1
|
Swaminathan S, Grover CE, Mugisha AS, Sichterman LE, Lee Y, Yang P, Mallery EL, Jareczek JJ, Leach AG, Xie J, Wendel JF, Szymanski DB, Zabotina OA. Daily glycome and transcriptome profiling reveals polysaccharide structures and correlated glycosyltransferases critical for cotton fiber growth. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024. [PMID: 39441672 DOI: 10.1111/tpj.17084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 09/02/2024] [Accepted: 09/28/2024] [Indexed: 10/25/2024]
Abstract
Cotton fiber is the most valuable naturally available material for the textile industry and the fiber length and strength are key determinants of its quality. Dynamic changes in the pectin, xyloglucan, xylan, and cellulose polysaccharide epitope content during fiber growth contribute to complex remodeling of fiber cell wall (CW) and quality. Detailed knowledge about polysaccharide compositional and structural alteration in the fiber during fiber elongation and strengthening is important to understand the molecular dynamics of fiber development and improve its quality. Here, large-scale glycome profiling coupled with fiber phenotype and transcriptome profiling was conducted on fiber collected daily covering the most critical window of fiber development. The profiling studies with high temporal resolution allowed us to identify specific polysaccharide epitopes associated with distinct fiber phenotypes that might contribute to fiber quality. This study revealed the critical role of highly branched RG-I pectin epitopes such as β-1,4-linked-galactans, β-1,6-linked-galactans, and arabinogalactans, in addition to earlier reported homogalacturonans and xyloglucans in the formation of cotton fiber middle lamella and contributing to fiber plasticity and elongation. We also propose the essential role of heteroxylans (Xyl-MeGlcA and Xyl-3Ar), as a guiding factor for secondary CW cellulose microfibril arrangement, thus contributing to fiber strength. Correlation analysis of profiles of polysaccharide epitopes from glycome data and expression profiles of glycosyltransferase-encoding genes from transcriptome data identified several key putative glycosyltransferases that are potentially involved in synthesizing the critical polysaccharide epitopes. The findings of this study provide a foundation to identify molecular factors that dictate important fiber traits.
Collapse
Affiliation(s)
- Sivakumar Swaminathan
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa, 50011, USA
| | - Corrinne E Grover
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, Iowa, 50011, USA
| | - Alither S Mugisha
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa, 50011, USA
| | - Lauren E Sichterman
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa, 50011, USA
| | - Youngwoo Lee
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, 47907, USA
| | - Pengcheng Yang
- Department of Statistics, Purdue University, West Lafayette, Indiana, 47907, USA
| | - Eileen L Mallery
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, 47907, USA
| | - Josef J Jareczek
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, Iowa, 50011, USA
| | - Alexis G Leach
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, Iowa, 50011, USA
| | - Jun Xie
- Department of Statistics, Purdue University, West Lafayette, Indiana, 47907, USA
| | - Jonathan F Wendel
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, Iowa, 50011, USA
| | - Daniel B Szymanski
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, 47907, USA
| | - Olga A Zabotina
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa, 50011, USA
| |
Collapse
|
2
|
Zhang Y, Sharma D, Liang Y, Downs N, Dolman F, Thorne K, Black IM, Pereira JH, Adams P, Scheller HV, O’Neill M, Urbanowicz B, Mortimer JC. Putative rhamnogalacturonan-II glycosyltransferase identified through callus gene editing which bypasses embryo lethality. PLANT PHYSIOLOGY 2024; 195:2551-2565. [PMID: 38739546 PMCID: PMC11288761 DOI: 10.1093/plphys/kiae259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/09/2024] [Accepted: 04/10/2024] [Indexed: 05/16/2024]
Abstract
Rhamnogalacturonan II (RG-II) is a structurally complex and conserved domain of the pectin present in the primary cell walls of vascular plants. Borate cross-linking of RG-II is required for plants to grow and develop normally. Mutations that alter RG-II structure also affect cross-linking and are lethal or severely impair growth. Thus, few genes involved in RG-II synthesis have been identified. Here, we developed a method to generate viable loss-of-function Arabidopsis (Arabidopsis thaliana) mutants in callus tissue via CRISPR/Cas9-mediated gene editing. We combined this with a candidate gene approach to characterize the male gametophyte defective 2 (MGP2) gene that encodes a putative family GT29 glycosyltransferase. Plants homozygous for this mutation do not survive. We showed that in the callus mutant cell walls, RG-II does not cross-link normally because it lacks 3-deoxy-D-manno-octulosonic acid (Kdo) and thus cannot form the α-L-Rhap-(1→5)-α-D-kdop-(1→sidechain). We suggest that MGP2 encodes an inverting RG-II CMP-β-Kdo transferase (RCKT1). Our discovery provides further insight into the role of sidechains in RG-II dimerization. Our method also provides a viable strategy for further identifying proteins involved in the biosynthesis of RG-II.
