1
|
Anjum S, Prasad A, Mastud P, Mishra G, Patankar S. N-terminal targeting sequences and coding sequences act in concert to determine the localization and trafficking pathway of apicoplast proteins in Toxoplasma gondii. Biol Cell 2024; 116:e2400027. [PMID: 39390850 DOI: 10.1111/boc.202400027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 08/07/2024] [Accepted: 09/17/2024] [Indexed: 10/12/2024]
Abstract
BACKGOUND INFORMATION Toxoplasma gondii has a relict plastid, the apicoplast, to which nuclear-encoded proteins are targeted after synthesis in the cytosol. Proteins exclusively found in the apicoplast use a Golgi-independent route for trafficking, while dually targeted proteins found in both the apicoplast and the mitochondrion use a Golgi-dependent route. For apicoplast targeting, N-terminal signal sequences have been shown to direct the localization of different reporters. In this study, we use chimeric proteins to dissect out the roles of N-terminal sequences and coding sequences in apicoplast localization and the choice of the trafficking route. RESULTS We show that when the N-termini of a dually targeted protein, TgTPx1/2, or of an apicoplast protein, TgACP, are fused with the reporter protein, enhanced green fluorescent protein (eGFP) or endogenous proteins, TgSOD2, TgSOD3, TgACP, or TgTPx1/2, the chimeric proteins exhibit flexibility in apicoplast targeting depending on the coding sequences. Further, the chimeras that are localized to the apicoplast use different trafficking pathways depending on the combination of the N-terminal signals and the coding sequences. CONCLUSION AND SIGNIFICANCE This report shows, for the first time, that in addition to the N-terminal signal sequences, targeting and trafficking signals also reside within the coding sequences of apicoplast proteins.
Collapse
Affiliation(s)
- Sofia Anjum
- Department of Biosciences & Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, India
| | - Aparna Prasad
- Department of Biosciences & Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, India
| | - Pragati Mastud
- Department of Biosciences & Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, India
| | - Geetanjali Mishra
- Department of Biosciences & Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, India
| | - Swati Patankar
- Department of Biosciences & Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, India
| |
Collapse
|
2
|
Mamudu CO, Tebamifor ME, Sule MO, Dokunmu TM, Ogunlana OO, Iheagwam FN. Apicoplast-Resident Processes: Exploiting the Chink in the Armour of Plasmodium falciparum Parasites. Adv Pharmacol Pharm Sci 2024; 2024:9940468. [PMID: 38765186 PMCID: PMC11101256 DOI: 10.1155/2024/9940468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 03/25/2024] [Accepted: 04/20/2024] [Indexed: 05/21/2024] Open
Abstract
The discovery of a relict plastid, also known as an apicoplast (apicomplexan plastid), that houses housekeeping processes and metabolic pathways critical to Plasmodium parasites' survival has prompted increased research on identifying potent inhibitors that can impinge on apicoplast-localised processes. The apicoplast is absent in humans, yet it is proposed to originate from the eukaryote's secondary endosymbiosis of a primary symbiont. This symbiotic relationship provides a favourable microenvironment for metabolic processes such as haem biosynthesis, Fe-S cluster synthesis, isoprenoid biosynthesis, fatty acid synthesis, and housekeeping processes such as DNA replication, transcription, and translation, distinct from analogous mammalian processes. Recent advancements in comprehending the biology of the apicoplast reveal it as a vulnerable organelle for malaria parasites, offering numerous potential targets for effective antimalarial therapies. We provide an overview of the metabolic processes occurring in the apicoplast and discuss the organelle as a viable antimalarial target in light of current advances in drug discovery. We further highlighted the relevance of these metabolic processes to Plasmodium falciparum during the different stages of the lifecycle.
Collapse
Affiliation(s)
- Collins Ojonugwa Mamudu
- Department of Biochemistry, Covenant University, Ota, Nigeria
- Covenant Applied Informatics and Communication Africa Centre of Excellence, Ota, Nigeria
| | - Mercy Eyitomi Tebamifor
- Department of Biochemistry, Covenant University, Ota, Nigeria
- Covenant Applied Informatics and Communication Africa Centre of Excellence, Ota, Nigeria
| | - Mary Ohunene Sule
- Confluence University of Science and Technology, Osara, Kogi, Nigeria
| | - Titilope Modupe Dokunmu
- Department of Biochemistry, Covenant University, Ota, Nigeria
- Covenant Applied Informatics and Communication Africa Centre of Excellence, Ota, Nigeria
| | - Olubanke Olujoke Ogunlana
- Department of Biochemistry, Covenant University, Ota, Nigeria
- Covenant Applied Informatics and Communication Africa Centre of Excellence, Ota, Nigeria
- Covenant University Public Health and Wellbeing Research Cluster, Covenant University, Ota, Nigeria
| | - Franklyn Nonso Iheagwam
- Department of Biochemistry, Covenant University, Ota, Nigeria
- Covenant University Public Health and Wellbeing Research Cluster, Covenant University, Ota, Nigeria
| |
Collapse
|
3
|
Reply to Prasad and Patankar, "Recognition of Two Distinct Pathways for Trafficking of Proteins to the Apicoplast". mBio 2021; 12:e0310721. [PMID: 34933454 PMCID: PMC8689560 DOI: 10.1128/mbio.03107-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
4
|
Stofberg ML, Caillet C, de Villiers M, Zininga T. Inhibitors of the Plasmodium falciparum Hsp90 towards Selective Antimalarial Drug Design: The Past, Present and Future. Cells 2021; 10:2849. [PMID: 34831072 PMCID: PMC8616389 DOI: 10.3390/cells10112849] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 12/12/2022] Open
Abstract
Malaria is still one of the major killer parasitic diseases in tropical settings, posing a public health threat. The development of antimalarial drug resistance is reversing the gains made in attempts to control the disease. The parasite leads a complex life cycle that has adapted to outwit almost all known antimalarial drugs to date, including the first line of treatment, artesunate. There is a high unmet need to develop new strategies and identify novel therapeutics to reverse antimalarial drug resistance development. Among the strategies, here we focus and discuss the merits of the development of antimalarials targeting the Heat shock protein 90 (Hsp90) due to the central role it plays in protein quality control.
