1
|
Ma MM, Zhang HF, Tian Q, Wang HC, Zhang FY, Tian X, Zeng RF, Huang XM. MIKC type MADS-box transcription factor LcSVP2 is involved in dormancy regulation of the terminal buds in evergreen perennial litchi ( Litchi chinensis Sonn.). HORTICULTURE RESEARCH 2024; 11:uhae150. [PMID: 38988620 PMCID: PMC11233856 DOI: 10.1093/hr/uhae150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 05/20/2024] [Indexed: 07/12/2024]
Abstract
SHORT VEGETATIVE PHASE (SVP), a member of the MADS-box transcription factor family, has been reported to regulate bud dormancy in deciduous perennial plants. Previously, three LcSVPs (LcSVP1, LcSVP2 and LcSVP3) were identified from litchi genome, and LcSVP2 was highly expressed in the terminal buds of litchi during growth cessation or dormancy stages and down-regulated during growth stages. In this study, the role of LcSVP2 in governing litchi bud dormancy was examined. LcSVP2 was highly expressed in the shoots, especially in the terminal buds at growth cessation stage, whereas low expression was showed in roots, female flowers and seeds. LcSVP2 was found to be located in the nucleus and have transcription inhibitory activity. Overexpression of LcSVP2 in Arabidopsis thaliana resulted in a later flowering phenotype compared to the wild-type control. Silencing LcSVP2 in growing litchi terminal buds delayed re-entry of dormancy, resulting in significantly lower dormancy rate. The treatment also significantly up-regulated litchi FLOWERING LOCUS T2 (LcFT2). Further study indicates that LcSVP2 interacts with an AP2-type transcription factor, SMALL ORGAN SIZE1 (LcSMOS1). Silencing LcSMOS1 promoted budbreak and delayed bud dormancy. Abscisic acid (200 mg/L), which enforced bud dormancy, induced a short-term increase in the expression of LcSVP2 and LcSMOS1. Our study reveals that LcSVP2 may play a crucial role, likely together with LcSMOS1, in dormancy onset of the terminal bud and may also serve as a flowering repressor in evergreen perennial litchi.
Collapse
|
2
|
Fang X, Zhu Z, Li J, Wang X, Wei C, Zhang X, Dai Z, Liu S, Luan F. Identification of Chromosomal Regions and Candidate Genes for Round leaf Locus in Cucumis melo L. PLANTS (BASEL, SWITZERLAND) 2024; 13:1134. [PMID: 38674543 PMCID: PMC11054961 DOI: 10.3390/plants13081134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/12/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024]
Abstract
Leaf morphology plays a crucial role in plant classification and provides a significant model for studying plant diversity while directly impacting photosynthetic efficiency. In the case of melons, leaf shape not only influences production and classification but also represents a key genetic trait that requires further exploration. In this study, we utilized forward genetics to pinpoint a recessive locus, dubbed Cmrl (Round leaf), which is responsible for regulating melon leaf shape. Through bulked segregant analysis sequencing and extensive evaluation of a two-year F2 population, we successfully mapped the Cmrl locus to a 537.07 kb region on chromosome 8 of the melon genome. Subsequent genetic fine-mapping efforts, leveraging a larger F2 population encompassing 1322 plants and incorporating F2:3 phenotypic data, further refined the locus to an 80.27 kb interval housing five candidate genes. Promoter analysis and coding sequence cloning confirmed that one of these candidates, MELO3C019152.2 (Cmppr encoding a pentatricopeptide repeat-containing family protein, Cmppr), stands out as a strong candidate gene for the Cmrl locus. Notably, comparisons of Cmrl expressions across various stages of leaf development and different leaf regions suggest a pivotal role of Cmrl in the morphogenesis of melon leaves.
Collapse
Affiliation(s)
- Xufeng Fang
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; (X.F.); (Z.Z.); (J.L.); (X.W.)
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Zicheng Zhu
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; (X.F.); (Z.Z.); (J.L.); (X.W.)
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Junyan Li
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; (X.F.); (Z.Z.); (J.L.); (X.W.)
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Xuezheng Wang
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; (X.F.); (Z.Z.); (J.L.); (X.W.)