Collapse
Affiliation(s)
- Yuan Zhang
- Joint BioEnergy Institute, Emeryville, CA 94608, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Deepak Sharma
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Yan Liang
- Joint BioEnergy Institute, Emeryville, CA 94608, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Nick Downs
- Joint BioEnergy Institute, Emeryville, CA 94608, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Fleur Dolman
- School of Agriculture, Food and Wine, University of Adelaide, Adelaide, SA 5005, Australia
| | - Kristen Thorne
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Ian M Black
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - Jose Henrique Pereira
- Joint BioEnergy Institute, Emeryville, CA 94608, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Paul Adams
- Joint BioEnergy Institute, Emeryville, CA 94608, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Henrik V Scheller
- Joint BioEnergy Institute, Emeryville, CA 94608, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| | - Malcolm O’Neill
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - Breeanna Urbanowicz
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Jenny C Mortimer
- Joint BioEnergy Institute, Emeryville, CA 94608, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- School of Agriculture, Food and Wine, University of Adelaide, Adelaide, SA 5005, Australia
| |
Collapse
|
3
|
Liang S, Zang Y, Wang H, Xue S, Xin J, Li X, Tang X, Chen J. Combined transcriptomics and metabolomics analysis reveals salinity stress specific signaling and tolerance responses in the seagrass Zostera japonica. PLANT CELL REPORTS 2024; 43:203. [PMID: 39080075 DOI: 10.1007/s00299-024-03292-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 07/18/2024] [Indexed: 08/17/2024]
Abstract
KEY MESSAGE Multiple regulatory pathways of Zostera japonica to salt stress were identified through growth, physiological, transcriptomic and metabolomic analyses. Seagrasses are marine higher submerged plants that evolved from terrestrial monocotyledons and have fully adapted to the high saline seawater environment during the long evolutionary process. As one of the seagrasses growing in the intertidal zone, Zostera japonica not only has the ability to quickly adapt to short-term salt stress but can also survive at salinities ranging from the lower salinity of the Yellow River estuary to the higher salinity of the bay, making it a good natural model for studying the mechanism underlying the adaptation of plants to salt stress. In this work, we screened the growth, physiological, metabolomic, and transcriptomic changes of Z. japonica after a 5-day exposure to different salinities. We found that high salinity treatment impeded the growth of Z. japonica, hindered its photosynthesis, and elicited oxidative damage, while Z. japonica increased antioxidant enzyme activity. At the transcriptomic level, hypersaline stress greatly reduced the expression levels of photosynthesis-related genes while increasing the expression of genes associated with flavonoid biosynthesis. Meanwhile, the expression of candidate genes involved in ion transport and cell wall remodeling was dramatically changed under hypersaline stress. Moreover, transcription factors signaling pathways such as mitogen-activated protein kinase (MAPK) were also significantly influenced by salt stress. At the metabolomic level, Z. japonica displayed an accumulation of osmolytes and TCA mediators under hypersaline stress. In conclusion, our results revealed a complex regulatory mechanism in Z. japonica under salt stress, and the findings will provide important guidance for improving salt resistance in crops.
Collapse
Affiliation(s)
- Shuo Liang
- College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong, China
- Department of Agriculture, Forestry and Food Science (DISAFA), Plant Stress Laboratory, Turin University, Grugliasco, Turin, Italy
| | - Yu Zang
- Ministry of Natural Resources, Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Qingdao, Shandong, China
| | - Hongzhen Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong, China
| | - Song Xue
- College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong, China
| | - Jiayi Xin
- College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong, China
| | - Xinqi Li
- College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong, China
| | - Xuexi Tang
- College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong, China.
| | - Jun Chen
- College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong, China.
| |
Collapse
|
4
|
Kutyrieva-Nowak N, Leszczuk A, Denic D, Bellaidi S, Blazakis K, Gemeliari P, Lis M, Kalaitzis P, Zdunek A. In vivo and ex vivo study on cell wall components as part of the network in tomato fruit during the ripening process. HORTICULTURE RESEARCH 2024; 11:uhae145. [PMID: 38988613 PMCID: PMC11233857 DOI: 10.1093/hr/uhae145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 05/13/2024] [Indexed: 07/12/2024]
Abstract
Ripening is a process involving various morphological, physiological, and biochemical changes in fruits. This process is affected by modifications in the cell wall structure, particularly in the composition of polysaccharides and proteins. The cell wall assembly is a network of polysaccharides and proteoglycans named the arabinoxylan pectin arabinogalactan protein1 (APAP1). The complex consists of the arabinogalactan protein (AGP) core with the pectin domain including arabinogalactan (AG) type II, homogalacturonan (HG), and rhamnogalacturonan I (RG-I). The present paper aims to determine the impact of a disturbance in the synthesis of one constituent on the integrity of the cell wall. Therefore, in the current work, we have tested the impact of modified expression of the SlP4H3 gene connected with proline hydroxylase (P4H) activity on AGP presence in the fruit matrix. Using an immunolabelling technique (CLSM), an immunogold method (TEM), molecular tools, and calcium mapping (SEM-EDS), we have demonstrated that disturbances in AGP synthesis affect the entire cell wall structure. Changes in the spatio-temporal AGP distribution may be related to the formation of a network between AGPs with other cell wall components. Moreover, the modified structure of the cell wall assembly induces morphological changes visible at the cellular level during the progression of the ripening process. These results support the hypothesis that AGPs and pectins are required for the proper progression of the physiological processes occurring in fruits.
