1
|
Kariyazono R, Osanai T. CyAbrB2 is a nucleoid-associated protein in Synechocystis controlling hydrogenase expression during fermentation. eLife 2024; 13:RP94245. [PMID: 39221912 PMCID: PMC11368403 DOI: 10.7554/elife.94245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
The hox operon in Synechocystis sp. PCC 6803, encoding bidirectional hydrogenase responsible for H2 production, is transcriptionally upregulated under microoxic conditions. Although several regulators for hox transcription have been identified, their dynamics and higher-order DNA structure of hox region in microoxic conditions remain elusive. We focused on key regulators for the hox operon: cyAbrB2, a conserved regulator in cyanobacteria, and SigE, an alternative sigma factor. Chromatin immunoprecipitation sequencing revealed that cyAbrB2 binds to the hox promoter region under aerobic conditions, with its binding being flattened in microoxic conditions. Concurrently, SigE exhibited increased localization to the hox promoter under microoxic conditions. Genome-wide analysis revealed that cyAbrB2 binds broadly to AT-rich genome regions and represses gene expression. Moreover, we demonstrated the physical interactions of the hox promoter region with its distal genomic loci. Both the transition to microoxic conditions and the absence of cyAbrB2 influenced the chromosomal interaction. From these results, we propose that cyAbrB2 is a cyanobacterial nucleoid-associated protein (NAP), modulating chromosomal conformation, which blocks RNA polymerase from the hox promoter in aerobic conditions. We further infer that cyAbrB2, with altered localization pattern upon microoxic conditions, modifies chromosomal conformation in microoxic conditions, which allows SigE-containing RNA polymerase to access the hox promoter. The coordinated actions of this NAP and the alternative sigma factor are crucial for the proper hox expression in microoxic conditions. Our results highlight the impact of cyanobacterial chromosome conformation and NAPs on transcription, which have been insufficiently investigated.
Collapse
|
2
|
Bongirwar R, Shukla P. Engineering regulatory networks of cyanobacteria. Trends Biotechnol 2024; 42:949-952. [PMID: 38296717 DOI: 10.1016/j.tibtech.2023.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/24/2023] [Accepted: 12/29/2023] [Indexed: 02/02/2024]
Abstract
Engineering a cell's regulatory networks to dynamically control gene expression has been considered a new frontier in biological engineering. In cyanobacteria, the lack of well-characterized, modular gene regulatory elements makes regulatory network engineering challenging. Here, we suggest potential tools to modify various gene expression steps in cyanobacterial regulatory networks.
Collapse
Affiliation(s)
- Riya Bongirwar
- Enzyme Technology and Protein Bioinformatics Laboratory, School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Pratyoosh Shukla
- Enzyme Technology and Protein Bioinformatics Laboratory, School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India.
| |
Collapse
|
3
|
Tiwari D, Kumar N, Bongirwar R, Shukla P. Nutraceutical prospects of genetically engineered cyanobacteria- technological updates and significance. World J Microbiol Biotechnol 2024; 40:263. [PMID: 38980547 DOI: 10.1007/s11274-024-04064-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 06/23/2024] [Indexed: 07/10/2024]
Abstract
Genetically engineered cyanobacterial strains that have improved growth rate, biomass productivity, and metabolite productivity could be a better option for sustainable bio-metabolite production. The global demand for biobased metabolites with nutraceuticals and health benefits has increased due to their safety and plausible therapeutic and nutritional utility. Cyanobacteria are solar-powered green cellular factories that can be genetically tuned to produce metabolites with nutraceutical and pharmaceutical benefits. The present review discusses biotechnological endeavors for producing bioprospective compounds from genetically engineered cyanobacteria and discusses the challenges and troubleshooting faced during metabolite production. This review explores the cyanobacterial versatility, the use of engineered strains, and the techno-economic challenges associated with scaling up metabolite production from cyanobacteria. Challenges to produce cyanobacterial bioactive compounds with remarkable nutraceutical values have been discussed. Additionally, this review also summarises the challenges and future prospects of metabolite production from genetically engineered cyanobacteria as a sustainable approach.
Collapse
Affiliation(s)
- Deepali Tiwari
- Enzyme Technology and Protein Bioinformatics Laboratory, School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India
| | - Niwas Kumar
- Enzyme Technology and Protein Bioinformatics Laboratory, School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India
| | - Riya Bongirwar
- Enzyme Technology and Protein Bioinformatics Laboratory, School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India
| | - Pratyoosh Shukla
- Enzyme Technology and Protein Bioinformatics Laboratory, School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India.
| |
Collapse
|
4
|
Bolay P, Dodge N, Janssen K, Jensen PE, Lindberg P. Tailoring regulatory components for metabolic engineering in cyanobacteria. PHYSIOLOGIA PLANTARUM 2024; 176:e14316. [PMID: 38686633 DOI: 10.1111/ppl.14316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/26/2024] [Accepted: 04/03/2024] [Indexed: 05/02/2024]
Abstract
The looming climate crisis has prompted an ever-growing interest in cyanobacteria due to their potential as sustainable production platforms for the synthesis of energy carriers and value-added chemicals from CO2 and sunlight. Nonetheless, cyanobacteria are yet to compete with heterotrophic systems in terms of space-time yields and consequently production costs. One major drawback leading to the low production performance observed in cyanobacteria is the limited ability to utilize the full capacity of the photosynthetic apparatus and its associated systems, i.e. CO2 fixation and the directly connected metabolism. In this review, novel insights into various levels of metabolic regulation of cyanobacteria are discussed, including the potential of targeting these regulatory mechanisms to create a chassis with a phenotype favorable for photoautotrophic production. Compared to conventional metabolic engineering approaches, minor perturbations of regulatory mechanisms can have wide-ranging effects.
