1
|
Shi G, Jiang C, Wang J, Cui P, Shan W. Mechanical stimulation promotes the maturation of cardiomyocyte-like cells from P19 cells and the function in a mouse model of myocardial infarction. Cell Tissue Res 2024:10.1007/s00441-024-03922-6. [PMID: 39395051 DOI: 10.1007/s00441-024-03922-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Accepted: 10/01/2024] [Indexed: 10/14/2024]
Abstract
In this study, we aimed to promote the maturation of cardiomyocytes-like cells by mechanical stimulation, and evaluate their therapeutic potential against myocardial infarction. The cyclic tensile strain was used to induce the maturation of cardsiomyocyte-like cells from P19 cells in vitro. Western blot and qPCR assays were performed to examine protein and gene expression, respectively. High-resolution respirometry was used to assay cell function. The induced cells were then evaluated for their therapeutic effect. In vitro, we observed cyclic tensile strain induced P19 cell differentiation into cardiomyocyte-like cells, as indicated by the increased expression of cardiomyocyte maturation-related genes such as Myh6, Myl2, and Gja1. Furthermore, cyclic tensile strain increased the antioxidant capacity of cardiomyocytes by upregulating the expression Sirt1, a gene important for P19 maturation into cardiomyocyte-like cells. High-resolution respirometry analysis of P19 cells following cyclic tensile strain showed enhanced metabolic function. In vivo, stimulated P19 cells enhanced cardiac function in a mouse model of myocardial infarction, and these mice showed decreased infarction-related biomarkers. The current study demonstrates a simple yet effective mean to induce the maturation of P19 cells into cardiomyocyte-like cells, with a promising therapeutic potential for the treatment of myocardial infarction.
Collapse
Affiliation(s)
- Guiliang Shi
- Department of Cardiovascular Diseases, Changzhou Wujin Traditional Chinese Medicine Hospital, No.699, Renmin Middle Road, Wujin District, Changzhou, 213161, Jiangsu, China
| | - Chaopeng Jiang
- Department of Cardiovascular Diseases, Changzhou Wujin Traditional Chinese Medicine Hospital, No.699, Renmin Middle Road, Wujin District, Changzhou, 213161, Jiangsu, China.
| | - Jiwei Wang
- Department of Cardiovascular Diseases, Changzhou Wujin Traditional Chinese Medicine Hospital, No.699, Renmin Middle Road, Wujin District, Changzhou, 213161, Jiangsu, China
| | - Ping Cui
- Department of Cardiovascular Diseases, Changzhou Wujin Traditional Chinese Medicine Hospital, No.699, Renmin Middle Road, Wujin District, Changzhou, 213161, Jiangsu, China
| | - Weixin Shan
- Department of Cardiovascular Diseases, Changzhou Wujin Traditional Chinese Medicine Hospital, No.699, Renmin Middle Road, Wujin District, Changzhou, 213161, Jiangsu, China
| |
Collapse
|
2
|
Zhou P, Yu SN, Zhang HF, Wang YL, Tao P, Tan YZ, Wang HJ. c-kit +VEGFR-2 + Mesenchymal Stem Cells Differentiate into Cardiovascular Cells and Repair Infarcted Myocardium after Transplantation. Stem Cell Rev Rep 2023; 19:230-247. [PMID: 35962935 PMCID: PMC9823054 DOI: 10.1007/s12015-022-10430-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/13/2022] [Indexed: 01/29/2023]
Abstract
Resent study suggests that c-kit+ cells in bone marrow-derived MSCs may differentiate toward cardiamyocytes. However, the properties of c-kit+ MSCs remain unclear. This study isolated c-kit+VEGFR-2+ cells from rat bone marrow-derived MSCs, and assessed potential of c-kit+VEGFR-2+ MSCs to differentiate towards cardiovascular cells and their efficiency of repairing the infarcted myocardium after transplantation. Gene expression profile of the cells was analyzed with RNA-sequencing. Potential of differentiation of the cells was determined after induction. Rat models of myocardial infarction were established by ligation of the left anterior descending coronary artery. The cells were treated with hypoxia and serum deprivation for four hours before transplantation. Improvement of cardiac function and repair of the infarcted myocardium were assessed at four weeks after transplantation. Gene expression profile revealed that c-kit+VEGFR-2+ MSCs expressed most smooth muscle-specific and myocardium-specific genes, while expression of endothelium-specific genes was upregulated significantly. After induction with VEGF or TGF-β for two weeks, the cells expressed CD31 and α-SMA respectively. At three weeks, BMP-2-induced cells expressed cTnT. After transplantation of the cells, cardiac function was improved, scar size of the infarcted myocardium was decreased, and angiogenesis and myocardial regeneration were enhanced significantly. Moreover, paracrine in the myocardium was increased after transplantation. These results suggest that c-kit+VEGFR-2+ MSCs have a potential of differentiation towards cardiovascular cells. Transplantation of c-kit+VEGFR-2+ MSCs is effective for repair of the infarcted myocardium. c-kit+VEGFR-2+ MSCs may be a reliable source for cell therapy of ischaemic diseases.
Collapse
Affiliation(s)
- Pei Zhou
- Department of Anatomy, Histology and Embryology, Shanghai Medical School of Fudan University, 138 Yixueyuan Road, Shanghai, 200032, People's Republic of China
| | - Shu-Na Yu
- Department of Anatomy, Histology and Embryology, Shanghai Medical School of Fudan University, 138 Yixueyuan Road, Shanghai, 200032, People's Republic of China
| | - Hai-Feng Zhang
- Department of Anatomy, Histology and Embryology, Shanghai Medical School of Fudan University, 138 Yixueyuan Road, Shanghai, 200032, People's Republic of China
| | - Yong-Li Wang
- Department of Anatomy, Histology and Embryology, Shanghai Medical School of Fudan University, 138 Yixueyuan Road, Shanghai, 200032, People's Republic of China
| | - Ping Tao
- Department of Anatomy, Histology and Embryology, Shanghai Medical School of Fudan University, 138 Yixueyuan Road, Shanghai, 200032, People's Republic of China
| | - Yu-Zhen Tan
- Department of Anatomy, Histology and Embryology, Shanghai Medical School of Fudan University, 138 Yixueyuan Road, Shanghai, 200032, People's Republic of China.
| | - Hai-Jie Wang
- Department of Anatomy, Histology and Embryology, Shanghai Medical School of Fudan University, 138 Yixueyuan Road, Shanghai, 200032, People's Republic of China.
| |
Collapse
|
3
|
Tan YZ, Shen HR, Wang YL, Wang QL, Wu XP, Yu SN, Wang HJ. Retinoic acid released from self-assembling peptide activates cardiomyocyte proliferation and enhances repair of infarcted myocardium. Exp Cell Res 2023; 422:113440. [PMID: 36481206 DOI: 10.1016/j.yexcr.2022.113440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/01/2022] [Accepted: 12/03/2022] [Indexed: 12/12/2022]
Abstract
The limited cardiomyocyte proliferation is insufficient for repair of the myocardium. Therefore, activating cardiomyocyte proliferation might be a reasonable option for myocardial regeneration. Here, we investigated effect of retinoic acid (RA) on inducing adult cardiomyocyte proliferation and assessed efficacy of self-assembling peptide (SAP)-released RA in activating regeneration of the infarcted myocardium. Effect of RA on inducing cardiomyocyte proliferation was examined with the isolated cardiomyocytes. Expression of the cell cycle-associated genes and paracrine factors in the infarcted myocardium was examined at one week after treatment with SAP-carried RA. Cardiomyocyte proliferation, myocardial regeneration and improvement of cardiac function were assessed at four weeks after treatment. In the adult rat myocardium, expression of RA synthetase gene Raldh2 and RA concentration were decreased significantly. After treatment with RA, the proliferated cardiomyocytes were increased. The formulated SAP could sustainedly release RA. After treatment with SAP-carried RA, expression of the pro-proliferative genes in cell cycle and paracrine factors in the infarcted myocardium were up-regulated. Myocardial regeneration was enhanced, and cardiac function was improved significantly. These results demonstrate that RA can induce adult cardiomyocytes to proliferate effectively. The sustained release of RA with SAP is a promise strategy to enhance repair of the infarcted myocardium.