Collapse
Affiliation(s)
| | - Agata Leszczuk
- Institute of Agrophysics, Polish Academy of Sciences, 20-290 Lublin, Poland
| | - Dusan Denic
- Department of Horticultural Genetics and Biotechnology, Mediterranean Agronomic Institute of Chania, Chania 73100, Greece
| | - Samia Bellaidi
- Department of Horticultural Genetics and Biotechnology, Mediterranean Agronomic Institute of Chania, Chania 73100, Greece
| | - Konstantinos Blazakis
- Department of Horticultural Genetics and Biotechnology, Mediterranean Agronomic Institute of Chania, Chania 73100, Greece
| | - Petroula Gemeliari
- Department of Horticultural Genetics and Biotechnology, Mediterranean Agronomic Institute of Chania, Chania 73100, Greece
| | - Magdalena Lis
- Department of Biomedicine and Environmental Research, Institute of Biological Sciences, Faculty of Medicine, John Paul II Catholic University of Lublin, 20-708 Lublin, Poland
| | - Panagiotis Kalaitzis
- Department of Horticultural Genetics and Biotechnology, Mediterranean Agronomic Institute of Chania, Chania 73100, Greece
| | - Artur Zdunek
- Institute of Agrophysics, Polish Academy of Sciences, 20-290 Lublin, Poland
| |
Collapse
|
5
|
Zhong R, Phillips DR, Clark KD, Adams ER, Lee C, Ye ZH. Biochemical Characterization of Rice Xylan Biosynthetic Enzymes in Determining Xylan Chain Elongation and Substitutions. PLANT & CELL PHYSIOLOGY 2024; 65:1065-1079. [PMID: 38501734 DOI: 10.1093/pcp/pcae028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/05/2024] [Accepted: 03/18/2024] [Indexed: 03/20/2024]
Abstract
Grass xylan consists of a linear chain of β-1,4-linked xylosyl residues that often form domains substituted only with either arabinofuranose (Araf) or glucuronic acid (GlcA)/methylglucuronic acid (MeGlcA) residues, and it lacks the unique reducing end tetrasaccharide sequence found in dicot xylan. The mechanism of how grass xylan backbone elongation is initiated and how its distinctive substitution pattern is determined remains elusive. Here, we performed biochemical characterization of rice xylan biosynthetic enzymes, including xylan synthases, glucuronyltransferases and methyltransferases. Activity assays of rice xylan synthases demonstrated that they required short xylooligomers as acceptors for their activities. While rice xylan glucuronyltransferases effectively glucuronidated unsubstituted xylohexaose acceptors, they transferred little GlcA residues onto (Araf)-substituted xylohexaoses and rice xylan 3-O-arabinosyltransferase could not arabinosylate GlcA-substituted xylohexaoses, indicating that their intrinsic biochemical properties may contribute to the distinctive substitution patterns of rice xylan. In addition, we found that rice xylan methyltransferase exhibited a low substrate binding affinity, which may explain the partial GlcA methylation in rice xylan. Furthermore, immunolocalization of xylan in xylem cells of both rice and Arabidopsis showed that it was deposited together with cellulose in secondary walls without forming xylan-rich nanodomains. Together, our findings provide new insights into the biochemical mechanisms underlying xylan backbone elongation and substitutions in grass species.
Collapse
Affiliation(s)
- Ruiqin Zhong
- Department of Plant Biology, University of Georgia, Athens, GA 30602, USA
| | - Dennis R Phillips
- Department of Chemistry, University of Georgia, Athens, GA 30602, USA
| | - Kevin D Clark
- Department of Chemistry, University of Georgia, Athens, GA 30602, USA
| | - Earle R Adams
- Department of Chemistry, University of Georgia, Athens, GA 30602, USA
| | - Chanhui Lee
- Department of Plant Biology, University of Georgia, Athens, GA 30602, USA
- Department of Plant & Environmental New Resources, College of Life Sciences, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Zheng-Hua Ye
- Department of Plant Biology, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
6
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2021-2022. MASS SPECTROMETRY REVIEWS 2024. [PMID: 38925550 DOI: 10.1002/mas.21873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/05/2024] [Accepted: 02/12/2024] [Indexed: 06/28/2024]
Abstract
The use of matrix-assisted laser desorption/ionization (MALDI) mass spectrometry for the analysis of carbohydrates and glycoconjugates is a well-established technique and this review is the 12th update of the original article published in 1999 and brings coverage of the literature to the end of 2022. As with previous review, this review also includes a few papers that describe methods appropriate to analysis by MALDI, such as sample preparation, even though the ionization method is not MALDI. The review follows the same format as previous reviews. It is divided into three sections: (1) general aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, fragmentation, quantification and the use of computer software for structural identification. (2) Applications to various structural types such as oligo- and polysaccharides, glycoproteins, glycolipids, glycosides and biopharmaceuticals, and (3) other general areas such as medicine, industrial processes, natural products and glycan synthesis where MALDI is extensively used. Much of the material relating to applications is presented in tabular form. MALDI is still an ideal technique for carbohydrate analysis, particularly in its ability to produce single ions from each analyte and advancements in the technique and range of applications show little sign of diminishing.
Collapse
|
7
|
Delmer D, Dixon RA, Keegstra K, Mohnen D. The plant cell wall-dynamic, strong, and adaptable-is a natural shapeshifter. THE PLANT CELL 2024; 36:1257-1311. [PMID: 38301734 PMCID: PMC11062476 DOI: 10.1093/plcell/koad325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 12/19/2023] [Indexed: 02/03/2024]
Abstract
Mythology is replete with good and evil shapeshifters, who, by definition, display great adaptability and assume many different forms-with several even turning themselves into trees. Cell walls certainly fit this definition as they can undergo subtle or dramatic changes in structure, assume many shapes, and perform many functions. In this review, we cover the evolution of knowledge of the structures, biosynthesis, and functions of the 5 major cell wall polymer types that range from deceptively simple to fiendishly complex. Along the way, we recognize some of the colorful historical figures who shaped cell wall research over the past 100 years. The shapeshifter analogy emerges more clearly as we examine the evolving proposals for how cell walls are constructed to allow growth while remaining strong, the complex signaling involved in maintaining cell wall integrity and defense against disease, and the ways cell walls adapt as they progress from birth, through growth to maturation, and in the end, often function long after cell death. We predict the next century of progress will include deciphering cell type-specific wall polymers; regulation at all levels of polymer production, crosslinks, and architecture; and how walls respond to developmental and environmental signals to drive plant success in diverse environments.
