific. An increase in sucrose content in the culture medium partially rescued the post-germinative lethality of icu11 cp2 double mutants and sesquimutants, facilitating the study of their morphological phenotypes throughout their life cycle, which include floral organ homeotic transformations. We thus established that the ICU11-CP2 module is required for proper flower organ identity.
Collapse
Affiliation(s)
| | | | | | - José Luis Micol
- Instituto de Bioingeniería, Universidad Miguel Hernández, Elche, Spain
| |
Collapse
|
8
|
Mateos JL, Staiger D. Toward a systems view on RNA-binding proteins and associated RNAs in plants: Guilt by association. THE PLANT CELL 2023; 35:1708-1726. [PMID: 36461946 PMCID: PMC10226577 DOI: 10.1093/plcell/koac345] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/08/2022] [Accepted: 11/17/2022] [Indexed: 05/30/2023]
Abstract
RNA-binding proteins (RBPs) have a broad impact on most biochemical, physiological, and developmental processes in a plant's life. RBPs engage in an on-off relationship with their RNA partners, accompanying virtually every stage in RNA processing and function. While the function of a plethora of RBPs in plant development and stress responses has been described, we are lacking a systems-level understanding of components in RNA-based regulation. Novel techniques have substantially enlarged the compendium of proteins with experimental evidence for binding to RNAs in the cell, the RNA-binding proteome. Furthermore, ribonomics methods have been adapted for use in plants to profile the in vivo binding repertoire of RBPs genome-wide. Here, we discuss how recent technological achievements have provided novel insights into the mode of action of plant RBPs at a genome-wide scale. Furthermore, we touch upon two emerging topics, the connection of RBPs to phase separation in the cell and to extracellular RNAs. Finally, we define open questions to be addressed to move toward an integrated understanding of RBP function.
Collapse
Affiliation(s)
- Julieta L Mateos
- Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-CONICET-UBA), Buenos Aires, Argentina
- RNA Biology and Molecular Physiology, Faculty of Biology, Bielefeld University, 33615 Bielefeld, Germany
| | - Dorothee Staiger
- RNA Biology and Molecular Physiology, Faculty of Biology, Bielefeld University, 33615 Bielefeld, Germany
| |
Collapse
|
9
|
Huang W, Zhang L, Zhu Y, Chen J, Zhu Y, Lin F, Chen X, Huang J. A genetic screen in Arabidopsis reveals the identical roles for RBP45d and PRP39a in 5' cryptic splice site selection. FRONTIERS IN PLANT SCIENCE 2022; 13:1086506. [PMID: 36618610 PMCID: PMC9813592 DOI: 10.3389/fpls.2022.1086506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
Cryptic splice sites in eukaryotic genome are generally dormant unless activated by mutation of authentic splice sites or related splicing factors. How cryptic splice sites are used remains unclear in plants. Here, we identified two cryptic splicing regulators, RBP45d and PRP39a that are homologs of yeast U1 auxiliary protein Nam8 and Prp39, respectively, via genetic screening for suppressors of the virescent sot5 mutant, which results from a point mutation at the 5' splice site (5' ss) of SOT5 intron 7. Loss-of-function mutations in RBP45d and PRP39a significantly increase the level of a cryptically spliced variant that encodes a mutated but functional sot5 protein, rescuing sot5 to the WT phenotype. We furtherly demonstrated that RBP45d and PRP39a interact with each other and also with the U1C, a core subunit of U1 snRNP. We found that RBP45d directly binds to the uridine (U)-rich RNA sequence downstream the 5' ss of SOT5 intron 7. However, other RBP45/47 members do not function redundantly with RBP45d, at least in regulation of cryptic splicing. Taken together, RBP45d promotes U1 snRNP to recognize the specific 5' ss via binding to intronic U-rich elements in plants.
Collapse
Affiliation(s)
- Weihua Huang
- Shanghai Key Laboratory of Plant Molecular Sciences, Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Liqun Zhang
- Shanghai Key Laboratory of Plant Molecular Sciences, Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Yajuan Zhu
- Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jingli Chen
- Shanghai Key Laboratory of Plant Molecular Sciences, Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Yawen Zhu
- Shanghai Key Laboratory of Plant Molecular Sciences, Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Fengru Lin
- Shanghai Key Laboratory of Plant Molecular Sciences, Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Xiaomei Chen
- Shanghai Key Laboratory of Plant Molecular Sciences, Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Jirong Huang
- Shanghai Key Laboratory of Plant Molecular Sciences, Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, China
| |
Collapse
|
10
|
Kleine T. Arabidopsis thaliana FLOWERING LOCUS M: A direct target of RBP45d? THE PLANT CELL 2022; 34:4138-4140. [PMID: 35945677 PMCID: PMC9614448 DOI: 10.1093/plcell/koac247] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 08/02/2022] [Indexed: 06/15/2023]
Affiliation(s)
- Tatjana Kleine
- Plant Molecular Biology (Botany), Ludwig-Maximilians-Universität München, Planegg-Martinsried, 82152, Germany
| |
Collapse
|
11
|
Chang P, Tu SL. Reply: The spliceosomal component RBP45d regulates pre-mRNA splicing and gene silencing for flowering time control in Arabidopsis. THE PLANT CELL 2022; 34:4141-4142. [PMID: 35945675 PMCID: PMC9614451 DOI: 10.1093/plcell/koac246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 08/02/2022] [Indexed: 06/15/2023]
Affiliation(s)
- Ping Chang
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Shih-Long Tu
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| |
Collapse
|