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Chunhua Wei
- College of Horticulture, Northwest A&F University, Xianyang 712100, China; (C.W.); (X.Z.)
| | - Xian Zhang
- College of Horticulture, Northwest A&F University, Xianyang 712100, China; (C.W.); (X.Z.)
| | - Zuyun Dai
- Anhui Jianghuai Horticulture Technology Co., Ltd., Hefei 230031, China;
| | - Shi Liu
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Feishi Luan
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; (X.F.); (Z.Z.); (J.L.); (X.W.)
| |
Collapse
|
3
|
Jia P, Wang Y, Sharif R, Dong QL, Liu Y, Luan HA, Zhang XM, Guo SP, Qi GH. KNOTTED1-like homeobox (KNOX) transcription factors - Hubs in a plethora of networks: A review. Int J Biol Macromol 2023; 253:126878. [PMID: 37703987 DOI: 10.1016/j.ijbiomac.2023.126878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/09/2023] [Accepted: 09/10/2023] [Indexed: 09/15/2023]
Abstract
KNOX (KNOTTED1-like HOMEOBOX) belongs to a class of important homeobox genes, which encode the homeodomain proteins binding to the specific element of target genes, and widely participate in plant development. Advancements in genetics and molecular biology research generate a large amount of information about KNOX genes in model and non-model plants, and their functions in different developmental backgrounds are gradually becoming clear. In this review, we summarize the known and presumed functions of the KNOX gene in plants, focusing on horticultural plants and crops. The classification and structural characteristics, expression characteristics and regulation, interacting protein factors, functions, and mechanisms of KNOX genes are systematically described. Further, the current research gaps and perspectives were discussed. These comprehensive data can provide a reference for the directional improvement of agronomic traits through KNOX gene regulation.
Collapse
Affiliation(s)
- Peng Jia
- College of Forestry, Hebei Agricultural University, Baoding 071000, China.
| | - Yuan Wang
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding 071000, China
| | - Rahat Sharif
- Department of Horticulture, School of Horticulture and Landscape, Yangzhou University, Yangzhou 225009, China
| | - Qing-Long Dong
- College of Forestry, Hebei Agricultural University, Baoding 071000, China
| | - Yang Liu
- College of Forestry, Hebei Agricultural University, Baoding 071000, China
| | - Hao-An Luan
- College of Forestry, Hebei Agricultural University, Baoding 071000, China
| | - Xue-Mei Zhang
- College of Forestry, Hebei Agricultural University, Baoding 071000, China
| | - Sup-Ping Guo
- College of Forestry, Hebei Agricultural University, Baoding 071000, China
| | - Guo-Hui Qi
- College of Forestry, Hebei Agricultural University, Baoding 071000, China.
| |
Collapse
|
4
|
Lv Z, Zhao W, Kong S, Li L, Lin S. Overview of molecular mechanisms of plant leaf development: a systematic review. FRONTIERS IN PLANT SCIENCE 2023; 14:1293424. [PMID: 38146273 PMCID: PMC10749370 DOI: 10.3389/fpls.2023.1293424] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 11/22/2023] [Indexed: 12/27/2023]
Abstract
Leaf growth initiates in the peripheral region of the meristem at the apex of the stem, eventually forming flat structures. Leaves are pivotal organs in plants, serving as the primary sites for photosynthesis, respiration, and transpiration. Their development is intricately governed by complex regulatory networks. Leaf development encompasses five processes: the leaf primordium initiation, the leaf polarity establishment, leaf size expansion, shaping of leaf, and leaf senescence. The leaf primordia starts from the side of the growth cone at the apex of the stem. Under the precise regulation of a series of genes, the leaf primordia establishes adaxial-abaxial axes, proximal-distal axes and medio-lateral axes polarity, guides the primordia cells to divide and differentiate in a specific direction, and finally develops into leaves of a certain shape and size. Leaf senescence is a kind of programmed cell death that occurs in plants, and as it is the last stage of leaf development. Each of these processes is meticulously coordinated through the intricate interplay among transcriptional regulatory factors, microRNAs, and plant hormones. This review is dedicated to examining the regulatory influences of major regulatory factors and plant hormones on these five developmental aspects of leaves.