Collapse
Affiliation(s)
- Deborah Delmer
- Section of Plant Biology, University of California Davis, Davis, CA 95616, USA
| | - Richard A Dixon
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, Denton, TX 76203, USA
| | - Kenneth Keegstra
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48823, USA
| | - Debra Mohnen
- Complex Carbohydrate Research Center and Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
8
|
Tan L, Cheng J, Zhang L, Backe J, Urbanowicz B, Heiss C, Azadi P. Pectic-AGP is a major form of Arabidopsis AGPs. Carbohydr Polym 2024; 330:121838. [PMID: 38368088 DOI: 10.1016/j.carbpol.2024.121838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 01/16/2024] [Indexed: 02/19/2024]
Abstract
As a key component in cell walls of numerous organisms ranging from green algae to higher plants, AGPs play principal roles in many biological processes such as cell-cell adhesion and regulating Ca2+ signaling pathway as a Ca2+-capacitor. Consistently, AGP structures vary from species to species and from tissue to tissue. To understand the functions of AGPs, it is vital to know their structural differences relative to their location in the plant. Thus, AGPs were purified from different Arabidopsis tissues. Analyses of these AGPs demonstrated that the AGPs comprised covalently linked pectin and AGP, referred to as pectic-AGPs. Importantly, these pectic-AGPs were glycosylated with a remarkable variety of polysaccharides including homogalacturonan, rhamnogalacturonan-I, and type II arabinogalactan at different ratios and lengths. This result not only suggests that pectic-AGP is a major form of Arabidopsis AGPs, but also supports AGPs serve as crosslinkers covalently connecting pectins with structures tailored for tissue-specific functions.
Collapse
Affiliation(s)
- Li Tan
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA 30602, United States of America; DOE Center for Plant and Microbial Complex Carbohydrates, University of Georgia, 315 Riverbend Road, Athens, GA 30602, United States of America.
| | - Jielun Cheng
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA 30602, United States of America; DOE Center for Plant and Microbial Complex Carbohydrates, University of Georgia, 315 Riverbend Road, Athens, GA 30602, United States of America
| | - Liang Zhang
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA 30602, United States of America; DOE Center for Plant and Microbial Complex Carbohydrates, University of Georgia, 315 Riverbend Road, Athens, GA 30602, United States of America; Department of Biochemistry and Molecular Biology, University of Georgia, 315 Riverbend Road, Athens, GA 30602, United States of America
| | - Jason Backe
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA 30602, United States of America; DOE Center for Plant and Microbial Complex Carbohydrates, University of Georgia, 315 Riverbend Road, Athens, GA 30602, United States of America; Department of Biochemistry and Molecular Biology, University of Georgia, 315 Riverbend Road, Athens, GA 30602, United States of America
| | - Breeanna Urbanowicz
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA 30602, United States of America; DOE Center for Plant and Microbial Complex Carbohydrates, University of Georgia, 315 Riverbend Road, Athens, GA 30602, United States of America; Department of Biochemistry and Molecular Biology, University of Georgia, 315 Riverbend Road, Athens, GA 30602, United States of America
| | - Christian Heiss
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA 30602, United States of America; DOE Center for Plant and Microbial Complex Carbohydrates, University of Georgia, 315 Riverbend Road, Athens, GA 30602, United States of America
| | - Parastoo Azadi
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA 30602, United States of America; DOE Center for Plant and Microbial Complex Carbohydrates, University of Georgia, 315 Riverbend Road, Athens, GA 30602, United States of America
| |
Collapse
|
9
|
Zhong R, Zhou D, Phillips DR, Adams ER, Chen L, Rose JP, Wang BC, Ye ZH. A rice GT61 glycosyltransferase possesses dual activities mediating 2-O-xylosyl and 2-O-arabinosyl substitutions of xylan. PLANTA 2024; 259:115. [PMID: 38589536 DOI: 10.1007/s00425-024-04396-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 03/19/2024] [Indexed: 04/10/2024]
Abstract
MAIN CONCLUSION A member of the rice GT61 clade B is capable of transferring both 2-O-xylosyl and 2-O-arabinosyl residues onto xylan and another member specifically catalyses addition of 2-O-xylosyl residue onto xylan. Grass xylan is substituted predominantly with 3-O-arabinofuranose (Araf) as well as with some minor side chains, such as 2-O-Araf and 2-O-(methyl)glucuronic acid [(Me)GlcA]. 3-O-Arabinosylation of grass xylan has been shown to be catalysed by grass-expanded clade A members of the glycosyltransferase family 61. However, glycosyltransferases mediating 2-O-arabinosylation of grass xylan remain elusive. Here, we performed biochemical studies of two rice GT61 clade B members and found that one of them was capable of transferring both xylosyl (Xyl) and Araf residues from UDP-Xyl and UDP-Araf, respectively, onto xylooligomer acceptors, whereas the other specifically catalysed Xyl transfer onto xylooligomers, indicating that the former is a xylan xylosyl/arabinosyl transferase (named OsXXAT1 herein) and the latter is a xylan xylosyltransferase (named OsXYXT2). Structural analysis of the OsXXAT1- and OsXYXT2-catalysed reaction products revealed that the Xyl and Araf residues were transferred onto O-2 positions of xylooligomers. Furthermore, we demonstrated that OsXXAT1 and OsXYXT2 were able to substitute acetylated xylooligomers, but only OsXXAT1 could xylosylate GlcA-substituted xylooligomers. OsXXAT1 and OsXYXT2 were predicted to adopt a GT-B fold structure and molecular docking revealed candidate amino acid residues at the predicted active site involved in binding of the nucleotide sugar donor and the xylohexaose acceptor substrates. Together, our results establish that OsXXAT1 is a xylan 2-O-xylosyl/2-O-arabinosyl transferase and OsXYXT2 is a xylan 2-O-xylosyltransferase, which expands our knowledge of roles of the GT61 family in grass xylan synthesis.