Collapse
Affiliation(s)
- Yu-Zhen Tan
- Department of Anatomy, Histology and Embryology, Shanghai Medical School of Fudan University, Shanghai, 200032, China.
| | - Hao-Ran Shen
- Department of Anatomy, Histology and Embryology, Shanghai Medical School of Fudan University, Shanghai, 200032, China
| | - Yong-Li Wang
- Department of Anatomy, Histology and Embryology, Shanghai Medical School of Fudan University, Shanghai, 200032, China; Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Qiang-Li Wang
- Department of Anatomy, Histology and Embryology, Shanghai Medical School of Fudan University, Shanghai, 200032, China; Department of Histology and Embryology, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xue-Ping Wu
- Department of Anatomy, Histology and Embryology, Shanghai Medical School of Fudan University, Shanghai, 200032, China
| | - Shu-Na Yu
- Department of Anatomy, Histology and Embryology, Shanghai Medical School of Fudan University, Shanghai, 200032, China
| | - Hai-Jie Wang
- Department of Anatomy, Histology and Embryology, Shanghai Medical School of Fudan University, Shanghai, 200032, China.
| |
Collapse
|
4
|
Wang H, Zhao WS, Xu L. Bisphosphonate of Zoledronate Has Antiapoptotic Effect on Hypoxia/Reoxygenation Injury in Human Embryonic Stem Cell-Derived Cardiomyocytes Through Trk Signaling Pathway. Cell Biochem Biophys 2022; 80:435-442. [PMID: 35226248 DOI: 10.1007/s12013-021-01031-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 08/04/2021] [Indexed: 11/29/2022]
Abstract
In this work, we investigated the in vitro and in vivo functions of bisphosphonate of zoledronate (Zd) in hypoxia/reoxygenation (H/R) injured human embryonic stem cell-derived cardiomyocytes (hES-CMs). In the in vitro setting, the effects of Zd on hES-CM survival and differentiation were examined. We found that low and medium concentrations (<2 µm) of Zd did not induce cell death of hES-CMs. 0.5 µm Zd protected H/R-induced hES-CM apoptosis but did not affect key differentiation proteins, including hcTnl, PECM-1 Cnx43 and Pan-Cadherin. In addition, Zd-induced TrkA/B phosphorylation and promoted VEGF to counter the apoptotic effect of H/R injury. In the in vivo animal model of myocardial infarction, Zd treatment promoted the survival of hES-CMs by inducing PECAM1 and hcTnl. Thus, we concluded that Zd protected H/R-induced hES-CM apoptosis in vitro and promoted hES-CM survival in vivo. These data may facilitate the development of human embryonic stem cells into clinical applications for patients with ischemic heart disease.
Collapse
Affiliation(s)
- Hua Wang
- Heart Center and Beijing Key Laboratory of Hypertension Research, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
| | - Wen-Shu Zhao
- Heart Center and Beijing Key Laboratory of Hypertension Research, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
| | - Lin Xu
- Heart Center and Beijing Key Laboratory of Hypertension Research, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China.
| |
Collapse
|
5
|
Rapamycin-Preactivated Autophagy Enhances Survival and Differentiation of Mesenchymal Stem Cells After Transplantation into Infarcted Myocardium. Stem Cell Rev Rep 2021; 16:344-356. [PMID: 31927699 PMCID: PMC7152587 DOI: 10.1007/s12015-020-09952-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Stem cell transplantation has been limited by poor survival of the engrafted cells in hostile microenvironment of the infarcted myocardium. This study investigated cytoprotective effect of rapamycin-preactivated autophagy on survival of the transplanted mesemchymal stem cells (MSCs). MSCs isolated from rat bone marrow were treated with 50 nmol/L rapamycin for 2 h, and then the cytoprotective effect of rapamycin was examined. After intramyocardial transplantation in rat ischemia/reperfusion models, the survival and differentiation of the rapamycin-pretreated calls were accessed. After treatment with rapamycin, autophagic activities and lysososme production of the cells were increased significantly. In the condition of short-term or long-term hypoxia and serum deprivation, the apoptotic cells in rapamycin-pretreated cells were less, and secretion of HGF, IGF-1, SCF, SDF-1 and VEGF was increased. After transplantation of rapamycin-pretreated cells, repair of the infarcted myocardium and restoration of cardial function were enhanced dramatically. Expression of HGF, IGF-1, SCF, SDF-1, VEGF, HIF-1α and IL-10 in the myocardium was upregulated, while expression of IL-1β and TNF-α was downregulated. Tracing of GFP and Sry gene showed that the survival of rapamycin-pretreated cells was increased. Cardiomyogenesis and angiogenesis in the infarcted myocardium were strengthened. Some rapamycin-pretreated cells differentiated into cardiomyocytes or endothelial cells. These results demonstrate that moderate preactivation of autophagy with rapamycin enhances the survival and differentiation of the transplanted MSCs. Rapamycin-primed MSCs can promote repair of the infarcted myocardium and improvement of cardiac function effectively.
Collapse
|
6
|
Guide Cells Support Muscle Regeneration and Affect Neuro-Muscular Junction Organization. Int J Mol Sci 2021; 22:ijms22041939. [PMID: 33669272 PMCID: PMC7920023 DOI: 10.3390/ijms22041939] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/04/2021] [Accepted: 02/05/2021] [Indexed: 12/20/2022] Open
Abstract
Muscular regeneration is a complex biological process that occurs during acute injury and chronic degeneration, implicating several cell types. One of the earliest events of muscle regeneration is the inflammatory response, followed by the activation and differentiation of muscle progenitor cells. However, the process of novel neuromuscular junction formation during muscle regeneration is still largely unexplored. Here, we identify by single-cell RNA sequencing and isolate a subset of vessel-associated cells able to improve myogenic differentiation. We termed them 'guide' cells because of their remarkable ability to improve myogenesis without fusing with the newly formed fibers. In vitro, these cells showed a marked mobility and ability to contact the forming myotubes. We found that these cells are characterized by CD44 and CD34 surface markers and the expression of Ng2 and Ncam2. In addition, in a murine model of acute muscle injury and regeneration, injection of guide cells correlated with increased numbers of newly formed neuromuscular junctions. Thus, we propose that guide cells modulate de novo generation of neuromuscular junctions in regenerating myofibers. Further studies are necessary to investigate the origin of those cells and the extent to which they are required for terminal specification of regenerating myofibers.
Collapse
|
7
|
Raval AN, Pepine CJ. Clinical Safety Profile of Transendocardial Catheter Injection Systems: A Plea for Uniform Reporting. CARDIOVASCULAR REVASCULARIZATION MEDICINE 2020; 22:100-108. [PMID: 32651159 DOI: 10.1016/j.carrev.2020.06.031] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 06/26/2020] [Accepted: 06/26/2020] [Indexed: 12/12/2022]
Abstract
OBJECTIVES The aim of this study was to characterize the clinical safety profile of transendocardial injection catheters (TIC) reported in the published literature. BACKGROUND Transendocardial delivery is a minimally invasive approach to deliver potential therapeutic agents directly into the myocardium. The rate of adverse events across TIC is uncertain. METHODS A systematic search was performed for trial publications using TIC. Procedure-associated adverse event data were abstracted, pooled and compared across catheters for active treatment and placebo injected patients. The transendocardial injection associated serious adverse events (TEI-SAE) was defined as the composite of death, myocardial infarction, stroke or transient ischemic attack within 30 days and cardiac perforation causing death or requiring evacuation, serious intraprocedural arrhythmias and serious coronary artery or peripheral vascular complications. RESULTS The search identified 4 TIC systems: a helical needle (HN), an electro-anatomically tracked straight needle (EAM-SN), a straight needle without tracking elements (SN), and a curved needle (CN). Of 1799 patients who underwent transendocardial injections, the combined TEI-SAE was 3.4% across all catheters, and 1.1%, 3.3%, 7.1%, and 8.3% for HN, EAM-SN, SN and CN, respectively. However, TIC procedure duration and post procedural cardiac biomarker levels were reported in only 24% and 36% of published trials, respectively. CONCLUSIONS Transendocardial injection is associated with varied TEI-SAE but the data are very limited. The HN catheter appeared to be associated with lower TEI-SAE, versus other catheters. Procedure duration and post procedure cardiac biomarker levels were under-reported. Clearly, standardized, procedure-related event reporting for trials involving transcatheter delivery would improve our understanding of complications across different systems.