Collapse
Affiliation(s)
- Zhuo Lv
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
- Bamboo Research Institute, Nanjing Forestry University, Nanjing, China
- College of Life Science, Nanjing Forestry University, Nanjing, China
| | - Wanqi Zhao
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
- Bamboo Research Institute, Nanjing Forestry University, Nanjing, China
- College of Life Science, Nanjing Forestry University, Nanjing, China
| | - Shuxin Kong
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
- Bamboo Research Institute, Nanjing Forestry University, Nanjing, China
- College of Life Science, Nanjing Forestry University, Nanjing, China
| | - Long Li
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
- Bamboo Research Institute, Nanjing Forestry University, Nanjing, China
- College of Life Science, Nanjing Forestry University, Nanjing, China
| | - Shuyan Lin
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
- Bamboo Research Institute, Nanjing Forestry University, Nanjing, China
- College of Life Science, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
5
|
Wang J, Li R, Chen Y, Wang X, Shi Q, Du K, Zheng B, Shi X. Expressing a Short Tandem Target Mimic (STTM) of miR164b/e-3p enhances poplar leaf serration by co-regulating the miR164-NAC module. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 201:107790. [PMID: 37348390 DOI: 10.1016/j.plaphy.2023.107790] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 05/05/2023] [Accepted: 05/20/2023] [Indexed: 06/24/2023]
Abstract
MicroRNAs (miRNAs) are short non-coding RNAs (21-24 nt) that play important roles in plant growth and development. The miR164 family is highly conserved in plants and the miR164-NAM/ATAF/CUC (NAC) module is validated to regulate leaf and flower development, lateral root initiation and stress response. However, our knowledge of its role in Populus remains limited. In this study, two mature miRNA species, miR164e-5p and miR164e-3p, were identified in Populus deltoides. Their nucleotide sequences were identical to those of miR164a/b/c/d/e-5p and miR164b/e-3p in P. tremula × P. alba clone 717-1B4 (hereinafter poplar 717), respectively. Transgenic plants of poplar 717, including overexpression lines (35S::pri-miR164e) and Short Tandem Target Mimic lines (STTM-miR164a-d,e-5p and STTM-miR164b/e-3p), were generated to study the roles of miR164e-5p and miR164e-3p in poplar. Compared with poplar 717, the leaf margins of 35S::pri-miR164e lines were smoother, the leaves of STTM-miR164b/e-3p line were more serrated, while the leaf morphology of STTM-miR164a-d,e-5p lines had no obvious change. In addition, both 35S::pri-miR164e and STTM-miR164b/e-3p plants had a dwarf phenotype. Expressions of miR164a-d,e-5p target genes, including PtaCUC2a, PtaCUC2b and PtaORE1, was significantly reduced in the apex of 35S::pri-miR164e lines. Green fluorescent protein (GFP) reporter assay showed that PtaCUC2a/2b and PtaORE1 were cleaved by miR164a-d,e-5p, and the cleavage was inhibited by STTM-miR164b/e-3p. Therefore, miR164b/e-3p may cooperate with miR164a-d,e-5p to regulate certain NAC members, such as PtaCUC2a/2b and PtaORE1, thereby regulating leaf development and plant growth in poplar. Our findings add new insights into the mechanisms by which the miR164-NAC module regulates plant development.
Collapse
Affiliation(s)
- Jieyu Wang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China; Poplar Research Center, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ruyi Li
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China; Poplar Research Center, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yiming Chen
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiaohui Wang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China; Poplar Research Center, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qiaofang Shi
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Kebing Du
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China; Poplar Research Center, Huazhong Agricultural University, Wuhan, 430070, China; Hubei Engineering Technology Research Center for Forestry Information, Huazhong Agricultural University, Wuhan, 430070, China
| | - Bo Zheng
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China; Poplar Research Center, Huazhong Agricultural University, Wuhan, 430070, China; Hubei Engineering Technology Research Center for Forestry Information, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xueping Shi
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China; Poplar Research Center, Huazhong Agricultural University, Wuhan, 430070, China; Hubei Engineering Technology Research Center for Forestry Information, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
6
|
Li Y, Wang S, Adhikari PB, Liu B, Liu S, Huang Y, Hu G, Notaguchi M, Xu Q. Evolutionary assessment of SQUAMOSA PROMOTER BINDING PROTEIN-LIKE genes in citrus relatives with a specific focus on flowering. MOLECULAR HORTICULTURE 2023; 3:13. [PMID: 37789480 PMCID: PMC10515035 DOI: 10.1186/s43897-023-00061-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 07/06/2023] [Indexed: 10/05/2023]
Abstract
Phase transition and floral induction in citrus requires several years of juvenility after germination. Such a long period of juvenility has been a major hindrance to its genetic improvement program. Studies have shown that miR156 along with its downstream genes SQUAMOSA PROMOTER BINDING PROTEINS (SBP) and SBP-LIKE (SPL) mediate the phase transition and floral induction process in plants. Our current study has systematically analyzed SPLs in 15 different citrus-related species, systematically annotated them based on their close homology to their respective Arabidopsis orthologs, and confirmed the functional attributes of the selected members in floral precocity. The majority of the species harbored 15 SPLs. Their cis-element assessment suggested the involvement of the SPLs in diverse developmental and physiological processes in response to different biotic and abiotic cues. Among all, SPL5, SPL9, and SPL11 stood out as consistently differentially expressed SPLs in the adult and young tissues of different citrus-related species. Independent overexpression of their F. hindsii orthologs (FhSPL5, FhSPL9, and FhSPL11) brought an enhanced expression of endogenous FLOWERING LOCUS T leading to the significantly precocious flowering in transgenic Arabidopsis lines. Future study of the genes in the citrus plant itself is expected to conclude the assessments made in the current study.