Collapse
Affiliation(s)
- Ruiqin Zhong
- Department of Plant Biology, University of Georgia, Athens, GA, 30602, USA
| | - Dayong Zhou
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, 30602, USA
| | - Dennis R Phillips
- Department of Chemistry, University of Georgia, Athens, GA, 30602, USA
| | - Earle R Adams
- Department of Chemistry, University of Georgia, Athens, GA, 30602, USA
| | - Lirong Chen
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, 30602, USA
| | - John P Rose
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, 30602, USA
| | - Bi-Cheng Wang
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, 30602, USA
| | - Zheng-Hua Ye
- Department of Plant Biology, University of Georgia, Athens, GA, 30602, USA.
| |
Collapse
|
10
|
Zhong R, Cui D, Richardson EA, Ye ZH. Acetylation of homogalacturonan and rhamnogalacturonan-I is catalyzed by a suite of trichome birefringence-like proteins. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:1084-1098. [PMID: 37934816 DOI: 10.1111/tpj.16540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/20/2023] [Accepted: 10/29/2023] [Indexed: 11/09/2023]
Abstract
Plant cell wall polysaccharides, including xylan, mannan, xyloglucan, and pectins, are often acetylated and members of the domain of unknown function 231 (DUF231)/trichome birefringence-like (TBL) family have been shown to be O-acetyltransferases mediating the acetylation of xylan, mannan, and xyloglucan. However, little is known about the O-acetyltransferases responsible for pectin acetylation. In this report, we biochemically characterized a suite of Arabidopsis DUF231/TBL proteins for their roles in pectin acetylation. We generated 24 TBL recombinant proteins in mammalian cells and demonstrated that 10 of them were able to transfer acetyl groups from acetyl-CoA onto the pectins homogalacturonan (HG) or rhamnogalacturonan-I (RG-I), and thus were named pectin O-acetyltransferase 1 to 10 (POAT1 to 10). It was found that POAT2,4,9,10 specifically acetylated HG and POAT5,6 acetylated RG-I, whereas POAT1,3,7,8 could act on both HG and RG-I. The acetylation of HG and RG-I by POATs was further corroborated by hydrolysis with pectin acetylesterases and by nuclear magnetic resonance spectroscopy. In addition, mutations of the conserved GDS and DXXH motifs in POAT3 and POAT8 were shown to lead to a loss of their ability to acetylate HG and RG-I. Furthermore, simultaneous RNA interference downregulation of POAT1,3,6,7,8 resulted in reduced cell expansion, impaired plant growth, and decreased pectin acetylation. Together, our findings indicate that these POATs are pectin O-acetyltransferases involved in acetylation of the pectin polysaccharides HG and RG-I.
Collapse
Affiliation(s)
- Ruiqin Zhong
- Department of Plant Biology, University of Georgia, Athens, Georgia, 30602, USA
| | - Dongtao Cui
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts, 02138, USA
| | | | - Zheng-Hua Ye
- Department of Plant Biology, University of Georgia, Athens, Georgia, 30602, USA
| |
Collapse
|
11
|
Kamel H, Geitmann A. Strength in numbers: An isoform variety of homogalacturonan modifying enzymes may contribute to pollen tube fitness. PLANT PHYSIOLOGY 2023; 194:67-80. [PMID: 37819032 DOI: 10.1093/plphys/kiad544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 09/12/2023] [Accepted: 09/15/2023] [Indexed: 10/13/2023]
Abstract
Pectin is a major component of the cell wall in land plants. It plays crucial roles in cell wall assembly, cell growth, shaping, and signaling. The relative abundance of pectin in the cell wall is particularly high in rapidly growing organ regions and cell types. Homogalacturonan (HG), a polymer of 1,4-linked α-D-galacturonic acid, is a major pectin constituent in growing and dividing plant cells. In pollen tubes, an extremely rapidly growing cell type, HG is secreted at and inserted into the apical cell wall and is subject to further modification in muro by HG modifying enzymes (HGMEs). These enzymes, including pectin esterases and depolymerases, have multiple isoforms, some of which are specifically expressed in pollen. Given the importance of pectin chemistry for the fitness of pollen tubes, it is of interest to interrogate the potentially crucial roles these isoforms play in pollen germination and elongation. It is hypothesized that different HGME isoforms, through their action on apoplastic HG, may generate differential methylation and acetylation patterns endowing HG polysaccharides with specific, spatially and temporally varying properties that lead to a fine-tuned pattern of cell wall modification. In addition, these isoforms may be differentially activated and/or inhibited depending on the local conditions that may vary at subcellular resolution. In this Update we review the different HGME isoforms identified in recent years in Arabidopsis thaliana and postulate that the multiplicity of these isoforms may allow for specialized substrate recognition and conditional activation, leading to a sophisticated regulation scheme exemplified in the process that governs the dynamic properties of the cell wall in pollen tube growth.