Collapse
Affiliation(s)
| | | | | | - Tawanda Zininga
- Department of Biochemistry, Stellenbosch University, Stellenbosch 7600, South Africa; (M.L.S.); (C.C.); (M.d.V.)
| |
Collapse
|
5
|
Cao S, Yang J, Fu J, Chen H, Jia H. The Dissection of SNAREs Reveals Key Factors for Vesicular Trafficking to the Endosome-like Compartment and Apicoplast via the Secretory System in Toxoplasma gondii. mBio 2021; 12:e0138021. [PMID: 34340555 PMCID: PMC8406237 DOI: 10.1128/mbio.01380-21] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 07/02/2021] [Indexed: 12/18/2022] Open
Abstract
Vesicular trafficking is a fundamental cellular process involved in material transport in eukaryotes, but the diversity of the intracellular compartments has prevented researchers from obtaining a clear understanding of the specific functions of vesicular trafficking factors, including SNAREs, tethers, and Rab GTPases, in Apicomplexa. In this study, we analyzed the localization of SNAREs and investigated their roles in vesicular trafficking in Toxoplasma gondii. Our results revealed the specific localizations of SNAREs in the endoplasmic reticulum (ER) (T. gondii Stx18 [TgStx18] and TgStx19), Golgi stacks (TgGS27), and endosome-like compartment (TgStx10 and TgStx12). The conditional ablation of ER- and Golgi-residing SNAREs caused severe defects in the secretory system. Most importantly, we found an R-SNARE (TgVAMP4-2) that is targeted to the apicoplast; to our knowledge, this work provides the first information showing a SNARE protein on endosymbiotic organelles and functioning in vesicular trafficking in eukaryotes. Conditional knockout of TgVAMP4-2 blocked the entrance of TgCPN60, TgACP, TgATrx2, and TgATrx1 into the apicoplast and interfered with the targeting of TgAPT1 and TgFtsH1 to the outermost membrane of the apicoplast. Together, our findings revealed the functions of SNAREs in the secretory system and the transport of nucleus-encoded proteins to an endosymbiotic organelle in a model organism of Apicomplexa. IMPORTANCE SNAREs are essential for the fusion of the transport vesicles and target membranes and, thus, provide perfect targets for obtaining a global view of the vesicle transport system. In this study, we report that a novel Qc-SNARE (TgStx19) instead of Use1 is located at the ER and acts as a partner of TgStx18 in T. gondii. TgGS27 and the tethering complex TRAPP III are conserved and critical for the biogenesis of the Golgi complex in T. gondii. A novel R-SNARE, TgVAMP4-2, is found on the outermost membrane of the apicoplast. The transport of NEAT proteins into the secondary endosymbiotic organelle depends on its function. To our knowledge, this work provides the first mention of a SNARE located on endosymbiotic organelles that functions in vesicular trafficking in eukaryotes.
Collapse
Affiliation(s)
- Shinuo Cao
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
| | - Juan Yang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
| | - Jiawen Fu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
| | - Heming Chen
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
| | - Honglin Jia
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
| |
Collapse
|
6
|
Jonsdottir TK, Gabriela M, Gilson PR. The Role of Malaria Parasite Heat Shock Proteins in Protein Trafficking and Remodelling of Red Blood Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1340:141-167. [PMID: 34569024 DOI: 10.1007/978-3-030-78397-6_6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The genus Plasmodium comprises intracellular eukaryotic parasites that infect many vertebrate groups and cause deadly malaria disease in humans. The parasites employ a suite of heat shock proteins to help traffic other proteins to different compartments within their own cells and that of the host cells they parasitise. This review will cover the role of these chaperones in protein export and host cell modification in the asexual blood stage of the human parasite P. falciparum which is the most deadly and well-studied parasite species. We will examine the role chaperones play in the import of proteins into the secretory pathway from where they are escorted to the vacuole space surrounding the intraerythrocytic parasite. Here, other heat shock proteins unfold protein cargoes and extrude them into the red blood cell (RBC) cytosol from where additional chaperones of parasite and possibly host origin refold the cargo proteins and guide them to their final functional destinations within their RBC host cells. The secretory pathway also serves as a launch pad for proteins targeted to the non-photosynthetic apicoplast organelle of endosymbiotic origin, and the role of heat shock proteins in trafficking proteins here will be reviewed. Finally, the function of chaperones in protein trafficking into the mitochondrion, the remaining organelle of endosymbiotic origin, will be discussed.
Collapse
Affiliation(s)
- Thorey K Jonsdottir
- Burnet Institute, Melbourne, VIC, Australia.,Department of Microbiology and Immunology, University of Melbourne, Parkville, VIC, Australia
| | - Mikha Gabriela
- Burnet Institute, Melbourne, VIC, Australia.,School of Medicine, Deakin University, Waurn Ponds, VIC, Australia
| | | |
Collapse
|
7
|
Zhang Y, Wang C, Jia H. Biogenesis and maintenance of the apicoplast in model apicomplexan parasites. Parasitol Int 2020; 81:102270. [PMID: 33321224 DOI: 10.1016/j.parint.2020.102270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 12/08/2020] [Accepted: 12/09/2020] [Indexed: 11/27/2022]
Abstract
The apicoplast is a non-photosynthetic relict plastid of Apicomplexa that evolved from a secondary symbiotic system. During its evolution, most of the genes derived from its alga ancestor were lost. Only genes involved in several valuable metabolic pathways, such as the synthesis of isoprenoid precursors, heme, and fatty acids, have been transferred to the host genome and retained to help these parasites adapt to a complex life cycle and various living environments. The biological function of an apicoplast is essential for most apicomplexan parasites. Considering their potential as drug targets, the metabolic functions of this symbiotic organelle have been intensively investigated through computational and biological means. Moreover, we know that not only organellar metabolic functions are linked with other organelles, but also their biogenesis processes have developed and evolved to tailor their biological functions and proper inheritance. Several distinct features have been found in the biogenesis process of apicoplasts. For example, the apicoplast borrows a dynamin-related protein (DrpA) from its host to implement organelle division. The autophagy system has also been repurposed for linking the apicoplast and centrosome during replication and the division process. However, many vital questions remain to be answered about how these parasites maintain and properly inherit this symbiotic organelle. Here we review our current knowledge about its biogenesis process and discuss several critical questions remaining to be answered in this field.
Collapse
Affiliation(s)
- Ying Zhang
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang Province 163319, PR China; State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Haping Street 678, Nangang District, Harbin 150069, PR China
| | - Chunren Wang
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang Province 163319, PR China
| | - Honglin Jia
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Haping Street 678, Nangang District, Harbin 150069, PR China.
| |
Collapse
|
8
|
Prasad A, Mastud P, Patankar S. Dually localised proteins found in both the apicoplast and mitochondrion utilize the Golgi-dependent pathway for apicoplast targeting in Toxoplasma gondii. Biol Cell 2020; 113:58-78. [PMID: 33112425 DOI: 10.1111/boc.202000050] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 10/07/2020] [Indexed: 11/28/2022]
Abstract
BACKGROUND INFORMATION Like other apicomplexan parasites, Toxoplasma gondii harbours a four-membraned endosymbiotic organelle - the apicoplast. Apicoplast proteins are nuclear encoded and trafficked to the organelle through the endoplasmic reticulum (ER). From the ER to the apicoplast, two distinct protein trafficking pathways can be used. One such pathway is the cell's secretory pathway involving the Golgi, whereas the other is a unique Golgi-independent pathway. Using different experimental approaches, many apicoplast proteins have been shown to utilize the Golgi-independent pathway, whereas a handful of reports show that a few proteins use the Golgi-dependent pathway. This has led to an emphasis towards the unique Golgi-independent pathway when apicoplast protein trafficking is discussed in the literature. Additionally, the molecular features that drive proteins to each pathway are not known. RESULTS In this report, we systematically test eight apicoplast proteins, using a C-terminal HDEL sequence to assess the role of the Golgi in their transport. We demonstrate that dually localised proteins of the apicoplast and mitochondrion (TgSOD2, TgTPx1/2 and TgACN/IRP) are trafficked through the Golgi, whereas proteins localised exclusively to the apicoplast are trafficked independent of the Golgi. Mutants of the dually localised proteins that localised exclusively to the apicoplast also showed trafficking through the Golgi. Phylogenetic analysis of TgSOD2, TgTPx1/2 and TgACN/IRP suggested that the evolutionary origins of TgSOD2 and TgTPx1/2 lie in the mitochondrion, whereas TgACN/IRP appears to have originated from the apicoplast. CONCLUSIONS AND SIGNIFICANCE Collectively, with these results, for the first time, we establish that the driver of the Golgi-dependent trafficking route to the apicoplast is the dual localisation of the protein to the apicoplast and the mitochondrion.