Collapse
Affiliation(s)
- Amish N Raval
- Department of Medicine and Biomedical Engineering, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA.
| | - Carl J Pepine
- Division of Cardiovascular Medicine, University of Florida, Gainsville, FL, USA
| |
Collapse
|
8
|
Miyaji T, Takami T, Fujisawa K, Matsumoto T, Yamamoto N, Sakaida I. Bone marrow-derived humoral factors suppress oxidative phosphorylation, upregulate TSG-6, and improve therapeutic effects on liver injury of mesenchymal stem cells. J Clin Biochem Nutr 2020; 66:213-223. [PMID: 32523248 DOI: 10.3164/jcbn.19-125] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 12/11/2019] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stem cells, which have the potential to be used in regenerative medicine, require improvements in quality for patient use. To maintain stemness of cultured bone marrow-derived mesenchymal stem cells, we focused on the bone marrow microenvironment, generated a conditioned medium of whole bone marrow cells (BMC-CM), and assessed its effects on bone marrow-derived mesenchymal stem cells. BMC-CM suppressed morphological deterioration and proliferative decline in cultured bone marrow-derived mesenchymal stem cells, suppressed mitochondrial oxidative phosphorylation activity, a stemness indicator, and upregulated suppressors of oxidative phosphorylation such as hypoxia-inducible factor-1 alpha, Sirtuin 3, 4, and 5. Furthermore, BMC-CM upregulated TNF-stimulated gene 6 and ameliorated the therapeutic effects of cells on liver injury in carbon tetrachloride-administered rats. Since the elimination of 20-220-nm particles attenuated the effects of BMC-CM, we further analyzed exosomal microRNAs produced by whole bone marrow cells. Among the 49 microRNAs observed to be upregulated during the preparation of BMC-CM, several were identified that were associated with suppression of oxidative phosphorylation, upregulation of TNF-stimulated gene 6, and the pathogenesis of liver diseases. Thus, bone marrow-derived humoral factors including exosomal microRNAs may help to improve the therapeutic quality of bone marrow-derived mesenchymal stem cells for liver regenerative therapy.
Collapse
Affiliation(s)
- Takashi Miyaji
- Department of Gastroenterology & Hepatology, Yamaguchi University Graduate School of Medicine, Minamikogushi 1-1-1, Ube, Yamaguchi 755-0046, Japan
| | - Taro Takami
- Department of Liver Regenerative Medicine, Yamaguchi University Graduate School of Medicine, Minamikogushi 1-1-1, Ube, Yamaguchi 755-0046, Japan.,Center for Regenerative and Cell Therapy, Yamaguchi University Organization for Research Initiatives, Minamikogushi 1-1-1, Ube, Yamaguchi 755-0046, Japan
| | - Koichi Fujisawa
- Department of Liver Regenerative Medicine, Yamaguchi University Graduate School of Medicine, Minamikogushi 1-1-1, Ube, Yamaguchi 755-0046, Japan
| | - Toshihiko Matsumoto
- Department of Oncology and Laboratory Medicine, Yamaguchi University Graduate School of Medicine, Minamikogushi 1-1-1, Ube, Yamaguchi 755-0046, Japan
| | - Naoki Yamamoto
- Health Administration Center, Yamaguchi University, Minamikogushi 1-1-1, Ube, Yamaguchi 755-0046, Japan
| | - Isao Sakaida
- Department of Gastroenterology & Hepatology, Yamaguchi University Graduate School of Medicine, Minamikogushi 1-1-1, Ube, Yamaguchi 755-0046, Japan.,Center for Regenerative and Cell Therapy, Yamaguchi University Organization for Research Initiatives, Minamikogushi 1-1-1, Ube, Yamaguchi 755-0046, Japan
| |
Collapse
|
9
|
Jiang B, Yan L, Shamul JG, Hakun M, He X. Stem cell therapy of myocardial infarction: a promising opportunity in bioengineering. ADVANCED THERAPEUTICS 2020; 3:1900182. [PMID: 33665356 PMCID: PMC7928435 DOI: 10.1002/adtp.201900182] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Indexed: 02/06/2023]
Abstract
Myocardial infarction (MI) is a life-threatening disease resulting from irreversible death of cardiomyocytes (CMs) and weakening of the heart blood-pumping function. Stem cell-based therapies have been studied for MI treatment over the last two decades with promising outcome. In this review, we critically summarize the past work in this field to elucidate the advantages and disadvantages of treating MI using pluripotent stem cells (PSCs) including both embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs), adult stem cells, and cardiac progenitor cells. The main advantage of the latter is their cytokine production capability to modulate immune responses and control the progression of healing. However, human adult stem cells have very limited (if not 'no') capacity to differentiate into functional CMs in vitro or in vivo. In contrast, PSCs can be differentiated into functional CMs although the protocols for the cardiac differentiation of PSCs are mainly for adherent cells under 2D culture. Derivation of PSC-CMs in 3D, allowing for large-scale production of CMs via modulation of the Wnt/β-catenin signal pathway with defined chemicals and medium, may be desired for clinical translation. Furthermore, the technology of purification and maturation of the PSC-CMs may need further improvements to eliminate teratoma formation after in vivo implantation of the PSC-CMs for treating MI. In addition, in vitro derived PSC-CMs may have mechanical and electrical mismatch with the patient's cardiac tissue, which causes arrhythmia. This supports the use of PSC-derived cells committed to cardiac lineage without beating for implantation to treat MI. In this case, the PSC derived cells may utilize the mechanical, electrical, and chemical cues in the heart to further differentiate into mature/functional CMs in situ. Another major challenge facing stem cell therapy of MI is the low retention/survival of stem cells or their derivatives (e.g., PSC-CMs) in the heart for MI treatment after injection in vivo. This may be resolved by using biomaterials to engineer stem cells for reduced immunogenicity, immobilization of the cells in the heart, and increased integration with the host cardiac tissue. Biomaterials have also been applied in the derivation of CMs in vitro to increase the efficiency and maturation of differentiation. Collectively, a lot has been learned from the past failure of simply injecting intact stem cells or their derivatives in vivo for treating MI, and bioengineering stem cells with biomaterials is expected to be a valuable strategy for advancing stem cell therapy towards its widespread application for treating MI in the clinic.