Collapse
Affiliation(s)
- Hiba Kamel
- Department of Plant Science, Faculty of Agricultural and Environmental Sciences, McGill University, Sainte-Anne-de-Bellevue, Quebec H9X 3V9, Canada
| | - Anja Geitmann
- Department of Plant Science, Faculty of Agricultural and Environmental Sciences, McGill University, Sainte-Anne-de-Bellevue, Quebec H9X 3V9, Canada
| |
Collapse
|
12
|
Dash L, Swaminathan S, Šimura J, Gonzales CLP, Montes C, Solanki N, Mejia L, Ljung K, Zabotina OA, Kelley DR. Changes in cell wall composition due to a pectin biosynthesis enzyme GAUT10 impact root growth. PLANT PHYSIOLOGY 2023; 193:2480-2497. [PMID: 37606259 PMCID: PMC10663140 DOI: 10.1093/plphys/kiad465] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 07/27/2023] [Accepted: 07/28/2023] [Indexed: 08/23/2023]
Abstract
Arabidopsis (Arabidopsis thaliana) root development is regulated by multiple dynamic growth cues that require central metabolism pathways such as β-oxidation and auxin. Loss of the pectin biosynthesizing enzyme GALACTURONOSYLTRANSFERASE 10 (GAUT10) leads to a short-root phenotype under sucrose-limited conditions. The present study focused on determining the specific contributions of GAUT10 to pectin composition in primary roots and the underlying defects associated with gaut10 roots. Using live-cell microscopy, we determined reduced root growth in gaut10 is due to a reduction in both root apical meristem size and epidermal cell elongation. In addition, GAUT10 was required for normal pectin and hemicellulose composition in primary Arabidopsis roots. Specifically, loss of GAUT10 led to a reduction in galacturonic acid and xylose in root cell walls and altered the presence of rhamnogalacturonan-I (RG-I) and homogalacturonan (HG) polymers in the root. Transcriptomic analysis of gaut10 roots compared to wild type uncovered hundreds of genes differentially expressed in the mutant, including genes related to auxin metabolism and peroxisome function. Consistent with these results, both auxin signaling and metabolism were modified in gaut10 roots. The sucrose-dependent short-root phenotype in gaut10 was linked to β-oxidation based on hypersensitivity to indole-3-butyric acid (IBA) and an epistatic interaction with TRANSPORTER OF IBA1 (TOB1). Altogether, these data support a growing body of evidence suggesting that pectin composition may influence auxin pathways and peroxisome activity.
Collapse
Affiliation(s)
- Linkan Dash
- Department of Genetics, Development and Cell Biology, Iowa State University, Iowa City, IA 50011, USA
| | - Sivakumar Swaminathan
- Roy J Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Iowa City, IA 50011, USA
| | - Jan Šimura
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Umeå 901 83, Sweden
| | - Caitlin Leigh P Gonzales
- Department of Genetics, Development and Cell Biology, Iowa State University, Iowa City, IA 50011, USA
| | - Christian Montes
- Department of Plant Pathology, Entomology, and Microbiology, Iowa State University, Iowa City, IA 50011, USA
| | - Neel Solanki
- Department of Genetics, Development and Cell Biology, Iowa State University, Iowa City, IA 50011, USA
| | - Ludvin Mejia
- Department of Genetics, Development and Cell Biology, Iowa State University, Iowa City, IA 50011, USA
| | - Karin Ljung
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Umeå 901 83, Sweden
| | - Olga A Zabotina
- Roy J Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Iowa City, IA 50011, USA
| | - Dior R Kelley
- Department of Genetics, Development and Cell Biology, Iowa State University, Iowa City, IA 50011, USA
| |
Collapse
|
13
|
Robichaux KJ, Smith DK, Blea MN, Weigand C, Harper JF, Wallace IS. Disruption of pollen tube homogalacturonan synthesis relieves pollen tube penetration defects in the Arabidopsis O-FUCOSYLTRANSFERASE1 mutant. PLANT REPRODUCTION 2023:10.1007/s00497-023-00468-5. [PMID: 37222783 DOI: 10.1007/s00497-023-00468-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 05/05/2023] [Indexed: 05/25/2023]
Abstract
During angiosperm sexual reproduction, pollen tubes must penetrate through multiple cell types in the pistil to mediate successful fertilization. Although this process is highly choreographed and requires complex chemical and mechanical signaling to guide the pollen tube to its destination, aspects of our understanding of pollen tube penetration through the pistil are incomplete. Our previous work demonstrated that disruption of the Arabidopsis thaliana O-FUCOSYLTRANSFERASE1 (OFT1) gene resulted in decreased pollen tube penetration through the stigma-style interface. Here, we demonstrate that second site mutations of Arabidopsis GALACTURONOSYLTRANSFERASE 14 (GAUT14) effectively suppress the phenotype of oft1 mutants, partially restoring silique length, seed set, pollen transmission, and pollen tube penetration deficiencies in navigating the female reproductive tract. These results suggest that disruption of pectic homogalacturonan (HG) synthesis can alleviate the penetrative defects associated with the oft1 mutant and may implicate pectic HG deposition in the process of pollen tube penetration through the stigma-style interface in Arabidopsis. These results also support a model in which OFT1 function directly or indirectly modifies structural features associated with the cell wall, with the loss of oft1 leading to an imbalance in the wall composition that can be compensated for by a reduction in pectic HG deposition.
Collapse
Affiliation(s)
- Kayleigh J Robichaux
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, 1664 N. Virginia St. MS0330, Reno, NV, 89557, USA
| | - Devin K Smith
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, 1664 N. Virginia St. MS0330, Reno, NV, 89557, USA
| | - Madison N Blea
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, 1664 N. Virginia St. MS0330, Reno, NV, 89557, USA
| | - Chrystle Weigand
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, 1664 N. Virginia St. MS0330, Reno, NV, 89557, USA
| | - Jeffrey F Harper
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, 1664 N. Virginia St. MS0330, Reno, NV, 89557, USA
| | - Ian S Wallace
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, 1664 N. Virginia St. MS0330, Reno, NV, 89557, USA.
| |
Collapse
|
14
|
Voiniciuc C. It's time to go glyco in cell wall bioengineering. CURRENT OPINION IN PLANT BIOLOGY 2023; 71:102313. [PMID: 36411187 DOI: 10.1016/j.pbi.2022.102313] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/22/2022] [Accepted: 10/24/2022] [Indexed: 06/16/2023]
Abstract
Tailoring the structure of cellulose, hemicellulose or pectin in plant cell walls can modulate growth, disease resistance, biomass yield and other important agronomic traits. Recent advances in the biosynthesis of microfibrils and matrix polysaccharides force us to re-examine old assumptions about the assembly and functions of cell wall components. The engineering of living or hybrid materials in microorganisms could be adapted to plant biopolymers or to inspire the development of new plant-based composites. High-throughput cellular factories and synthetic biology toolkits could unveil the biological roles and biotechnological potential of the large, unexplored space of carbohydrate-active enzymes. Increasing automation and enhanced carbohydrate detection methods are unlocking new routes to design plant glycans for a sustainable bioeconomy.
Collapse
Affiliation(s)
- Cătălin Voiniciuc
- Horticultural Sciences Department, University of Florida, Gainesville, FL, 32611, USA.
| |
Collapse
|
15
|
Zhong R, Phillips DR, Adams ER, Ye ZH. An Arabidopsis family GT106 glycosyltransferase is essential for xylan biosynthesis and secondary wall deposition. PLANTA 2023; 257:43. [PMID: 36689015 DOI: 10.1007/s00425-023-04077-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 01/14/2023] [Indexed: 06/17/2023]
Abstract
We have demonstrated that the Arabidopsis FRA9 (fragile fiber 9) gene is specifically expressed in secondary wall-forming cells and essential for the synthesis of the unique xylan reducing end sequence. Xylan is made of a linear chain of β-1,4-linked xylosyl (Xyl) residues that are often substituted with (methyl)glucuronic acid [(Me)GlcA] side chains and may be acetylated at O-2 and/or O-3. The reducing end of xylan from gymnosperms and dicots contains a unique tetrasaccharide sequence consisting of β-D-Xylp-(1 → 3)-α-L-Rhap-(1 → 2)-α-D-GalpA-(1 → 4)-D-Xylp, the synthesis of which requires four different glycosyltransferase activities. Genetic analysis in Arabidopsis thaliana has so far implicated three glycosyltransferase genes, FRA8 (fragile fiber 8), IRX8 (irregular xylem 8) and PARVUS, in the synthesis of this unique xylan reducing end sequence. Here, we report the essential role of FRA9, a member of glycosyltransferase family 106 (GT106), in the synthesis of this sequence. The expression of the FRA9 gene was shown to be induced by secondary wall master transcriptional regulators and specifically associated with secondary wall-forming cells, including xylem and fiber cells. T-DNA knockout mutation of the FRA9 gene caused impaired secondary cell wall thickening in leaf veins and a severe arrest of plant growth. RNA interference (RNAi) downregulation of FRA9 led to a significant reduction in secondary wall thickening of fibers, a deformation of xylem vessels and a decrease in xylan content. Structural analysis of xylanase-released xylooligomers revealed that RNAi downregulation of FRA9 resulted in a diminishment of the unique xylan reducing end sequence and complete methylation of xylan GlcA side chains, chemotypes reminiscent of those of the fra8, irx8 and parvus mutants. Furthermore, two FRA9 close homologs from Populus trichocarpa were found to be wood-associated functional orthologs of FRA9. Together, our findings uncover a member of the GT106 family as a new player involved in the synthesis of the unique reducing end sequence of xylan.
Collapse
Affiliation(s)
- Ruiqin Zhong
- Department of Plant Biology, University of Georgia, Athens, GA, 30602, USA
| | - Dennis R Phillips
- Department of Chemistry, University of Georgia, Athens, GA, 30602, USA
| | - Earle R Adams
- Department of Chemistry, University of Georgia, Athens, GA, 30602, USA
| | - Zheng-Hua Ye
- Department of Plant Biology, University of Georgia, Athens, GA, 30602, USA.
| |
Collapse
|
16
|
Ye ZH, Zhong R. Outstanding questions on xylan biosynthesis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 325:111476. [PMID: 36174800 DOI: 10.1016/j.plantsci.2022.111476] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 08/25/2022] [Accepted: 09/22/2022] [Indexed: 06/16/2023]
Abstract
Xylan is the second most abundant polysaccharide in plant biomass. It is a crucial component of cell wall structure as well as a significant factor contributing to biomass recalcitrance. Xylan consists of a linear chain of β-1,4-linked xylosyl residues that are often substituted with glycosyl side chains, such as glucuronosyl/methylglucuronosyl and arabinofuranosyl residues, and acetylated at O-2 and/or O-3. Xylan from gymnosperms and dicots contains a unique reducing end tetrasaccharide sequence that is not detected in xylan from grasses, bryophytes and seedless vascular plants. Grass xylan is heavily decorated at O-3 with arabinofuranosyl residues that are frequently esterified with hydroxycinnamates. Genetic and biochemical studies have uncovered a number of genes involved in xylan backbone elongation and acetylation, xylan glycosyl substitutions and their modifications, and the synthesis of the unique xylan reducing end tetrasaccharide sequence, but some outstanding issues on the biosynthesis of xylan still remain unanswered. Here, we provide a brief overview of xylan structure and focus on discussion of the current understanding and open questions on xylan biosynthesis. Further elucidation of the biochemical mechanisms underlying xylan biosynthesis will not only shed new insights into cell wall biology but also provide molecular tools for genetic modification of biomass composition tailored for diverse end uses.