Collapse
Affiliation(s)
- Aparna Prasad
- Department of Biosciences & Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| | - Pragati Mastud
- Department of Biosciences & Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| | - Swati Patankar
- Department of Biosciences & Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| |
Collapse
|
9
|
Linzke M, Yan SLR, Tárnok A, Ulrich H, Groves MR, Wrenger C. Live and Let Dye: Visualizing the Cellular Compartments of the Malaria Parasite Plasmodium falciparum. Cytometry A 2019; 97:694-705. [PMID: 31738009 DOI: 10.1002/cyto.a.23927] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 10/03/2019] [Accepted: 10/24/2019] [Indexed: 12/15/2022]
Abstract
Malaria remains one of the deadliest diseases worldwide and it is caused by the protozoan parasite Plasmodium spp. Parasite visualization is an important tool for the correct detection of malarial cases but also to understand its biology. Advances in visualization techniques promote new insights into the complex life cycle and biology of Plasmodium parasites. Live cell imaging by fluorescence microscopy or flow cytometry are the foundation of the visualization technique for malaria research. In this review, we present an overview of possibilities in live cell imaging of the malaria parasite. We discuss some of the state-of-the-art techniques to visualize organelles and processes of the parasite and discuss limitation and advantages of each technique. © 2019 International Society for Advancement of Cytometry.
Collapse
Affiliation(s)
- Marleen Linzke
- Unit for Drug Discovery, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, Avenida Professor Lineu Prestes 1374, São Paulo, São Paulo, 05508-000, Brazil
| | - Sun Liu Rei Yan
- Unit for Drug Discovery, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, Avenida Professor Lineu Prestes 1374, São Paulo, São Paulo, 05508-000, Brazil
| | - Attila Tárnok
- Institute for Medical Informatics, Statistics and Epidemiology, Medical Faculty, University Leipzig, D-04107, Härtelstraße 16-18, Leipzig, Germany
| | - Henning Ulrich
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, Avenida Professor Lineu Prestes 748, São Paulo, São Paulo, 05508-900, Brazil
| | - Matthew R Groves
- Structural Biology Unit, Department of Pharmacy, Faculty of Science and Engineering, University of Groningen, 9713AV, Antonius Deusinglaan 1, AV Groningen, The Netherlands
| | - Carsten Wrenger
- Unit for Drug Discovery, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, Avenida Professor Lineu Prestes 1374, São Paulo, São Paulo, 05508-000, Brazil
| |
Collapse
|
10
|
Affiliation(s)
- Michael J. Boucher
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, United States of America
- Department of Biochemistry, Stanford University School of Medicine, Stanford, California, United States of America
| | - Ellen Yeh
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, United States of America
- Department of Biochemistry, Stanford University School of Medicine, Stanford, California, United States of America
- Department of Pathology, Stanford University School of Medicine, Stanford, California, United States of America
- Chan Zuckerberg Biohub, San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|
11
|
Kudyba HM, Cobb DW, Fierro MA, Florentin A, Ljolje D, Singh B, Lucchi NW, Muralidharan V. The endoplasmic reticulum chaperone PfGRP170 is essential for asexual development and is linked to stress response in malaria parasites. Cell Microbiol 2019; 21:e13042. [PMID: 31087747 PMCID: PMC6699899 DOI: 10.1111/cmi.13042] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 04/09/2019] [Accepted: 05/09/2019] [Indexed: 12/24/2022]
Abstract
The vast majority of malaria mortality is attributed to one parasite species: Plasmodium falciparum. Asexual replication of the parasite within the red blood cell is responsible for the pathology of the disease. In Plasmodium, the endoplasmic reticulum (ER) is a central hub for protein folding and trafficking as well as stress response pathways. In this study, we tested the role of an uncharacterised ER protein, PfGRP170, in regulating these key functions by generating conditional mutants. Our data show that PfGRP170 localises to the ER and is essential for asexual growth, specifically required for proper development of schizonts. PfGRP170 is essential for surviving heat shock, suggesting a critical role in cellular stress response. The data demonstrate that PfGRP170 interacts with the Plasmodium orthologue of the ER chaperone, BiP. Finally, we found that loss of PfGRP170 function leads to the activation of the Plasmodium eIF2α kinase, PK4, suggesting a specific role for this protein in this parasite stress response pathway.
Collapse
Affiliation(s)
- Heather M Kudyba
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia.,Department of Cellular Biology, University of Georgia, Athens, Georgia
| | - David W Cobb
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia.,Department of Cellular Biology, University of Georgia, Athens, Georgia
| | - Manuel A Fierro
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia.,Department of Cellular Biology, University of Georgia, Athens, Georgia
| | - Anat Florentin
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia
| | - Dragan Ljolje
- Malaria Branch and Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Balwan Singh
- Malaria Branch and Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Naomi W Lucchi
- Malaria Branch and Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Vasant Muralidharan
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia.,Department of Cellular Biology, University of Georgia, Athens, Georgia
| |
Collapse
|
12
|
Burdukiewicz M, Sobczyk P, Chilimoniuk J, Gagat P, Mackiewicz P. Prediction of Signal Peptides in Proteins from Malaria Parasites. Int J Mol Sci 2018; 19:E3709. [PMID: 30469512 PMCID: PMC6321056 DOI: 10.3390/ijms19123709] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 11/15/2018] [Accepted: 11/17/2018] [Indexed: 01/08/2023] Open
Abstract
Signal peptides are N-terminal presequences responsible for targeting proteins to the endomembrane system, and subsequent subcellular or extracellular compartments, and consequently condition their proper function. The significance of signal peptides stimulates development of new computational methods for their detection. These methods employ learning systems trained on datasets comprising signal peptides from different types of proteins and taxonomic groups. As a result, the accuracy of predictions are high in the case of signal peptides that are well-represented in databases, but might be low in other, atypical cases. Such atypical signal peptides are present in proteins found in apicomplexan parasites, causative agents of malaria and toxoplasmosis. Apicomplexan proteins have a unique amino acid composition due to their AT-biased genomes. Therefore, we designed a new, more flexible and universal probabilistic model for recognition of atypical eukaryotic signal peptides. Our approach called signalHsmm includes knowledge about the structure of signal peptides and physicochemical properties of amino acids. It is able to recognize signal peptides from the malaria parasites and related species more accurately than popular programs. Moreover, it is still universal enough to provide prediction of other signal peptides on par with the best preforming predictors.
Collapse
Affiliation(s)
- Michał Burdukiewicz
- Faculty of Mathematics and Information Science, Warsaw University of Technology, 00-661 Warszawa, Poland.
| | - Piotr Sobczyk
- Department of Mathematics, Wrocław University of Technology, 50-370 Wrocław, Poland.
| | | | - Przemysław Gagat
- Department of Genomics, University of Wrocław, 50-383 Wrocław, Poland.
| | - Paweł Mackiewicz
- Department of Genomics, University of Wrocław, 50-383 Wrocław, Poland.
| |
Collapse
|
13
|
Narayan A, Mastud P, Thakur V, Rathod PK, Mohmmed A, Patankar S. Heterologous expression in Toxoplasma gondii reveals a topogenic signal anchor in a Plasmodium apicoplast protein. FEBS Open Bio 2018; 8:1746-1762. [PMID: 30410855 PMCID: PMC6212639 DOI: 10.1002/2211-5463.12527] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Revised: 08/24/2018] [Accepted: 09/08/2018] [Indexed: 12/27/2022] Open
Abstract
Glutathione peroxidase‐like thioredoxin peroxidase (PfTPxGl) is an antioxidant enzyme trafficked to the apicoplast, a secondary endosymbiotic organelle, in Plasmodium falciparum. Apicoplast trafficking signals usually consist of N‐terminal signal and transit peptides, but the trafficking signal of PfTPxGl appears to exhibit important differences. As transfection is a protracted process in P. falciparum, we expressed the N terminus of PfTPxGl as a GFP fusion protein in a related apicomplexan, Toxoplasma gondii, in order to dissect its trafficking signals. We show that PfTPxGl possesses an N‐terminal signal anchor that takes the protein to the endoplasmic reticulum in Toxoplasma—this is the first step in the apicoplast targeting pathway. We dissected the residues important for endomembrane system uptake, membrane anchorage, orientation, spacing, and cleavage. Protease protection assays and fluorescence complementation revealed that the C terminus of the protein lies in the ER lumen, a topology that is proposed to be retained in the apicoplast. Additionally, we examined one mutant, responsible for altered PfTPxGl targeting in Toxoplasma, in Plasmodium. This study has demonstrated that PfTPxGl belongs to an emergent class of proteins that possess signal anchors, unlike the canonical bipartite targeting signals employed for the trafficking of luminal apicoplast proteins. This work adds to the mounting evidence that the signals involved in the targeting of apicoplast membrane proteins may not be as straightforward as those of luminal proteins, and also highlights the usefulness of T. gondii as a heterologous system in certain aspects of this study, such as reducing screening time and facilitating the verification of membrane topology.
Collapse
Affiliation(s)
- Aishwarya Narayan
- Department of Biosciences and Bioengineering IIT Bombay Mumbai India
| | - Pragati Mastud
- Department of Biosciences and Bioengineering IIT Bombay Mumbai India
| | - Vandana Thakur
- International Centre for Genetic Engineering and Biotechnology New Delhi India
| | | | - Asif Mohmmed
- International Centre for Genetic Engineering and Biotechnology New Delhi India
| | - Swati Patankar
- Department of Biosciences and Bioengineering IIT Bombay Mumbai India
| |
Collapse
|
14
|
Mallo N, Fellows J, Johnson C, Sheiner L. Protein Import into the Endosymbiotic Organelles of Apicomplexan Parasites. Genes (Basel) 2018; 9:E412. [PMID: 30110980 PMCID: PMC6115763 DOI: 10.3390/genes9080412] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 07/31/2018] [Accepted: 08/07/2018] [Indexed: 01/26/2023] Open
Abstract
: The organelles of endosymbiotic origin, plastids, and mitochondria, evolved through the serial acquisition of endosymbionts by a host cell. These events were accompanied by gene transfer from the symbionts to the host, resulting in most of the organellar proteins being encoded in the cell nuclear genome and trafficked into the organelle via a series of translocation complexes. Much of what is known about organelle protein translocation mechanisms is based on studies performed in common model organisms; e.g., yeast and humans or Arabidopsis. However, studies performed in divergent organisms are gradually accumulating. These studies provide insights into universally conserved traits, while discovering traits that are specific to organisms or clades. Apicomplexan parasites feature two organelles of endosymbiotic origin: a secondary plastid named the apicoplast and a mitochondrion. In the context of the diseases caused by apicomplexan parasites, the essential roles and divergent features of both organelles make them prime targets for drug discovery. This potential and the amenability of the apicomplexan Toxoplasma gondii to genetic manipulation motivated research about the mechanisms controlling both organelles' biogenesis. Here we provide an overview of what is known about apicomplexan organelle protein import. We focus on work done mainly in T. gondii and provide a comparison to model organisms.
Collapse
Affiliation(s)
- Natalia Mallo
- Wellcome Centre for Molecular Parasitology, University of Glasgow, 120 University Place Glasgow, Glasgow G12 8QQ, UK.
| | - Justin Fellows
- Genetics and Biochemistry Branch, National Institute for Diabetes and Digestive and Kidney Disease, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Carla Johnson
- Wellcome Centre for Molecular Parasitology, University of Glasgow, 120 University Place Glasgow, Glasgow G12 8QQ, UK.
| | - Lilach Sheiner
- Wellcome Centre for Molecular Parasitology, University of Glasgow, 120 University Place Glasgow, Glasgow G12 8QQ, UK.
| |
Collapse
|
15
|
Hallée S, Counihan NA, Matthews K, Koning‐Ward TF, Richard D. The malaria parasite
Plasmodium falciparum
Sortilin is essential for merozoite formation and apical complex biogenesis. Cell Microbiol 2018; 20:e12844. [DOI: 10.1111/cmi.12844] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 02/22/2018] [Accepted: 03/17/2018] [Indexed: 12/25/2022]
Affiliation(s)
- Stéphanie Hallée
- Centre de recherche en infectiologieCHU de Québec‐Université Laval Quebec City QC Canada
| | | | - Kathryn Matthews
- School of MedicineDeakin University Waurn Ponds 3216 VIC Australia
| | | | - Dave Richard
- Centre de recherche en infectiologieCHU de Québec‐Université Laval Quebec City QC Canada
| |
Collapse
|
16
|
Sharma R, Sharma B, Gupta A, Dhar SK. Identification of a novel trafficking pathway exporting a replication protein, Orc2 to nucleus via classical secretory pathway in Plasmodium falciparum. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018. [PMID: 29524523 DOI: 10.1016/j.bbamcr.2018.03.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Malaria parasites use an extensive secretory pathway to traffic a number of proteins within itself and beyond. In higher eukaryotes, Endoplasmic Reticulum (ER) membrane bound transcription factors such as SREBP are reported to get processed en route and migrate to nucleus under the influence of specific cues. However, a protein constitutively trafficked to the nucleus via classical secretory pathway has not been reported. Herein, we report the presence of a novel trafficking pathway in an apicomplexan, Plasmodium falciparum where a homologue of an Origin Recognition Complex 2 (Orc2) goes to the nucleus following its association with the ER. Our work highlights the unconventional role of ER in protein trafficking and reports for the first time an ORC homologue getting trafficked through such a pathway to the nucleus where it may be involved in DNA replication and other ancillary functions. Such trafficking pathways may have a profound impact on the cell biology of a malaria parasite and have significant implications in strategizing new antimalarials.
Collapse
Affiliation(s)
- Rahul Sharma
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India
| | - Bhumika Sharma
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India
| | - Ashish Gupta
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, Greater Noida 201314, India
| | - Suman Kumar Dhar
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India.
| |
Collapse
|
17
|
Cavalier-Smith T. Kingdom Chromista and its eight phyla: a new synthesis emphasising periplastid protein targeting, cytoskeletal and periplastid evolution, and ancient divergences. PROTOPLASMA 2018; 255:297-357. [PMID: 28875267 PMCID: PMC5756292 DOI: 10.1007/s00709-017-1147-3] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 07/18/2017] [Indexed: 05/18/2023]
Abstract
In 1981 I established kingdom Chromista, distinguished from Plantae because of its more complex chloroplast-associated membrane topology and rigid tubular multipartite ciliary hairs. Plantae originated by converting a cyanobacterium to chloroplasts with Toc/Tic translocons; most evolved cell walls early, thereby losing phagotrophy. Chromists originated by enslaving a phagocytosed red alga, surrounding plastids by two extra membranes, placing them within the endomembrane system, necessitating novel protein import machineries. Early chromists retained phagotrophy, remaining naked and repeatedly reverted to heterotrophy by losing chloroplasts. Therefore, Chromista include secondary phagoheterotrophs (notably ciliates, many dinoflagellates, Opalozoa, Rhizaria, heliozoans) or walled osmotrophs (Pseudofungi, Labyrinthulea), formerly considered protozoa or fungi respectively, plus endoparasites (e.g. Sporozoa) and all chromophyte algae (other dinoflagellates, chromeroids, ochrophytes, haptophytes, cryptophytes). I discuss their origin, evolutionary diversification, and reasons for making chromists one kingdom despite highly divergent cytoskeletons and trophic modes, including improved explanations for periplastid/chloroplast protein targeting, derlin evolution, and ciliary/cytoskeletal diversification. I conjecture that transit-peptide-receptor-mediated 'endocytosis' from periplastid membranes generates periplastid vesicles that fuse with the arguably derlin-translocon-containing periplastid reticulum (putative red algal trans-Golgi network homologue; present in all chromophytes except dinoflagellates). I explain chromist origin from ancestral corticates and neokaryotes, reappraising tertiary symbiogenesis; a chromist cytoskeletal synapomorphy, a bypassing microtubule band dextral to both centrioles, favoured multiple axopodial origins. I revise chromist higher classification by transferring rhizarian subphylum Endomyxa from Cercozoa to Retaria; establishing retarian subphylum Ectoreta for Foraminifera plus Radiozoa, apicomonad subclasses, new dinozoan classes Myzodinea (grouping Colpovora gen. n., Psammosa), Endodinea, Sulcodinea, and subclass Karlodinia; and ranking heterokont Gyrista as phylum not superphylum.
Collapse
|
18
|
Validation of Putative Apicoplast-Targeting Drugs Using a Chemical Supplementation Assay in Cultured Human Malaria Parasites. Antimicrob Agents Chemother 2017; 62:AAC.01161-17. [PMID: 29109165 DOI: 10.1128/aac.01161-17] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 10/18/2017] [Indexed: 11/20/2022] Open
Abstract
Malaria parasites contain a relict plastid, the apicoplast, which is considered an excellent drug target due to its bacterial-like ancestry. Numerous parasiticidals have been proposed to target the apicoplast, but few have had their actual targets substantiated. Isopentenyl pyrophosphate (IPP) production is the sole required function of the apicoplast in the blood stage of the parasite life cycle, and IPP supplementation rescues parasites from apicoplast-perturbing drugs. Hence, any drug that kills parasites when IPP is supplied in culture must have a nonapicoplast target. Here, we use IPP supplementation to discriminate whether 23 purported apicoplast-targeting drugs are on- or off-target. We demonstrate that a prokaryotic DNA replication inhibitor (ciprofloxacin), several prokaryotic translation inhibitors (chloramphenicol, doxycycline, tetracycline, clindamycin, azithromycin, erythromycin, and clarithromycin), a tRNA synthase inhibitor (mupirocin), and two IPP synthesis pathway inhibitors (fosmidomycin and FR900098) have apicoplast targets. Intriguingly, fosmidomycin and FR900098 leave the apicoplast intact, whereas the others eventually result in apicoplast loss. Actinonin, an inhibitor of bacterial posttranslational modification, does not produce a typical delayed-death response but is rescued with IPP, thereby confirming its apicoplast target. Parasites treated with putative apicoplast fatty acid pathway inhibitors could not be rescued, demonstrating that these drugs have their primary targets outside the apicoplast, which agrees with the dispensability of the apicoplast fatty acid synthesis pathways in the blood stage of malaria parasites. IPP supplementation provides a simple test of whether a compound has a target in the apicoplast and can be used to screen novel compounds for mode of action.
Collapse
|
19
|
Gentil J, Hempel F, Moog D, Zauner S, Maier UG. Review: origin of complex algae by secondary endosymbiosis: a journey through time. PROTOPLASMA 2017; 254:1835-1843. [PMID: 28290059 DOI: 10.1007/s00709-017-1098-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 03/03/2017] [Indexed: 05/19/2023]
Abstract
Secondary endosymbiosis-the merging of two eukaryotic cells into one photosynthetic cellular unit-led to the evolution of ecologically and medically very important organisms. We review the biology of these organisms, starting from the first proposal of secondary endosymbiosis up to recent phylogenetic models on the origin of secondarily evolved protists. In addition, we discuss the organelle character of the symbionts based on morphological features, gene transfers from the symbiont into the host and re-import of nucleus-encoded plastid proteins. Finally, we hypothesize that secondary endosymbiosis is more than enslaving a eukaryotic, phototrophic cell, but reflects a complex interplay between host and symbiont, leading to the inseparability of the two symbiotic partners generating a cellular entity.
Collapse
Affiliation(s)
- J Gentil
- Laboratory for Cell Biology, Philipps University Marburg, Karl-von-Frisch-Str. 8, 35032, Marburg, Germany
| | - F Hempel
- LOEWE Center for Synthetic Microbiology (Synmikro), Hans-Meerwein-Str. 6, 35032, Marburg, Germany
| | - D Moog
- Laboratory for Cell Biology, Philipps University Marburg, Karl-von-Frisch-Str. 8, 35032, Marburg, Germany
| | - S Zauner
- Laboratory for Cell Biology, Philipps University Marburg, Karl-von-Frisch-Str. 8, 35032, Marburg, Germany
| | - U G Maier
- Laboratory for Cell Biology, Philipps University Marburg, Karl-von-Frisch-Str. 8, 35032, Marburg, Germany.
- LOEWE Center for Synthetic Microbiology (Synmikro), Hans-Meerwein-Str. 6, 35032, Marburg, Germany.
| |
Collapse
|
20
|
A Plastid Protein That Evolved from Ubiquitin and Is Required for Apicoplast Protein Import in Toxoplasma gondii. mBio 2017; 8:mBio.00950-17. [PMID: 28655825 PMCID: PMC5487736 DOI: 10.1128/mbio.00950-17] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Apicomplexan parasites cause a variety of important infectious diseases, including malaria, toxoplasma encephalitis, and severe diarrhea due to Cryptosporidium. Most apicomplexans depend on an organelle called the apicoplast which is derived from a red algal endosymbiont. The apicoplast is essential for the parasite as the compartment of fatty acid, heme, and isoprenoid biosynthesis. The majority of the approximate 500 apicoplast proteins are nucleus encoded and have to be imported across the four membranes that surround the apicoplast. Import across the second outermost membrane of the apicoplast, the periplastid membrane, depends on an apicoplast-specific endoplasmic reticulum-associated protein degradation (ERAD) complex and on enzymes of the associated ubiquitination cascade. However, identification of an apicoplast ubiquitin associated with this machinery has long been elusive. Here we identify a plastid ubiquitin-like protein (PUBL), an apicoplast protein that is derived from a ubiquitin ancestor but that has significantly changed in its primary sequence. PUBL is distinct from known ubiquitin-like proteins, and phylogenomic analyses suggest a clade specific to apicomplexans. We demonstrate that PUBL and the AAA ATPase CDC48AP both act to translocate apicoplast proteins across the periplastid membrane during protein import. Conditional null mutants and genetic complementation show that both proteins are critical for this process and for parasite survival. PUBL residues homologous to those that are required for ubiquitin conjugation onto target proteins are essential for this function, while those required for polyubiquitination and preprotein processing are dispensable. Our experiments provide a mechanistic understanding of the molecular machinery that drives protein import across the membranes of the apicoplast. Apicomplexan parasites are responsible for important human diseases. There are no effective vaccines for use in humans, and drug treatment faces multiple challenges, including emerging resistance, lack of efficacy across the lifecycle, and adverse drug effects. The apicoplast is a promising target for novel treatments: this chloroplast-like organelle is derived from an algal symbiont, is absent from the host, and is essential for parasite growth and pathogenesis. We use Toxoplasma gondii as a model to study the apicoplast due to its strong genetic tools and established functional assays. We identify a plastid ubiquitin-like protein (PUBL) which is a novel ubiquitin-like protein and demonstrate its importance and that of the motor protein CDC48AP for apicoplast protein import. These findings broaden our understanding of the evolution and mechanistic workings of a unique parasite organelle and may lead to new opportunities for treatments against important human pathogens.
Collapse
|
21
|
Chaudhari R, Dey V, Narayan A, Sharma S, Patankar S. Membrane and luminal proteins reach the apicoplast by different trafficking pathways in the malaria parasite Plasmodium falciparum. PeerJ 2017; 5:e3128. [PMID: 28462015 PMCID: PMC5410153 DOI: 10.7717/peerj.3128] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 02/27/2017] [Indexed: 01/12/2023] Open
Abstract
The secretory pathway in Plasmodium falciparum has evolved to transport proteins to the host cell membrane and to an endosymbiotic organelle, the apicoplast. The latter can occur via the ER or the ER-Golgi route. Here, we study these three routes using proteins Erythrocyte Membrane Protein-1 (PfEMP1), Acyl Carrier Protein (ACP) and glutathione peroxidase-like thioredoxin peroxidase (PfTPxGl) and inhibitors of vesicular transport. As expected, the G protein-dependent vesicular fusion inhibitor AlF4− and microtubule destabilizing drug vinblastine block the trafficking of PfEMP-1, a protein secreted to the host cell membrane. However, while both PfTPxGl and ACP are targeted to the apicoplast, only ACP trafficking remains unaffected by these treatments. This implies that G protein-dependent vesicles do not play a role in classical apicoplast protein targeting. Unlike the soluble protein ACP, we show that PfTPxGl is localized to the outermost membrane of the apicoplast. Thus, the parasite apicoplast acquires proteins via two different pathways: first, the vesicular trafficking pathway appears to handle not only secretory proteins, but an apicoplast membrane protein, PfTPxGl; second, trafficking of apicoplast luminal proteins appear to be independent of G protein-coupled vesicles.
Collapse
Affiliation(s)
- Rahul Chaudhari
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, Maharashtra, India
| | - Vishakha Dey
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Bombay, Mumbai, Maharashtra, India
| | - Aishwarya Narayan
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Bombay, Mumbai, Maharashtra, India
| | - Shobhona Sharma
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, Maharashtra, India
| | - Swati Patankar
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Bombay, Mumbai, Maharashtra, India
| |
Collapse
|
22
|
Kong P, Ufermann CM, Zimmermann DLM, Yin Q, Suo X, Helms JB, Brouwers JF, Gupta N. Two phylogenetically and compartmentally distinct CDP-diacylglycerol synthases cooperate for lipid biogenesis in Toxoplasma gondii. J Biol Chem 2017; 292:7145-7159. [PMID: 28314772 DOI: 10.1074/jbc.m116.765487] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 03/17/2017] [Indexed: 12/20/2022] Open
Abstract
Toxoplasma gondii is among the most prevalent protozoan parasites, which infects a wide range of organisms, including one-third of the human population. Its rapid intracellular replication within a vacuole requires efficient synthesis of glycerophospholipids. Cytidine diphosphate-diacylglycerol (CDP-DAG) serves as a major precursor for phospholipid synthesis. Given the peculiarities of lipid biogenesis, understanding the mechanism and physiological importance of CDP-DAG synthesis is particularly relevant in T. gondii Here, we report the occurrence of two phylogenetically divergent CDP-DAG synthase (CDS) enzymes in the parasite. The eukaryotic-type TgCDS1 and the prokaryotic-type TgCDS2 reside in the endoplasmic reticulum and apicoplast, respectively. Conditional knockdown of TgCDS1 severely attenuated the parasite growth and resulted in a nearly complete loss of virulence in a mouse model. Moreover, mice infected with the TgCDS1 mutant became fully resistant to challenge infection with a hyper-virulent strain of T. gondii The residual growth of the TgCDS1 mutant was abolished by consecutive deletion of TgCDS2. Lipidomic analyses of the two mutants revealed significant and specific declines in phosphatidylinositol and phosphatidylglycerol levels upon repression of TgCDS1 and after deletion of TgCDS2, respectively. Our data suggest a "division of labor" model of lipid biogenesis in T. gondii in which two discrete CDP-DAG pools produced in the endoplasmic reticulum and apicoplast are subsequently used for the synthesis of phosphatidylinositol in the Golgi bodies and phosphatidylglycerol in the mitochondria. The essential and divergent nature of CDP-DAG synthesis in the parasite apicoplast offers a potential drug target to inhibit the asexual reproduction of T. gondii.