Collapse
Affiliation(s)
- Bin Jiang
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, United States
| | - Li Yan
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, United States
| | - James G Shamul
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, United States
| | - Maxwell Hakun
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, United States
| | - Xiaoming He
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
10
|
One-Year Follow-Up of Vitiligo Patients Treated with Autologous Non-Cultured Melanocytes. IRANIAN RED CRESCENT MEDICAL JOURNAL 2020. [DOI: 10.5812/ircmj.81990] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
11
|
Diedrichs F, Stolk M, Jürchott K, Haag M, Sittinger M, Seifert M. Enhanced Immunomodulation in Inflammatory Environments Favors Human Cardiac Mesenchymal Stromal-Like Cells for Allogeneic Cell Therapies. Front Immunol 2019; 10:1716. [PMID: 31396228 PMCID: PMC6665953 DOI: 10.3389/fimmu.2019.01716] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 07/09/2019] [Indexed: 12/29/2022] Open
Abstract
Rising numbers of patients with cardiovascular diseases and limited availability of donor hearts require new and improved therapy strategies. Human atrial appendage-derived cells (hAACs) are promising candidates for an allogeneic cell-based treatment. In this study, we evaluated their inductive and modulatory capacity regarding immune responses and underlying key mechanisms in vitro. For this, cryopreserved hAACs were either cultured in the presence of interferon-gamma (IFNγ) or left unstimulated. The expression of characteristic mesenchymal stromal cell markers (CD29, CD44, CD73, CD105, CD166) was revealed by flow cytometry that also highlighted a predominant negativity for CD90. A low immunogeneic phenotype in an inflammatory milieu was shown by lacking expression of co-stimulatory molecules and upregulation of the inhibitory ligands PD-L1 and PD-L2, despite de novo expression of HLA-DR. Co-cultures of hAACs with allogeneic peripheral blood mononuclear cells, proved their low immunogeneic state by absence of induced T cell proliferation and activation. Additionally, elevated levels of IL-1β, IL-33, and IL-10 were detectable in those cell culture supernatants. Furthermore, the immunomodulatory potential of hAACs was assessed in co-cultures with αCD3/αCD28-activated peripheral blood mononuclear cells. Here, a strong inhibition of T cell proliferation and reduction of pro-inflammatory cytokines (IFNγ, TNFα, TNFβ, IL-17A, IL-2) were observable after pre-stimulation of hAACs with IFNγ. Transwell experiments confirmed that mostly soluble factors are responsible for these suppressive effects. We were able to identify indolamin-2,3-dioxygenase (IDO) as a potential key player through a genome-wide gene expression analysis and could demonstrate its involvement in the observed immunological responses. While the application of blocking antibodies against both PD-1 ligands did not affect the immunomodulation by hAACs, 1-methyl-L-tryptophan as specific inhibitor of IDO was able to restore proliferation and to lower apoptosis of T cells. In conclusion, hAACs represent a cardiac-derived mesenchymal stromal-like cell type with a high potential for the application in an allogeneic setting, since they do not trigger T cell responses and even increase their immunomodulatory potential in inflammatory environments.
Collapse
Affiliation(s)
- Falk Diedrichs
- Berlin Institute of Health (BIH), Berlin, Germany.,BIH Center for Regenerative Therapies (BCRT), Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Meaghan Stolk
- BIH Center for Regenerative Therapies (BCRT), Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Karsten Jürchott
- BIH Center for Regenerative Therapies (BCRT), Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Institute of Medical Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Marion Haag
- BIH Center for Regenerative Therapies (BCRT), Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Tissue Engineering Laboratory, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Michael Sittinger
- BIH Center for Regenerative Therapies (BCRT), Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Tissue Engineering Laboratory, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Martina Seifert
- BIH Center for Regenerative Therapies (BCRT), Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Institute of Medical Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
12
|
Liu Y, Niu R, Li W, Lin J, Stamm C, Steinhoff G, Ma N. Therapeutic potential of menstrual blood-derived endometrial stem cells in cardiac diseases. Cell Mol Life Sci 2019; 76:1681-1695. [PMID: 30721319 PMCID: PMC11105669 DOI: 10.1007/s00018-019-03019-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 12/13/2018] [Accepted: 01/15/2019] [Indexed: 12/21/2022]
Abstract
Despite significant developments in medical and surgical strategies, cardiac diseases remain the leading causes of morbidity and mortality worldwide. Numerous studies involving preclinical and clinical trials have confirmed that stem cell transplantation can help improve cardiac function and regenerate damaged cardiac tissue, and stem cells isolated from bone marrow, heart tissue, adipose tissue and umbilical cord are the primary candidates for transplantation. During the past decade, menstrual blood-derived endometrial stem cells (MenSCs) have gradually become a promising alternative for stem cell-based therapy due to their comprehensive advantages, which include their ability to be periodically and non-invasively collected, their abundant source material, their ability to be regularly donated, their superior proliferative capacity and their ability to be used for autologous transplantation. MenSCs have shown positive therapeutic potential for the treatment of various diseases. Therefore, aside from a brief introduction of the biological characteristics of MenSCs, this review focuses on the progress being made in evaluating the functional improvement of damaged cardiac tissue after MenSC transplantation through preclinical and clinical studies. Based on published reports, we conclude that the paracrine effect, transdifferentiation and immunomodulation by MenSC promote both regeneration of damaged myocardium and improvement of cardiac function.
Collapse
Affiliation(s)
- Yanli Liu
- Stem Cell and Biotherapy Technology Research Center, College of Life Science and Technology, Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, 453003, People's Republic of China
- Institute of Chemistry and Biochemistry, Free University Berlin, 14195, Berlin, Germany
| | - Rongcheng Niu
- Stem Cell and Biotherapy Technology Research Center, College of Life Science and Technology, Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, 453003, People's Republic of China
| | - Wenzhong Li
- Institute of Chemistry and Biochemistry, Free University Berlin, 14195, Berlin, Germany.
| | - Juntang Lin
- Stem Cell and Biotherapy Technology Research Center, College of Life Science and Technology, Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, 453003, People's Republic of China.
| | - Christof Stamm
- Deutsches Herzzentrum Berlin (DHZB), Berlin, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health, Berlin, Germany
| | - Gustav Steinhoff
- Department of Cardiac Surgery, Reference and Translation Center for Cardiac Stem Cell Therapy, University Rostock, 18055, Rostock, Germany
| | - Nan Ma
- Institute of Chemistry and Biochemistry, Free University Berlin, 14195, Berlin, Germany
- Department of Cardiac Surgery, Reference and Translation Center for Cardiac Stem Cell Therapy, University Rostock, 18055, Rostock, Germany
- Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, 14513, Teltow, Germany
| |
Collapse
|
13
|
Wang YL, Zhang G, Wang HJ, Tan YZ, Wang XY. Preinduction with bone morphogenetic protein-2 enhances cardiomyogenic differentiation of c-kit + mesenchymal stem cells and repair of infarcted myocardium. Int J Cardiol 2019; 265:173-180. [PMID: 29885685 DOI: 10.1016/j.ijcard.2018.01.134] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 01/27/2018] [Accepted: 01/31/2018] [Indexed: 10/14/2022]
Abstract
BACKGROUND Preclinical and clinical trails show that c-kit+ cardiac stem cells can differentiate towards cardiovascular cells and improve cardiac function after myocardial infarction (MI). However, survival and differentiation of the engrafted stem cells within ischemic and inflammatory microenvironment are poor. METHODS c-Kit+ cells were isolated from mesenchymal stem cells (MSCs) of rat bone marrow. Reliability of preinduction with bone morphogenetic protein-2 (BMP-2) in promotion of survival and differentiation of c-kit+ MSCs was assessed in vitro and after transplantation. RESULTS c-Kit+ MSCs have a potential to differentiate towards cardiomyocytes. BMP-2 promotes proliferation, migration and paracrine of the cells, and protects the cells to survive in the hypoxic condition. After induction with 10 ng/mL BMP-2 for 24 h, the cells can differentiate into cardiomyocytes at four weeks. The electrophysiological characteristics of the differentiated cells are same as adult ventricular cardiomyocytes. In rat MI models, cardiac function was improved, the size of scar tissue was reduced, and regeneration of the myocardium and microvessels was enhanced significantly at four weeks after transplantation of BMP-2-preinduced cells. The survived cells and cardiomyocytes differentiated from the engrafted cells were increased greatly. CONCLUSION The results suggest that transient treatment with BMP-2 can induce c-kit+ MSCs to differentiate into functional cardiomyocytes. Preinduction with BMP-2 enhances survival and differentiation of the cells. BMP-2-primed cells promote repair of the infarcted myocardium and improvement of cardiac function. Transplantation of BMP-2-preinduced c-kit+ MSCs is a feasible strategy for MI therapy.