Collapse
Affiliation(s)
- Zheng-Hua Ye
- Department of Plant Biology, University of Georgia, Athens, GA 30602, USA
| | - Ruiqin Zhong
- Department of Plant Biology, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
17
|
Amos RA, Atmodjo MA, Huang C, Gao Z, Venkat A, Taujale R, Kannan N, Moremen KW, Mohnen D. Polymerization of the backbone of the pectic polysaccharide rhamnogalacturonan I. NATURE PLANTS 2022; 8:1289-1303. [PMID: 36357524 PMCID: PMC10115348 DOI: 10.1038/s41477-022-01270-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 10/05/2022] [Indexed: 06/10/2023]
Abstract
Rhamnogalacturonan I (RG-I) is a major plant cell wall pectic polysaccharide defined by its repeating disaccharide backbone structure of [4)-α-D-GalA-(1,2)-α-L-Rha-(1,]. A family of RG-I:Rhamnosyltransferases (RRT) has previously been identified, but synthesis of the RG-I backbone has not been demonstrated in vitro because the identity of Rhamnogalacturonan I:Galaturonosyltransferase (RG-I:GalAT) was unknown. Here a putative glycosyltransferase, At1g28240/MUCI70, is shown to be an RG-I:GalAT. The name RGGAT1 is proposed to reflect the catalytic activity of this enzyme. When incubated together with the rhamnosyltransferase RRT4, the combined activities of RGGAT1 and RRT4 result in elongation of RG-I acceptors in vitro into a polymeric product. RGGAT1 is a member of a new GT family categorized as GT116, which does not group into existing GT-A clades and is phylogenetically distinct from the GALACTURONOSYLTRANSFERASE (GAUT) family of GalA transferases that synthesize the backbone of the pectin homogalacturonan. RGGAT1 has a predicted GT-A fold structure but employs a metal-independent catalytic mechanism that is rare among glycosyltransferases with this fold type. The identification of RGGAT1 and the 8-member Arabidopsis GT116 family provides a new avenue for studying the mechanism of RG-I synthesis and the function of RG-I in plants.
Collapse
Affiliation(s)
- Robert A Amos
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
| | - Melani A Atmodjo
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
| | - Chin Huang
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
| | - Zhongwei Gao
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
| | - Aarya Venkat
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA
| | - Rahil Taujale
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA
| | - Natarajan Kannan
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA
| | - Kelley W Moremen
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
| | - Debra Mohnen
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA.
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA.
| |
Collapse
|
18
|
Sinclair R, Hsu G, Davis D, Chang M, Rosquete M, Iwasa JH, Drakakaki G. Plant cytokinesis and the construction of new cell wall. FEBS Lett 2022; 596:2243-2255. [PMID: 35695093 DOI: 10.1002/1873-3468.14426] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/19/2022] [Accepted: 05/20/2022] [Indexed: 11/10/2022]
Abstract
Cytokinesis in plants is fundamentally different from that in animals and fungi. In plant cells, a cell plate forms through the fusion of cytokinetic vesicles and then develops into the new cell wall, partitioning the cytoplasm of the dividing cell. The formation of the cell plate entails multiple stages that involve highly orchestrated vesicle accumulation, fusion, and membrane maturation, which occur concurrently with the timely deposition of polysaccharides such as callose, cellulose, and cross-linking glycans. This review summarizes the major stages in cytokinesis, endomembrane components involved in cell plate assembly and its transition to a new cell wall. An animation that can be widely used for educational purposes further summarizes the process.
Collapse
Affiliation(s)
- Rosalie Sinclair
- Department of Plant Sciences University of California Davis, Davis, CA, 95616, USA
| | - Grace Hsu
- Department of Biochemistry University of Utah, School of Medicine, Salt Lake City, UT, 84112, USA
| | - Destiny Davis
- Department of Plant Sciences University of California Davis, Davis, CA, 95616, USA.,Current address: Lawrence Berkeley National Lab, Emeryville, CA, 94608, USA
| | - Mingqin Chang
- Department of Plant Sciences University of California Davis, Davis, CA, 95616, USA
| | - Michel Rosquete
- Department of Plant Sciences University of California Davis, Davis, CA, 95616, USA.,Current address: Plant Biology Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Janet H Iwasa
- Department of Biochemistry University of Utah, School of Medicine, Salt Lake City, UT, 84112, USA
| | - Georgia Drakakaki
- Department of Plant Sciences University of California Davis, Davis, CA, 95616, USA
| |
Collapse
|
19
|
The Transcriptome and Metabolome Reveal the Potential Mechanism of Lodging Resistance in Intergeneric Hybrids between Brassica napus and Capsella bursa-pastoris. Int J Mol Sci 2022; 23:ijms23094481. [PMID: 35562871 PMCID: PMC9099622 DOI: 10.3390/ijms23094481] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/06/2022] [Accepted: 04/17/2022] [Indexed: 12/04/2022] Open
Abstract
Lodging is one of the main reasons for the reduction in seed yield and is the limitation of mechanized harvesting in B. napus. The dissection of the regulatory mechanism of lodging resistance is an important goal in B. napus. In this study, the lodging resistant B. napus line, YG689, derived from the hybridization between B. napus cv. Zhongyou 821 (ZY821) and Capsella bursa-pastoris, was used to dissect the regulation mechanism of hard stem formation by integrating anatomical structure, transcriptome and metabolome analyses. It was shown that the lignocellulose content of YG689 is higher than that of ZY821, and some differentially expressed genes (DEGs) involved in the lignocellulose synthesis pathway were revealed by transcriptome analyses. Meanwhile, GC–TOF–MS and UPLC–QTOF–MS identified 40, 54, and 31 differential metabolites in the bolting stage, first flower stage, and the final flower stage. The differential accumulation of these metabolites might be associated with the lignocellulose biosynthesis in B. napus. Finally, some important genes that regulate the metabolic pathway of lignocellulose biosynthesis, such as BnaA02g18920D, BnaA10g15590D, BnaC05g48040D, and NewGene_216 were identified in B. napus through the combination of transcriptomics and metabolomics data. The present results explored the potential regulatory mechanism of lignocellulose biosynthesis, which provided a new clue for the breeding of B. napus with lodging resistance in the future.
Collapse
|