Collapse
Affiliation(s)
- Paul Bolay
- Microbial Chemistry, Department of Chemistry - Ångström, Uppsala University, Uppsala, SE, Sweden
| | - Nadia Dodge
- Plant Based Foods and Biochemistry, Food Analytics and Biotechnology, Department of Food Science, University of Copenhagen, Denmark
| | - Kim Janssen
- Microbial Chemistry, Department of Chemistry - Ångström, Uppsala University, Uppsala, SE, Sweden
| | - Poul Erik Jensen
- Plant Based Foods and Biochemistry, Food Analytics and Biotechnology, Department of Food Science, University of Copenhagen, Denmark
| | - Pia Lindberg
- Microbial Chemistry, Department of Chemistry - Ångström, Uppsala University, Uppsala, SE, Sweden
| |
Collapse
|
5
|
Behle A, Dietsch M, Goldschmidt L, Murugathas W, Berwanger L, Burmester J, Yao L, Brandt D, Busche T, Kalinowski J, Hudson E, Ebenhöh O, Axmann I, Machné R. Manipulation of topoisomerase expression inhibits cell division but not growth and reveals a distinctive promoter structure in Synechocystis. Nucleic Acids Res 2022; 50:12790-12808. [PMID: 36533444 PMCID: PMC9825172 DOI: 10.1093/nar/gkac1132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 11/03/2022] [Accepted: 11/10/2022] [Indexed: 12/23/2022] Open
Abstract
In cyanobacteria DNA supercoiling varies over the diurnal cycle and is integrated with temporal programs of transcription and replication. We manipulated DNA supercoiling in Synechocystis sp. PCC 6803 by CRISPRi-based knockdown of gyrase subunits and overexpression of topoisomerase I (TopoI). Cell division was blocked but cell growth continued in all strains. The small endogenous plasmids were only transiently relaxed, then became strongly supercoiled in the TopoI overexpression strain. Transcript abundances showed a pronounced 5'/3' gradient along transcription units, incl. the rRNA genes, in the gyrase knockdown strains. These observations are consistent with the basic tenets of the homeostasis and twin-domain models of supercoiling in bacteria. TopoI induction initially led to downregulation of G+C-rich and upregulation of A+T-rich genes. The transcriptional response quickly bifurcated into six groups which overlap with diurnally co-expressed gene groups. Each group shows distinct deviations from a common core promoter structure, where helically phased A-tracts are in phase with the transcription start site. Together, our data show that major co-expression groups (regulons) in Synechocystis all respond differentially to DNA supercoiling, and suggest to re-evaluate the long-standing question of the role of A-tracts in bacterial promoters.
Collapse
Affiliation(s)
| | | | - Louis Goldschmidt
- Institut f. Quantitative u. Theoretische Biologie, Heinrich-Heine Universität Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Wandana Murugathas
- Institut f. Synthetische Mikrobiologie, Heinrich-Heine Universität Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Lutz C Berwanger
- Institut f. Synthetische Mikrobiologie, Heinrich-Heine Universität Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Jonas Burmester
- Institut f. Synthetische Mikrobiologie, Heinrich-Heine Universität Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Lun Yao
- School of Engineering Sciences in Chemistry, Biotechnology and Health, Science for Life Laboratory, KTH – Royal Institute of Technology, Stockholm, Sweden
| | - David Brandt
- Centrum für Biotechnologie (CeBiTec), Universität Bielefeld, Universitätsstrasse 27, 33615 Bielefeld, Germany
| | - Tobias Busche
- Centrum für Biotechnologie (CeBiTec), Universität Bielefeld, Universitätsstrasse 27, 33615 Bielefeld, Germany
| | - Jörn Kalinowski
- Centrum für Biotechnologie (CeBiTec), Universität Bielefeld, Universitätsstrasse 27, 33615 Bielefeld, Germany
| | - Elton P Hudson
- School of Engineering Sciences in Chemistry, Biotechnology and Health, Science for Life Laboratory, KTH – Royal Institute of Technology, Stockholm, Sweden
| | - Oliver Ebenhöh
- Institut f. Quantitative u. Theoretische Biologie, Heinrich-Heine Universität Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany,Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Ilka M Axmann
- Institut f. Synthetische Mikrobiologie, Heinrich-Heine Universität Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Rainer Machné
- To whom correspondence should be addressed. Tel: +49 211 81 12923;
| |
Collapse
|