Collapse
Affiliation(s)
- Yawei Li
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Huazhong Agricultural University, Wuhan, 430000, China
| | - Shuting Wang
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Huazhong Agricultural University, Wuhan, 430000, China
| | - Prakash Babu Adhikari
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Huazhong Agricultural University, Wuhan, 430000, China.
| | - Bing Liu
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Huazhong Agricultural University, Wuhan, 430000, China
| | - Shengjun Liu
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Huazhong Agricultural University, Wuhan, 430000, China
| | - Yue Huang
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Huazhong Agricultural University, Wuhan, 430000, China
| | - Gang Hu
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Huazhong Agricultural University, Wuhan, 430000, China
| | - Michitaka Notaguchi
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Huazhong Agricultural University, Wuhan, 430000, China
- Bioscience and Biotechnology Center, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan
| | - Qiang Xu
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Huazhong Agricultural University, Wuhan, 430000, China.
- Hubei Hongshan Laboratory, Wuhan, 430070, China.
| |
Collapse
|
7
|
Prunus Knotted-like Genes: Genome-Wide Analysis, Transcriptional Response to Cytokinin in Micropropagation, and Rootstock Transformation. Int J Mol Sci 2023; 24:ijms24033046. [PMID: 36769369 PMCID: PMC9918302 DOI: 10.3390/ijms24033046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/30/2023] [Accepted: 02/01/2023] [Indexed: 02/09/2023] Open
Abstract
Knotted1-like homeobox (KNOX) transcription factors are involved in plant development, playing complex roles in aerial organs. As Prunus species include important fruit tree crops of Italy, an exhaustive investigation of KNOX genes was performed using genomic and RNA-seq meta-analyses. Micropropagation is an essential technology for rootstock multiplication; hence, we investigated KNOX transcriptional behavior upon increasing 6-benzylaminopurine (BA) doses and the effects on GF677 propagules. Moreover, gene function in Prunus spp. was assessed by Gisela 6 rootstock transformation using fluorescence and peach KNOX transgenes. Based on ten Prunus spp., KNOX proteins fit into I-II-M classes named after Arabidopsis. Gene number, class member distribution, and chromosome positions were maintained, and exceptions supported the diversification of Prunus from Cerasus subgenera, and that of Armeniaca from the other sections within Prunus. Cytokinin (CK) cis-elements occurred in peach and almond KNOX promoters, suggesting a BA regulatory role in GF677 shoot multiplication as confirmed by KNOX expression variation dependent on dose, time, and interaction. The tripled BA concentration exacerbated stress, altered CK perception genes, and modified KNOX transcriptions, which are proposed to concur in in vitro anomalies. Finally, Gisela 6 transformation efficiency varied (2.6-0.6%) with the genetic construct, with 35S:GFP being more stable than 35S:KNOPE1 lines, which showed leaf modification typical of KNOX overexpression.
Collapse
|
8
|
Li G, Yang J, Chen Y, Zhao X, Chen Y, Kimura S, Hu S, Hou H. SHOOT MERISTEMLESS participates in the heterophylly of Hygrophila difformis (Acanthaceae). PLANT PHYSIOLOGY 2022; 190:1777-1791. [PMID: 35984299 PMCID: PMC9614456 DOI: 10.1093/plphys/kiac382] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 07/23/2022] [Indexed: 06/15/2023]
Abstract
In heterophyllous plants, leaf shape shows remarkable plasticity in response to environmental conditions. However, transgenic studies of heterophylly are lacking and the molecular mechanism remains unclear. Here, we cloned the KNOTTED1-LIKE HOMEOBOX family gene SHOOT MERISTEMLESS (STM) from the heterophyllous plant Hygrophila difformis (Acanthaceae). We used molecular, morphogenetic, and biochemical tools to explore its functions in heterophylly. HdSTM was detected in different organs of H. difformis, and its expression changed with environmental conditions. Heterologous, ectopic expression of HdSTM in Arabidopsis (Arabidopsis thaliana) increased leaf complexity and CUP-SHAPED COTYLEDON (CUC) transcript levels. However, overexpression of HdSTM in H. difformis did not induce the drastic leaf change in the terrestrial condition. Overexpression of HdSTM in H. difformis induced quick leaf variations in submergence, while knockdown of HdSTM led to disturbed leaf development and weakened heterophylly in H. difformis. HdCUC3 had the same spatiotemporal expression pattern as HdSTM. Biochemical analysis revealed a physical interaction between HdSTM and HdCUC3. Our results provide genetic evidence that HdSTM is involved in regulating heterophylly in H. difformis.
Collapse
Affiliation(s)
- Gaojie Li
- The State Key Laboratory of Freshwater Ecology and Biotechnology, The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Jingjing Yang
- The State Key Laboratory of Freshwater Ecology and Biotechnology, The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Yimeng Chen
- The State Key Laboratory of Freshwater Ecology and Biotechnology, The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuyao Zhao
- The State Key Laboratory of Freshwater Ecology and Biotechnology, The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Yan Chen
- The State Key Laboratory of Freshwater Ecology and Biotechnology, The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Seisuke Kimura
- Faculty of Life Sciences, Kyoto Sangyo University, Kyoto 603-8555, Japan
- Center for Plant Sciences, Kyoto Sangyo University, Kyoto 603-8555, Japan
| | - Shiqi Hu
- Zhejiang Marine Development Research Institute, Zhoushan 316021, China
| | | |
Collapse
|
9
|
An Y, Xia X, Jing T, Zhang F. Identification of gene family members and a key structural variation reveal important roles of OVATE genes in regulating tea ( Camellia sinensis) leaf development. FRONTIERS IN PLANT SCIENCE 2022; 13:1008408. [PMID: 36212328 PMCID: PMC9539550 DOI: 10.3389/fpls.2022.1008408] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 08/30/2022] [Indexed: 06/16/2023]
Abstract
OVATE genes are a new class of transcriptional repressors with important regulatory roles in plant growth and development. Through genome-wide analysis of the OVATE gene family of tea plants, 26 and 13 family members were identified in cultivated and ancient tea plants, respectively. Syntenic results showed that OVATE gene family in cultivated tea plants may have experienced a special expansion event. Based on phylogenetic tree analysis, all OVATE genes were divided into four groups, and the third group had the largest number, reaching 16. Transcriptome data from different organs and populations indicated that many OVATE family members were highly expressed in young shoots and leaves, and their expression levels gradually decreased as tea leaves developed. Finally, the expression trends of the six key candidate genes were verified by RT-qPCR, which were consistent with the transcriptome results, indicating that the ovate gene family plays an important role in regulating the process of tea leaf development. In addition, we identified a key structural variation with a length of 184 bp, and the population genotyping showed that it was closely related to the area of tea leaves. Our research provides an important clue for further exploring the function of ovate gene family in tea plants and the development mechanism of tea leaves.
Collapse
Affiliation(s)
- Yanlin An
- Department of Food Science and Engineering, Moutai Institute, Renhuai, China
| | - Xiaobo Xia
- CIMMYT-JAAS Joint Center for Wheat Diseases/Key Laboratory of Germplasm Innovation in Downstream of Huaihe River (Nanjing) Ministry of Agriculture and Rural Affairs, Nanjing, China
| | - Tingting Jing
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Feng Zhang
- Department of Food Science and Engineering, Moutai Institute, Renhuai, China
| |
Collapse
|