Collapse
Affiliation(s)
- Pengfei Kong
- From the Department of Molecular Parasitology, Humboldt University, Berlin 10115, Germany
| | | | - Diana L M Zimmermann
- From the Department of Molecular Parasitology, Humboldt University, Berlin 10115, Germany
| | - Qing Yin
- National Animal Protozoa Laboratory and College of Veterinary Medicine, China Agricultural University, Beijing 100094, China, and
| | - Xun Suo
- National Animal Protozoa Laboratory and College of Veterinary Medicine, China Agricultural University, Beijing 100094, China, and
| | - J Bernd Helms
- Department of Biochemistry and Cell Biology, Institute of Biomembranes, Utrecht University, Utrecht 3584CM, Netherlands
| | - Jos F Brouwers
- Department of Biochemistry and Cell Biology, Institute of Biomembranes, Utrecht University, Utrecht 3584CM, Netherlands
| | - Nishith Gupta
- From the Department of Molecular Parasitology, Humboldt University, Berlin 10115, Germany,
| |
Collapse
|
23
|
Abstract
The number and nature of endosymbioses involving red algal endosymbionts are debated. Gene phylogenies have become the most popular tool to untangle this issue, but they deliver conflicting results. As gene and lineage sampling has increased, so have both the number of conflicting trees and the number of suggestions in the literature for multiple tertiary, and even quaternary, symbioses that might reconcile the tree conflicts. Independent lines of evidence that can address the issue are needed. Here we summarize the mechanism and machinery of protein import into complex red plastids. The process involves protein translocation machinery, known as SELMA, that arose once in evolution, that facilitates protein import across the second outermost of the four plastid membranes, and that is always targeted specifically to that membrane, regardless of where it is encoded today. It is widely accepted that the unity of protein import across the two membranes of primary plastids is strong evidence for their single cyanobacterial origin. Similarly, the unity of SELMA-dependent protein import across the second outermost plastid membrane constitutes strong evidence for the existence of a single red secondary endosymbiotic event at the common origin of all red complex plastids. We furthermore propose that the two outer membranes of red complex plastids are derived from host endoplasmic reticulum in the initial red secondary endosymbiotic event.
Collapse
Affiliation(s)
- Sven B Gould
- Institute of Molecular Evolution, Heinrich-Heine University, Düsseldorf, Germany.
| | - Uwe-G Maier
- Laboratory for Cell Biology and LOEWE Centre for Synthetic Microbiology (SYNMIKRO), Phillips University, Marburg, Germany
| | - William F Martin
- Institute of Molecular Evolution, Heinrich-Heine University, Düsseldorf, Germany
| |
Collapse
|
24
|
Lim L, Sayers CP, Goodman CD, McFadden GI. Targeting of a Transporter to the Outer Apicoplast Membrane in the Human Malaria Parasite Plasmodium falciparum. PLoS One 2016; 11:e0159603. [PMID: 27442138 PMCID: PMC4956234 DOI: 10.1371/journal.pone.0159603] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 07/05/2016] [Indexed: 01/08/2023] Open
Abstract
Apicoplasts are vestigial plastids in apicomplexan parasites like Plasmodium, the causative agent of malaria. Apicomplexan parasites are dependant on their apicoplasts for synthesis of various molecules that they are unable to scavenge in sufficient quantity from their host, which makes apicoplasts attractive drug targets. Proteins known as plastid phosphate translocators (pPTs) are embedded in the outer apicoplast membrane and are responsible for the import of carbon, energy and reducing power to drive anabolic synthesis in the organelle. We investigated how a pPT is targeted into the outer apicoplast membrane of the human malaria parasite P. falciparum. We showed that a transmembrane domain is likely to act as a recessed signal anchor to direct the protein into the endomembrane system, and that a tyrosine in the cytosolic N-terminus of the protein is essential for targeting, but one or more, as yet unidentified, factors are also essential to direct the protein into the outer apicoplast membrane.
Collapse
Affiliation(s)
- Liting Lim
- School of BioSciences, University of Melbourne, Melbourne, Victoria, Australia
| | - Claire P. Sayers
- School of BioSciences, University of Melbourne, Melbourne, Victoria, Australia
| | | | - Geoffrey I. McFadden
- School of BioSciences, University of Melbourne, Melbourne, Victoria, Australia
- * E-mail:
| |
Collapse
|
25
|
Overexpression of Plasmodium berghei ATG8 by Liver Forms Leads to Cumulative Defects in Organelle Dynamics and to Generation of Noninfectious Merozoites. mBio 2016; 7:mBio.00682-16. [PMID: 27353755 PMCID: PMC4937212 DOI: 10.1128/mbio.00682-16] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Plasmodium parasites undergo continuous cellular renovation to adapt to various environments in the vertebrate host and insect vector. In hepatocytes, Plasmodium berghei discards unneeded organelles for replication, such as micronemes involved in invasion. Concomitantly, intrahepatic parasites expand organelles such as the apicoplast that produce essential metabolites. We previously showed that the ATG8 conjugation system is upregulated in P. berghei liver forms and that P. berghei ATG8 (PbATG8) localizes to the membranes of the apicoplast and cytoplasmic vesicles. Here, we focus on the contribution of PbATG8 to the organellar changes that occur in intrahepatic parasites. We illustrated that micronemes colocalize with PbATG8-containing structures before expulsion from the parasite. Interference with PbATG8 function by overexpression results in poor development into late liver stages and production of small merosomes that contain immature merozoites unable to initiate a blood infection. At the cellular level, PbATG8-overexpressing P. berghei exhibits a delay in microneme compartmentalization into PbATG8-containing autophagosomes and elimination compared to parasites from the parental strain. The apicoplast, identifiable by immunostaining of the acyl carrier protein (ACP), undergoes an abnormally fast proliferation in mutant parasites. Over time, the ACP staining becomes diffuse in merosomes, indicating a collapse of the apicoplast. PbATG8 is not incorporated into the progeny of mutant parasites, in contrast to parental merozoites in which PbATG8 and ACP localize to the apicoplast. These observations reveal that Plasmodium ATG8 is a key effector in the development of merozoites by controlling microneme clearance and apicoplast proliferation and that dysregulation in ATG8 levels is detrimental for malaria infectivity. IMPORTANCE Malaria is responsible for more mortality than any other parasitic disease. Resistance to antimalarial medicines is a recurring problem; new drugs are urgently needed. A key to the parasite's successful intracellular development in the liver is the metabolic changes necessary to convert the parasite from a sporozoite to a replication-competent, metabolically active trophozoite form. Our study reinforces the burgeoning concept that organellar changes during parasite differentiation are mediated by an autophagy-like process. We have identified ATG8 in Plasmodium liver forms as an important effector that controls the development and fate of organelles, e.g., the clearance of micronemes that are required for hepatocyte invasion and the expansion of the apicoplast that produces many metabolites indispensable for parasite replication. Given the unconventional properties and the importance of ATG8 for parasite development in hepatocytes, targeting the parasite's autophagic pathway may represent a novel approach to control malarial infections.