Collapse
Affiliation(s)
- Yong-Li Wang
- Department of Anatomy, Histology and Embryology, Shanghai Medical School of Fudan University, Shanghai 200032, China
| | - Guitao Zhang
- Department of Anatomy, Histology and Embryology, Shanghai Medical School of Fudan University, Shanghai 200032, China; Department of Anatomy, Histology and Embryology, Capital Medical University, Beijing, China
| | - Hai-Jie Wang
- Department of Anatomy, Histology and Embryology, Shanghai Medical School of Fudan University, Shanghai 200032, China.
| | - Yu-Zhen Tan
- Department of Anatomy, Histology and Embryology, Shanghai Medical School of Fudan University, Shanghai 200032, China.
| | - Xin-Yan Wang
- Department of Anatomy, Histology and Embryology, Shanghai Medical School of Fudan University, Shanghai 200032, China
| |
Collapse
|
14
|
Cui H, Miao S, Esworthy T, Zhou X, Lee SJ, Liu C, Yu ZX, Fisher JP, Mohiuddin M, Zhang LG. 3D bioprinting for cardiovascular regeneration and pharmacology. Adv Drug Deliv Rev 2018; 132:252-269. [PMID: 30053441 PMCID: PMC6226324 DOI: 10.1016/j.addr.2018.07.014] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 06/22/2018] [Accepted: 07/20/2018] [Indexed: 12/18/2022]
Abstract
Cardiovascular disease (CVD) is a major cause of morbidity and mortality worldwide. Compared to traditional therapeutic strategies, three-dimensional (3D) bioprinting is one of the most advanced techniques for creating complicated cardiovascular implants with biomimetic features, which are capable of recapitulating both the native physiochemical and biomechanical characteristics of the cardiovascular system. The present review provides an overview of the cardiovascular system, as well as describes the principles of, and recent advances in, 3D bioprinting cardiovascular tissues and models. Moreover, this review will focus on the applications of 3D bioprinting technology in cardiovascular repair/regeneration and pharmacological modeling, further discussing current challenges and perspectives.
Collapse
Affiliation(s)
- Haitao Cui
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC 20052, USA
| | - Shida Miao
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC 20052, USA
| | - Timothy Esworthy
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC 20052, USA
| | - Xuan Zhou
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC 20052, USA
| | - Se-Jun Lee
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC 20052, USA
| | - Chengyu Liu
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Zu-Xi Yu
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - John P Fisher
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA; Center for Engineering Complex Tissues, University of Maryland, College Park, MD 20742, USA
| | | | - Lijie Grace Zhang
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC 20052, USA; Department of Electrical and Computer Engineering, The George Washington University, Washington, DC 20052, USA; Department of Biomedical Engineering, The George Washington University, Washington, DC 20052, USA; Department of Medicine, The George Washington University, Washington, DC 20052, USA.
| |
Collapse
|
15
|
van Rhijn-Brouwer FCC, Gremmels H, Fledderus JO, Verhaar MC. Mesenchymal Stromal Cell Characteristics and Regenerative Potential in Cardiovascular Disease: Implications for Cellular Therapy. Cell Transplant 2018; 27:765-785. [PMID: 29895169 PMCID: PMC6047272 DOI: 10.1177/0963689717738257] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Administration of mesenchymal stromal cells (MSCs) is a promising strategy to treat cardiovascular disease (CVD). As progenitor cells may be negatively affected by both age and comorbidity, characterization of MSC function is important to guide decisions regarding use of allogeneic or autologous cells. Definitive answers on which factors affect MSC function can also aid in selecting which MSC donors would yield the most therapeutically efficacious MSCs. Here we provide a narrative review of MSC function in CVD based on a systematic search. A total of 41 studies examining CVD-related MSC (dys)function were identified. These data show that MSC characteristics and regenerative potential are often affected by CVD. However, studies presented conflicting results, and directed assessment of MSC parameters relevant to regenerative medicine applications was lacking in many studies. The predictive ability of in vitro assays for in vivo efficacy was rarely assessed. There was no correlation between quality of study reporting and study findings. Age mismatch was also not associated with study findings or effect size. Future research should focus on assays that assess regenerative potential in MSCs and parameters that relate to clinical success.
Collapse
Affiliation(s)
- F C C van Rhijn-Brouwer
- 1 Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, The Netherlands
| | - H Gremmels
- 1 Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, The Netherlands
| | - J O Fledderus
- 1 Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, The Netherlands
| | - M C Verhaar
- 1 Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
16
|
Sondermeijer HP, Witkowski P, Seki T, van der Laarse A, Itescu S, Hardy MA. RGDfK-Peptide Modified Alginate Scaffold for Cell Transplantation and Cardiac Neovascularization. Tissue Eng Part A 2017; 24:740-751. [PMID: 28938862 DOI: 10.1089/ten.tea.2017.0221] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Cell implantation for tissue repair is a promising new therapeutic strategy. Although direct injection of cells into tissue is appealing, cell viability and retention are not very good. Cell engraftment and survival following implantation are dependent on a sufficient supply of oxygen and nutrients through functional microcirculation as well as a suitable local microenvironment for implanted cells. In this study, we describe the development of a porous, biocompatible, three-dimensional (3D) alginate scaffold covalently modified with the synthetic cyclic RGDfK (Arg-Gly-Asp-D-Phe-Lys) peptide. Cyclic RGDfK peptide is protease resistant, highly stable in aqueous solutions, and has high affinity for cellular integrins. Cyclic RGDfK-modified alginate scaffolds were generated using a novel silicone sheet sandwich technique in combination with freeze-gelation, resulting in highly porous nonimmunogenic scaffolds that promoted both human and rodent cell survival in vitro, and neoangiogenesis in vivo. Two months following implantation in abdominal rectus muscles in rats, cyclic RGDfK-modified scaffolds were fully populated by host cells, especially microvasculature without an overt immune response or fibrosis, whereas unmodified control scaffolds did not show cell ingrowth. Importantly, modified scaffolds that were seeded with human mesenchymal precursor cells and were patched to the epicardial surface of infarcted myocardium induced myocardial neoangiogenesis and significantly improved cardiac function. In summary, purified cyclic RGDfK peptide-modified 3D alginate scaffolds are biocompatible and nonimmunogenic, enhance cell viability, promote angiogenesis, and may be used as a means to deliver cells to myocardial infarct areas to improve neovascularization and cardiac function.
Collapse
Affiliation(s)
- Hugo P Sondermeijer
- 1 Department of Surgery, Columbia University Medical Center , New York, New York.,2 Department of Medicine, Columbia University Medical Center , New York, New York.,3 Department of Physiology, Maastricht University Medical Center , Maastricht, The Netherlands
| | - Piotr Witkowski
- 4 Section of Transplantation, Department of Surgery, University of Chicago , Chicago, Illinois
| | - Tetsunori Seki
- 1 Department of Surgery, Columbia University Medical Center , New York, New York.,2 Department of Medicine, Columbia University Medical Center , New York, New York
| | - Arnoud van der Laarse
- 5 Department of Cardiology and Clinical Chemistry and Laboratory Medicine, Leiden University Medical Center , Leiden, The Netherlands
| | - Silviu Itescu
- 1 Department of Surgery, Columbia University Medical Center , New York, New York.,2 Department of Medicine, Columbia University Medical Center , New York, New York.,6 Mesoblast Limited, Melbourne, Australia
| | - Mark A Hardy
- 1 Department of Surgery, Columbia University Medical Center , New York, New York
| |
Collapse
|
17
|
Rashedi I, Talele N, Wang XH, Hinz B, Radisic M, Keating A. Collagen scaffold enhances the regenerative properties of mesenchymal stromal cells. PLoS One 2017; 12:e0187348. [PMID: 29088264 PMCID: PMC5663483 DOI: 10.1371/journal.pone.0187348] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 10/18/2017] [Indexed: 12/31/2022] Open
Abstract
MSCs are widely applied to regenerate heart tissue in myocardial diseases but when grown in standard two-dimensional (2D) cultures exhibit limited potential for cardiac repair and develop fibrogenic features with increasing culture time. MSCs can undergo partial cardiomyogenic differentiation, which improves their cardiac repair capacity. When applied to collagen patches they may improve cardiac tissue regeneration but the mechanisms remain elusive. Here, we investigated the regenerative properties of MSCs grown in a collagen scaffold as a three-dimensional (3D) culture system, and performed functional analysis using an engineered heart tissue (EHT) model. We showed that the expression of cardiomyocyte-specific proteins by MSCs co-cultured with rat neonatal cardiomyocytes was increased in collagen patches versus conventional cultures. MSCs in 3D collagen patches were less fibrogenic, secreted more cardiotrophic factors, retained anti-apoptotic and immunomodulatory function, and responded less to TLR4 ligand lipopolysaccharide (LPS) stimulation. EHT analysis showed no effects by MSCs on cardiomyocyte function, whereas control dermal fibroblasts abrogated the beating of cardiac tissue constructs. We conclude that 3D collagen scaffold improves the cardioprotective effects of MSCs by enhancing the production of trophic factors and modifying their immune modulatory and fibrogenic phenotype. The improvement in myocardial function by MSCs after acquisition of a partial cardiac cell-like phenotype is not due to enhanced MSC contractility. A better understanding of the mechanisms of MSC-mediated tissue repair will help to further enhance the therapeutic potency of MSCs.
Collapse
Affiliation(s)
- Iran Rashedi
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Canada
- Cell Therapy Program, University Health Network, Toronto, Canada
| | - Nilesh Talele
- Laboratory of Tissue Repair and Regeneration, Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Toronto, Canada
| | - Xing-Hua Wang
- Cell Therapy Program, University Health Network, Toronto, Canada
- Arthritis Program, Krembil Research Institute, University Health Network, Toronto, Canada
| | - Boris Hinz
- Laboratory of Tissue Repair and Regeneration, Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Toronto, Canada
| | - Milica Radisic
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Canada
| | - Armand Keating
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Canada
- Cell Therapy Program, University Health Network, Toronto, Canada
- Arthritis Program, Krembil Research Institute, University Health Network, Toronto, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| |
Collapse
|
18
|
Moccia F, Lucariello A, Guerra G. TRPC3-mediated Ca 2+ signals as a promising strategy to boost therapeutic angiogenesis in failing hearts: The role of autologous endothelial colony forming cells. J Cell Physiol 2017; 233:3901-3917. [PMID: 28816358 DOI: 10.1002/jcp.26152] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 08/15/2017] [Indexed: 12/20/2022]
Abstract
Endothelial progenitor cells (EPCs) are a sub-population of bone marrow-derived mononuclear cells that are released in circulation to restore damaged endothelium during its physiological turnover or rescue blood perfusion after an ischemic insult. Additionally, they may be mobilized from perivascular niches located within larger arteries' wall in response to hypoxic conditions. For this reason, EPCs have been regarded as an effective tool to promote revascularization and functional recovery of ischemic hearts, but clinical application failed to exploit the full potential of patients-derived cells. Indeed, the frequency and biological activity of EPCs are compromised in aging individuals or in subjects suffering from severe cardiovascular risk factors. Rejuvenating the reparative phenotype of autologous EPCs through a gene transfer approach has, therefore, been put forward as an alternative approach to enhance their therapeutic potential in cardiovascular patients. An increase in intracellular Ca2+ concentration constitutes a pivotal signal for the activation of the so-called endothelial colony forming cells (ECFCs), the only known truly endothelial EPC subset. Studies from our group showed that the Ca2+ toolkit differs between peripheral blood- and umbilical cord blood (UCB)-derived ECFCs. In the present article, we first discuss how VEGF uses repetitive Ca2+ spikes to regulate angiogenesis in ECFCs and outline how VEGF-induced intracellular Ca2+ oscillations differ between the two ECFC subtypes. We then hypothesize about the possibility to rejuvenate the biological activity of autologous ECFCs by transfecting the cell with the Ca2+ -permeable channel Transient Receptor Potential Canonical 3, which selectively drives the Ca2+ response to VEGF in UCB-derived ECFCs.
Collapse
Affiliation(s)
- Francesco Moccia
- Laboratory of General Physiology, Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy
| | - Angela Lucariello
- Department of Mental and Physical Health and Preventive Medicine, Section of Human Anatomy, Universy of Campania "L. Vanvitelli", Naples, Italy
| | - Germano Guerra
- Department of Medicine and Health Sciences "Vincenzo Tiberio", University of Molise, Campobasso, Italy
| |
Collapse
|
19
|
Ni X, Ou C, Guo J, Liu B, Zhang J, Wu Z, Li H, Chen M. Lentiviral vector-mediated co-overexpression of VEGF and Bcl-2 improves mesenchymal stem cell survival and enhances paracrine effects in vitro. Int J Mol Med 2017. [PMID: 28627637 PMCID: PMC5505017 DOI: 10.3892/ijmm.2017.3019] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stem cell (MSC) transplantation has emerged as a promising therapy for ischemic heart disease; however, the low survival rate of transplanted cells limits their therapeutic efficacy. The aim of this study was to investigate whether the dual genetic modification of vascular endothelial growth factor (VEGF) and B-cell lymphoma-2 (Bcl-2) confers a higher expression level of the target genes, better survival and a stronger paracrine effect in MSCs in an adverse environment than the modification of the individual genes. For this purpse, a lentiviral vector was constructed by using a self-cleaving T2A peptide sequence to link and achieve the co-overexpression of VEGF and Bcl-2. Rat MSCs were transfected to obtain cell lines that exhibited a stable overexpression. An in vitro model of oxygen glucose deprivation (OGD) was applied to mimic the ischemic microenvironment, and cell apoptosis, autophagy and the paracrine effects were then determined. Compared with the MSCs in which individual genes were modified and the control MSCs, the MSCs which were subjected to dual genetic modification had a higher expression level of the target genes, a more rapid proliferation, reduced apoptosis, decreased autophagy and an enhanced paracrine effect. Furthermore, the suppression of autophagy was found to contribute to the inhibition of apoptosis in this in vitro OGD model. On the whole, these data indicate that the co-overexpression of VEGF and Bcl-2 protects MSCs in an ischemic environment by inhibiting apoptosis, suppressing autophagy and enhancing the paracrine effects.
Collapse
Affiliation(s)
- Xiaobin Ni
- Department of Cardiology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong 510280, P.R. China
| | - Caiwen Ou
- Department of Cardiology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong 510280, P.R. China
| | - Jingbin Guo
- Department of Cardiology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong 510280, P.R. China
| | - Bei Liu
- Department of Cardiology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong 510280, P.R. China
| | - Jianwu Zhang
- Department of Cardiology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong 510280, P.R. China
| | - Zhiye Wu
- Department of Cardiology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong 510280, P.R. China
| | - Hekai Li
- Department of Cardiology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong 510280, P.R. China
| | - Minsheng Chen
- Department of Cardiology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong 510280, P.R. China
| |
Collapse
|
20
|
Skorska A, Müller P, Gaebel R, Große J, Lemcke H, Lux CA, Bastian M, Hausburg F, Zarniko N, Bubritzki S, Ruch U, Tiedemann G, David R, Steinhoff G. GMP-conformant on-site manufacturing of a CD133 + stem cell product for cardiovascular regeneration. Stem Cell Res Ther 2017; 8:33. [PMID: 28187777 PMCID: PMC5303262 DOI: 10.1186/s13287-016-0467-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 12/12/2016] [Accepted: 12/23/2016] [Indexed: 01/23/2023] Open
Abstract
Background CD133+ stem cells represent a promising subpopulation for innovative cell-based therapies in cardiovascular regeneration. Several clinical trials have shown remarkable beneficial effects following their intramyocardial transplantation. Yet, the purification of CD133+ stem cells is typically performed in centralized clean room facilities using semi-automatic manufacturing processes based on magnetic cell sorting (MACS®). However, this requires time-consuming and cost-intensive logistics. Methods CD133+ stem cells were purified from patient-derived sternal bone marrow using the recently developed automatic CliniMACS Prodigy® BM-133 System (Prodigy). The entire manufacturing process, as well as the subsequent quality control of the final cell product (CP), were realized on-site and in compliance with EU guidelines for Good Manufacturing Practice. The biological activity of automatically isolated CD133+ cells was evaluated and compared to manually isolated CD133+ cells via functional assays as well as immunofluorescence microscopy. In addition, the regenerative potential of purified stem cells was assessed 3 weeks after transplantation in immunodeficient mice which had been subjected to experimental myocardial infarction. Results We established for the first time an on-site manufacturing procedure for stem CPs intended for the treatment of ischemic heart diseases using an automatized system. On average, 0.88 × 106 viable CD133+ cells with a mean log10 depletion of 3.23 ± 0.19 of non-target cells were isolated. Furthermore, we demonstrated that these automatically isolated cells bear proliferation and differentiation capacities comparable to manually isolated cells in vitro. Moreover, the automatically generated CP shows equal cardiac regeneration potential in vivo. Conclusions Our results indicate that the Prodigy is a powerful system for automatic manufacturing of a CD133+ CP within few hours. Compared to conventional manufacturing processes, future clinical application of this system offers multiple benefits including stable CP quality and on-site purification under reduced clean room requirements. This will allow saving of time, reduced logistics and diminished costs. Electronic supplementary material The online version of this article (doi:10.1186/s13287-016-0467-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Anna Skorska
- Reference and Translation Center for Cardiac Stem Cell Therapy (RTC), Department of Cardiac Surgery, Rostock University Medical Center, Schillingallee 68, Rostock, 18057, Germany.,Department Life, Light and Matter of the Interdisciplinary Faculty at Rostock University, Albert-Einstein Straße 25, Rostock, 18059, Germany
| | - Paula Müller
- Reference and Translation Center for Cardiac Stem Cell Therapy (RTC), Department of Cardiac Surgery, Rostock University Medical Center, Schillingallee 68, Rostock, 18057, Germany
| | - Ralf Gaebel
- Reference and Translation Center for Cardiac Stem Cell Therapy (RTC), Department of Cardiac Surgery, Rostock University Medical Center, Schillingallee 68, Rostock, 18057, Germany
| | - Jana Große
- Reference and Translation Center for Cardiac Stem Cell Therapy (RTC), Department of Cardiac Surgery, Rostock University Medical Center, Schillingallee 68, Rostock, 18057, Germany
| | - Heiko Lemcke
- Reference and Translation Center for Cardiac Stem Cell Therapy (RTC), Department of Cardiac Surgery, Rostock University Medical Center, Schillingallee 68, Rostock, 18057, Germany.,Department Life, Light and Matter of the Interdisciplinary Faculty at Rostock University, Albert-Einstein Straße 25, Rostock, 18059, Germany
| | - Cornelia A Lux
- Reference and Translation Center for Cardiac Stem Cell Therapy (RTC), Department of Cardiac Surgery, Rostock University Medical Center, Schillingallee 68, Rostock, 18057, Germany
| | - Manuela Bastian
- Institute for Clinical Chemistry and Laboratory Medicine (ILAB), Rostock University Medical Center, Ernst-Heydemann-Straße 6, Rostock, 18057, Germany
| | - Frauke Hausburg
- Reference and Translation Center for Cardiac Stem Cell Therapy (RTC), Department of Cardiac Surgery, Rostock University Medical Center, Schillingallee 68, Rostock, 18057, Germany
| | - Nicole Zarniko
- Reference and Translation Center for Cardiac Stem Cell Therapy (RTC), Department of Cardiac Surgery, Rostock University Medical Center, Schillingallee 68, Rostock, 18057, Germany
| | - Sandra Bubritzki
- Department of Cardiac Surgery, Rostock University Medical Center, Schillingallee 35, Rostock, 18057, Germany
| | - Ulrike Ruch
- Reference and Translation Center for Cardiac Stem Cell Therapy (RTC), Department of Cardiac Surgery, Rostock University Medical Center, Schillingallee 68, Rostock, 18057, Germany
| | - Gudrun Tiedemann
- Reference and Translation Center for Cardiac Stem Cell Therapy (RTC), Department of Cardiac Surgery, Rostock University Medical Center, Schillingallee 68, Rostock, 18057, Germany
| | - Robert David
- Reference and Translation Center for Cardiac Stem Cell Therapy (RTC), Department of Cardiac Surgery, Rostock University Medical Center, Schillingallee 68, Rostock, 18057, Germany.,Department Life, Light and Matter of the Interdisciplinary Faculty at Rostock University, Albert-Einstein Straße 25, Rostock, 18059, Germany
| | - Gustav Steinhoff
- Department Life, Light and Matter of the Interdisciplinary Faculty at Rostock University, Albert-Einstein Straße 25, Rostock, 18059, Germany. .,Department of Cardiac Surgery, Rostock University Medical Center, Schillingallee 35, Rostock, 18057, Germany.
| |
Collapse
|
21
|
Yao Y, Ma C, Deng H, Liu Q, Cao W, Gui R, Feng T, Yi M. Dynamics and robustness of the cardiac progenitor cell induced pluripotent stem cell network during cell phenotypes transition. IET Syst Biol 2017; 11:1-7. [DOI: 10.1049/iet-syb.2015.0051] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Affiliation(s)
- Yuangen Yao
- Department of Physics, College of ScienceHuazhong Agricultural UniversityWuhanHubeiPeople's Republic of China
| | - Chengzhang Ma
- Department of Physics, College of ScienceHuazhong Agricultural UniversityWuhanHubeiPeople's Republic of China
| | - Haiyou Deng
- Department of Physics, College of ScienceHuazhong Agricultural UniversityWuhanHubeiPeople's Republic of China
| | - Quan Liu
- Department of Physics, College of ScienceHuazhong Agricultural UniversityWuhanHubeiPeople's Republic of China
| | - Wei Cao
- Department of Physics, College of ScienceHuazhong Agricultural UniversityWuhanHubeiPeople's Republic of China
| | - Rong Gui
- Department of Physics, College of ScienceHuazhong Agricultural UniversityWuhanHubeiPeople's Republic of China
| | - Tianquan Feng
- School of Teachers’ EducationNanjing Normal UniversityNanjingPeople's Republic of China
| | - Ming Yi
- Department of Physics, College of ScienceHuazhong Agricultural UniversityWuhanHubeiPeople's Republic of China
| |
Collapse
|
22
|
Wang Z, Wang L, Su X, Pu J, Jiang M, He B. Rational transplant timing and dose of mesenchymal stromal cells in patients with acute myocardial infarction: a meta-analysis of randomized controlled trials. Stem Cell Res Ther 2017; 8:21. [PMID: 28129790 PMCID: PMC5273801 DOI: 10.1186/s13287-016-0450-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 11/23/2016] [Accepted: 12/03/2016] [Indexed: 02/08/2023] Open
Abstract
Background Mesenchymal stromal cells (MSCs) are considered to have a modest benefit on left ventricular ejection fraction (LVEF) in patients with acute myocardial infarction (AMI). However, the optimal injection timing and dose needed to induce beneficial cardiac effects are unknown. The purpose of this meta-analysis was to identify an optimal MSC transplantation time and cell dose in the setting of AMI to achieve better clinical endpoints. Methods The authors conducted a systematic review of studies published up to June 2016 by searching PubMed, EMBASE, MEDLINE, and the Cochrane Library for relevant randomized controlled trials (RCTs). Results Eight prospective RCTs with 449 participants were included. The pooled results revealed that patients in the MSC group had no significant increase in LVEF from baseline compared with that in the control group (1.47% increase, 95% confidence interval (CI) −4.5 to 7.45; I2 = 97%; P > 0.05). A subgroup analysis was conducted to explore the results according to differences in transplantation time and dose of MSCs injected. For transplantation timing, the LVEF of patients accepting a MSC infusion within 1 week was significantly increased by 3.22% (95% CI 1.31 to 5.14; I2 = 0; P < 0.05), but this increase was insignificant in the group that accepted an MSC infusion after 1 week (−0.35% in LVEF, 95% CI −10.22 to 9.52; I2 = 99%; P > 0.05). Furthermore, patients accepting a MSC dose of less than 107 cells exhibited an LVEF improvement of 2.25% compared with the control (95% CI 0.56 to 3.93; I2 = 9%; P < 0.05). Combining transplantation time and cell dose indicates that a significant improvement of LVEF of 3.32% was achieved in the group of patients injected with <107 MSCs within 1 week (95% CI 1.14 to 5.50; I2 = 0; P = 0.003). Conclusions Transplantation time and injected cell dose are key factors that determine the therapeutic effect of stem cell therapy. The injection of no more than 107 MSCs within 1 week for AMI after percutaneous coronary intervention might improve left ventricular systolic function. Further studies on the mechanism and the effectiveness of MSCs for long-term therapy are warranted.
Collapse
Affiliation(s)
- Zi Wang
- Department of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, 160 Pujian Road, Shanghai, 200127, China
| | - Lingling Wang
- Department of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, 160 Pujian Road, Shanghai, 200127, China
| | - Xuan Su
- Department of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, 160 Pujian Road, Shanghai, 200127, China
| | - Jun Pu
- Department of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, 160 Pujian Road, Shanghai, 200127, China
| | - Meng Jiang
- Department of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, 160 Pujian Road, Shanghai, 200127, China.
| | - Ben He
- Department of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, 160 Pujian Road, Shanghai, 200127, China.
| |
Collapse
|
23
|
Fujita M, Otani H, Iwasaki M, Yoshioka K, Shimazu T, Shiojima I, Tabata Y. Antagomir-92a impregnated gelatin hydrogel microsphere sheet enhances cardiac regeneration after myocardial infarction in rats. Regen Ther 2016; 5:9-16. [PMID: 31245495 PMCID: PMC6581790 DOI: 10.1016/j.reth.2016.04.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 04/04/2016] [Accepted: 04/23/2016] [Indexed: 01/07/2023] Open
Abstract
Introduction We investigated whether attachment of gelatin hydrogel microsphere (GHM) sheet impregnated with antagomir-92a on the infarcted heart promotes angiogenesis and cardiomyogenesis, and improves cardiac function after myocardial infarction (MI) in rats. Methods GHM sheet impregnated with antagomir-92a, its scramble sequence antagomir-control sheet or the sheet alone was attached on the area at risk of MI after the left anterior descending coronary artery ligation. Bromodeoxyuridine (BrdU) was included in the sheet to trace proliferating cells. Results The antagomir-92a sheet significantly increased capillary density in the infarct border zone 14 days after MI compared to the antagomir-control sheet or the sheet alone, associated with an increase in endothelial cells incorporated with BrdU. The antagomir-92a sheet significantly increased cardiac stem cells incorporated with BrdU 3 days after MI in the infarct border zone. This was associated with an increase in cardiomyocytes incorporated with BrdU 14 days after MI. Scar area was significantly reduced by the antagomir-92a sheet compared to the antagomir-control sheet or the sheet alone (12.8 ± 1.3 vs 25.2 ± 2.2, 24.0 ± 1.7% LV area, respectively) 14 days after MI. LV dilatation was inhibited, and LV wall motion was improved 14 days after MI in rats with the antagomir-92a sheet compared to the antagomir-control sheet or the sheet alone. Conclusions These results suggest that attachment of the GHM sheet impregnated with antagomir-92a on the area at risk of MI enhances angiogenesis, promotes cardiomyogenesis, and ameliorates LV function.
Collapse
Key Words
- Angiogenesis
- BrdU, bromodeoxyuridine
- DAPI, 4′,6-diamidino-2-phenylindole
- DDA, double-distilled water
- FGF, fibroblast growth factor
- FS, fractional shortening
- GA, glutaraldehyde
- GHM, gelatin hydrogel microsphere
- Gelatin hydrogel microsphere
- Heart regeneration
- LAD, left anterior descending
- LV, left ventricular
- LVDd, left ventricular end-diastolic diameter
- LVDs, left ventricular end-systolic diameter
- MI, myocardial infarction
- MSCs, mesenchymal stem cells
- MicroRNA-92a
- VEGF, vascular endothelial growth factor
- miRs, microRNAs
Collapse
Affiliation(s)
- Masanori Fujita
- Department of Medicine II, Kansai Medical University, Moriguchi City, Japan
| | - Hajime Otani
- Department of Medicine II, Kansai Medical University, Moriguchi City, Japan
| | - Masayoshi Iwasaki
- Department of Medicine II, Kansai Medical University, Moriguchi City, Japan
| | - Kei Yoshioka
- Department of Medicine II, Kansai Medical University, Moriguchi City, Japan
| | - Takayuki Shimazu
- Department of Medicine II, Kansai Medical University, Moriguchi City, Japan
| | - Ichiro Shiojima
- Department of Medicine II, Kansai Medical University, Moriguchi City, Japan
| | - Yasuhiko Tabata
- Department of Biomaterials, Institute for Frontier Medical Sciences, Kyoto University, Kyoto City, Japan
| |
Collapse
|
24
|
Abdelwahid E, Kalvelyte A, Stulpinas A, de Carvalho KAT, Guarita-Souza LC, Foldes G. Stem cell death and survival in heart regeneration and repair. Apoptosis 2016; 21:252-68. [PMID: 26687129 PMCID: PMC5200890 DOI: 10.1007/s10495-015-1203-4] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cardiovascular diseases are major causes of mortality and morbidity. Cardiomyocyte apoptosis disrupts cardiac function and leads to cardiac decompensation and terminal heart failure. Delineating the regulatory signaling pathways that orchestrate cell survival in the heart has significant therapeutic implications. Cardiac tissue has limited capacity to regenerate and repair. Stem cell therapy is a successful approach for repairing and regenerating ischemic cardiac tissue; however, transplanted cells display very high death percentage, a problem that affects success of tissue regeneration. Stem cells display multipotency or pluripotency and undergo self-renewal, however these events are negatively influenced by upregulation of cell death machinery that induces the significant decrease in survival and differentiation signals upon cardiovascular injury. While efforts to identify cell types and molecular pathways that promote cardiac tissue regeneration have been productive, studies that focus on blocking the extensive cell death after transplantation are limited. The control of cell death includes multiple networks rather than one crucial pathway, which underlies the challenge of identifying the interaction between various cellular and biochemical components. This review is aimed at exploiting the molecular mechanisms by which stem cells resist death signals to develop into mature and healthy cardiac cells. Specifically, we focus on a number of factors that control death and survival of stem cells upon transplantation and ultimately affect cardiac regeneration. We also discuss potential survival enhancing strategies and how they could be meaningful in the design of targeted therapies that improve cardiac function.
Collapse
Affiliation(s)
- Eltyeb Abdelwahid
- Feinberg School of Medicine, Feinberg Cardiovascular Research Institute, Northwestern University, 303 E. Chicago Ave., Tarry 14-725, Chicago, IL, 60611, USA.
| | - Audrone Kalvelyte
- Department of Molecular Cell Biology, Vilnius University Institute of Biochemistry, Vilnius, Lithuania
| | - Aurimas Stulpinas
- Department of Molecular Cell Biology, Vilnius University Institute of Biochemistry, Vilnius, Lithuania
| | - Katherine Athayde Teixeira de Carvalho
- Cell Therapy and Biotechnology in Regenerative Medicine Research Group, Pequeno Príncipe Faculty, Pelé Pequeno Príncipe Institute, Curitiba, Paraná, 80250-200, Brazil
| | - Luiz Cesar Guarita-Souza
- Experimental Laboratory of Institute of Biological and Health Sciences of Pontifical Catholic University of Parana, Curitiba, Paraná, 80215-901, Brazil
| | - Gabor Foldes
- National Heart and Lung Institute, Imperial College London, Imperial Centre for Experimental and Translational Medicine, Du Cane Road, London, W12 0NN, UK
| |
Collapse
|
25
|
Saraswati S, