1
|
Xue Y, Wu F, Chen R, Wang X, Tseke Inkabanga A, Huang L, Qin S, Zhang M, Chai Y. Genome-wide analysis of fatty acid desaturase genes in chia (Salvia hispanica) reveals their crucial roles in cold response and seed oil formation. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 199:107737. [PMID: 37163804 DOI: 10.1016/j.plaphy.2023.107737] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 04/17/2023] [Accepted: 04/29/2023] [Indexed: 05/12/2023]
Abstract
Chia (Salvia hispanica) is a functional food crop with high α-linolenic acid (ALA), the omega-3 essential fatty acid, but its worldwide plantation is limited by cold-intolerance and strict short-photoperiod flowering feature. Fatty acid desaturases (FADs) are responsible for seed oil accumulation, and play important roles in cold stress tolerance of plants. To date, there is no report on systemically genome-wide analysis of FAD genes in chia (ShiFADs). In this study, 31 ShiFAD genes were identified, 3 of which contained 2 alternative splicing transcripts, and they were located in 6 chromosomes of chia. Phylogenetic analysis classified the ShiFAD proteins into 7 groups, with conserved gene structure and MEME motifs within each group. Tandem and segmental duplications coursed the expansion of ShiFAD genes. Numerous cis-regulatory elements, including hormone response elements, growth and development elements, biotic/abiotic stress response elements, and transcription factor binding sites, were predicted in ShiFAD promoters. 24 miRNAs targeting ShiFAD genes were identified at whole-genome level. In total, 15 SSR loci were predicted in ShiFAD genes/promoters. RNA-seq data showed that ShiFAD genes were expressed in various organs with different levels. qRT-PCR detection revealed the inducibility of ShiSAD2 and ShiSAD7 in response to cold stress, and validated the seed-specific expression of ShiSAD11a. Yeast expression of ShiSAD11a confirmed the catalytic activity of its encoded protein, and its heterologous expression in Arabidopsis thaliana significantly increased seed oleic acid content. This work lays a foundation for molecular dissection of chia high-ALA trait and functional study of ShiFAD genes in cold tolerance.
Collapse
Affiliation(s)
- Yufei Xue
- Chongqing Engineering Research Center for Rapeseed, Chongqing Key Laboratory of Crop Quality Improvement, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, China; Engineering Research Center of South Upland Agriculture of Ministry of Education, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
| | - Fangzhou Wu
- Chongqing Engineering Research Center for Rapeseed, Chongqing Key Laboratory of Crop Quality Improvement, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, China; Engineering Research Center of South Upland Agriculture of Ministry of Education, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
| | - Ruochen Chen
- Chongqing Engineering Research Center for Rapeseed, Chongqing Key Laboratory of Crop Quality Improvement, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, China; Engineering Research Center of South Upland Agriculture of Ministry of Education, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
| | - Xiaoyang Wang
- Chongqing Engineering Research Center for Rapeseed, Chongqing Key Laboratory of Crop Quality Improvement, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, China; Engineering Research Center of South Upland Agriculture of Ministry of Education, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
| | - Alain Tseke Inkabanga
- Chongqing Engineering Research Center for Rapeseed, Chongqing Key Laboratory of Crop Quality Improvement, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, China; Engineering Research Center of South Upland Agriculture of Ministry of Education, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China; Faculté des Sciences Agronomiques, Université Pédagogique Nationale (UPN), Kinshasa, Congo
| | - Li Huang
- Chongqing Engineering Research Center for Rapeseed, Chongqing Key Laboratory of Crop Quality Improvement, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, China; Engineering Research Center of South Upland Agriculture of Ministry of Education, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
| | - Shujun Qin
- Chongqing Engineering Research Center for Rapeseed, Chongqing Key Laboratory of Crop Quality Improvement, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, China; Engineering Research Center of South Upland Agriculture of Ministry of Education, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
| | - Min Zhang
- Chongqing Engineering Research Center for Rapeseed, Chongqing Key Laboratory of Crop Quality Improvement, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, China; Engineering Research Center of South Upland Agriculture of Ministry of Education, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
| | - Yourong Chai
- Chongqing Engineering Research Center for Rapeseed, Chongqing Key Laboratory of Crop Quality Improvement, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, China; Engineering Research Center of South Upland Agriculture of Ministry of Education, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
2
|
Song J, Sun P, Kong W, Xie Z, Li C, Liu JH. SnRK2.4-mediated phosphorylation of ABF2 regulates ARGININE DECARBOXYLASE expression and putrescine accumulation under drought stress. THE NEW PHYTOLOGIST 2023; 238:216-236. [PMID: 36210523 DOI: 10.1111/nph.18526] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 09/24/2022] [Indexed: 06/16/2023]
Abstract
Arginine decarboxylase (ADC)-mediated putrescine (Put) biosynthesis plays an important role in plant abiotic stress response. SNF1-related protein kinases 2s (SnRK2s) and abscisic acid (ABA)-response element (ABRE)-binding factors (ABFs), are core components of the ABA signaling pathway involved in drought stress response. We previously reported that ADC of Poncirus trifoliata (PtrADC) functions in drought tolerance. However, whether and how SnRK2 and ABF regulate PtrADC to modulate putrescine accumulation under drought stress remains largely unclear. Herein, we employed a set of physiological, biochemical, and molecular approaches to reveal that a protein complex composed of PtrSnRK2.4 and PtrABF2 modulates putrescine biosynthesis and drought tolerance by directly regulating PtrADC. PtrABF2 was upregulated by dehydration in an ABA-dependent manner. PtrABF2 activated PtrADC expression by directly and specifically binding to the ABRE core sequence within its promoter and positively regulated drought tolerance via modulating putrescine accumulation. PtrSnRK2.4 interacts with and phosphorylates PtrABF2 at Ser93. PtrSnRK2.4-mediated PtrABF2 phosphorylation is essential for the transcriptional regulation of PtrADC. Besides, PtrSnRK2.4 was shown to play a positive role in drought tolerance by facilitating putrescine synthesis. Taken together, this study sheds new light on the regulatory module SnRK2.4-ABF2-ADC responsible for fine-tuning putrescine accumulation under drought stress, which advances our understanding on transcriptional regulation of putrescine synthesis.
Collapse
Affiliation(s)
- Jie Song
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Peipei Sun
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, China
| | - Weina Kong
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zongzhou Xie
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chunlong Li
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ji-Hong Liu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
3
|
Song Z, Lai X, Chen H, Wang L, Yao Y, Chen W, Zhu X, Li X. MaC2H2-like regulates chilling stress response of ‘Fenjiao’ banana by modulating flavonoid synthesis and fatty acid desaturation. Food Chem 2023; 419:136089. [PMID: 37023674 DOI: 10.1016/j.foodchem.2023.136089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 03/01/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023]
Abstract
Chilling injury (CI) is a major problem that affects fruit quality and ripening. Herein, chilling stress severely inhibited the expression of transcription factor MaC2H2-like. MaC2H2-like activates the expression of genes associated with flavonoid synthesis (MaC4H-like1, Ma4CL-like1, MaFLS, and MaFLS3) and fatty acid desaturation (MaFAD6-2 and MaFAD6-3), the leading indicators of chilling tolerance. MaC2H2-like interacts with MaEBF1 and boosts the transcriptional activity of MaFAD6-2, MaFAD6-3, Ma4CL-like1, and MaFLS. The overexpression of MaC2H2-like reduced fruit CI, induced the expression of these genes and increased the content of flavonoid and unsaturated fatty acid. Meanwhile, the silencing of MaC2H2-like increased fruit CI and downregulated the expression of those genes and reduced the content of flavonoid and unsaturated fatty acid. These results indicate that MaC2H2-like function as new player in modulating fruit CI by regulating flavonoid synthesis and fatty acid desaturation. MaC2H2-like could be a useful candidate gene for improving cold tolerance in 'Fenjiao' banana.
Collapse
|
4
|
Amelioration of Chilling Injury by Fucoidan in Cold-Stored Cucumber via Membrane Lipid Metabolism Regulation. Foods 2023; 12:foods12020301. [PMID: 36673394 PMCID: PMC9858243 DOI: 10.3390/foods12020301] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/03/2023] [Accepted: 01/05/2023] [Indexed: 01/11/2023] Open
Abstract
Cucumber fruit is very sensitive to chilling injury, which rapidly depreciates their commodity value. Herein, the effect of fucoidan treatment on cucumber under cold stress were investigated. Fucoidan treatment of cold-stored cucumber alleviated the occurrence of chilling injury, delayed weight loss, lowered electrolyte leakage and respiration rate, and retarded malondialdehyde accumulation. Different from the control fruit, fucoidan treated fruit showed a high level of fatty acid unsaturated content, fatty acid unsaturation, and unsaturation index and increased ω-FDAS activity, along with upregulated expression levels of CsSAD and CsFAD genes. Fucoidan reduced the phosphatidic acid content and membrane lipid peroxidation, lowered the phospholipase D (PLD) and lipoxygenase (LOX) activity, and downregulated the expression levels of CsPLD and CsLOX genes. Collectively, fucoidan treatment maintained the integrity of cell membrane in cold-stress cucumbers. The results provide a new prospect for the development of fucoidan as a preservative agent in the low-temperature postharvest storage of cucumbers.
Collapse
|