Collapse
|
26
|
Flori S, Jouneau PH, Finazzi G, Maréchal E, Falconet D. Ultrastructure of the Periplastidial Compartment of the Diatom Phaeodactylum tricornutum. Protist 2016; 167:254-67. [DOI: 10.1016/j.protis.2016.04.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 04/04/2016] [Accepted: 04/16/2016] [Indexed: 11/16/2022]
|
27
|
Sheiner L, Fellows JD, Ovciarikova J, Brooks CF, Agrawal S, Holmes ZC, Bietz I, Flinner N, Heiny S, Mirus O, Przyborski JM, Striepen B. Toxoplasma gondii Toc75 Functions in Import of Stromal but not Peripheral Apicoplast Proteins. Traffic 2015; 16:1254-69. [PMID: 26381927 DOI: 10.1111/tra.12333] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Revised: 09/14/2015] [Accepted: 09/14/2015] [Indexed: 01/09/2023]
Abstract
Apicomplexa are unicellular parasites causing important human and animal diseases, including malaria and toxoplasmosis. Most of these pathogens possess a relict but essential plastid, the apicoplast. The apicoplast was acquired by secondary endosymbiosis between a red alga and a flagellated eukaryotic protist. As a result the apicoplast is surrounded by four membranes. This complex structure necessitates a system of transport signals and translocons allowing nuclear encoded proteins to find their way to specific apicoplast sub-compartments. Previous studies identified translocons traversing two of the four apicoplast membranes. Here we provide functional support for the role of an apicomplexan Toc75 homolog in apicoplast protein transport. We identify two apicomplexan genes encoding Toc75 and Sam50, both members of the Omp85 protein family. We localize the respective proteins to the apicoplast and the mitochondrion of Toxoplasma and Plasmodium. We show that the Toxoplasma Toc75 is essential for parasite growth and that its depletion results in a rapid defect in the import of apicoplast stromal proteins while the import of proteins of the outer compartments is affected only as the secondary consequence of organelle loss. These observations along with the homology to Toc75 suggest a potential role in transport through the second innermost membrane.
Collapse
Affiliation(s)
- Lilach Sheiner
- Center for Tropical and Emerging Global Diseases & Department of Cellular Biology, University of Georgia, 500 D.W. Brooks Drive, Athens, GA, 30602, USA.,Wellcome Trust Centre For Molecular Parasitology, Institute of Infection, Immunity & Inflammation, College of Medical, Veterinary & Life Sciences, Sir Graeme Davies Building, University of Glasgow, 120 University Place, Glasgow, G12 8TA, UK
| | - Justin D Fellows
- Center for Tropical and Emerging Global Diseases & Department of Cellular Biology, University of Georgia, 500 D.W. Brooks Drive, Athens, GA, 30602, USA
| | - Jana Ovciarikova
- Wellcome Trust Centre For Molecular Parasitology, Institute of Infection, Immunity & Inflammation, College of Medical, Veterinary & Life Sciences, Sir Graeme Davies Building, University of Glasgow, 120 University Place, Glasgow, G12 8TA, UK
| | - Carrie F Brooks
- Center for Tropical and Emerging Global Diseases & Department of Cellular Biology, University of Georgia, 500 D.W. Brooks Drive, Athens, GA, 30602, USA
| | - Swati Agrawal
- Center for Tropical and Emerging Global Diseases & Department of Cellular Biology, University of Georgia, 500 D.W. Brooks Drive, Athens, GA, 30602, USA
| | - Zachary C Holmes
- Center for Tropical and Emerging Global Diseases & Department of Cellular Biology, University of Georgia, 500 D.W. Brooks Drive, Athens, GA, 30602, USA
| | - Irine Bietz
- Department of Parasitology, Faculty of Biology, Philipps University Marburg, Marburg, Germany
| | - Nadine Flinner
- Molecular Cell Biology of Plants, Biocenter N200, 3. OG, Max-von-Laue-Str. 9, 60438, Frankfurt, Germany
| | - Sabrina Heiny
- Department of Parasitology, Faculty of Biology, Philipps University Marburg, Marburg, Germany
| | - Oliver Mirus
- Molecular Cell Biology of Plants, Biocenter N200, 3. OG, Max-von-Laue-Str. 9, 60438, Frankfurt, Germany
| | - Jude M Przyborski
- Department of Parasitology, Faculty of Biology, Philipps University Marburg, Marburg, Germany
| | - Boris Striepen
- Center for Tropical and Emerging Global Diseases & Department of Cellular Biology, University of Georgia, 500 D.W. Brooks Drive, Athens, GA, 30602, USA
| |
Collapse
|
28
|
Abstract
Many protists with high ecological and medical relevance harbor plastids surrounded by four membranes. Thus, nucleus-encoded proteins of these complex plastids have to traverse these barriers. Here we report on the identification of the protein translocators located in two of the plastid surrounding membranes and present recent findings on the mechanisms of protein import into the plastids of diatoms.
Collapse
|
29
|
Lau JB, Stork S, Moog D, Sommer MS, Maier UG. N-terminal lysines are essential for protein translocation via a modified ERAD system in complex plastids. Mol Microbiol 2015; 96:609-20. [PMID: 25644868 DOI: 10.1111/mmi.12959] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/01/2015] [Indexed: 01/01/2023]
Abstract
Nuclear-encoded pre-proteins being imported into complex plastids of red algal origin have to cross up to five membranes. Thereby, transport across the second outermost or periplastidal membrane (PPM) is facilitated by SELMA (symbiont-specific ERAD-like machinery), an endoplasmic reticulum-associated degradation (ERAD)-derived machinery. Core components of SELMA are enzymes involved in ubiquitination (E1-E3), a Cdc48 ATPase complex and Derlin proteins. These components are present in all investigated organisms with four membrane-bound complex plastids of red algal origin, suggesting a ubiquitin-dependent translocation process of substrates mechanistically similar to the process of retro-translocation in ERAD. Even if, according to the current model, translocation via SELMA does not end up in the classical poly-ubiquitination, transient mono-/oligo-ubiquitination of pre-proteins might be required for the mechanism of translocation. We investigated the import mechanism of SELMA and were able to show that protein transport across the PPM depends on lysines in the N-terminal but not in the C-terminal part of pre-proteins. These lysines are predicted to be targets of ubiquitination during the translocation process. As proteins lacking the N-terminal lysines get stuck in the PPM, a 'frozen intermediate' of the translocation process could be envisioned and initially characterized.
Collapse
Affiliation(s)
- Julia B Lau
- Laboratory for Cell Biology, Philipps Universität Marburg, Karl-von-Frisch Str. 8, D-35043, Marburg, Germany
| | | | | | | | | |
Collapse
|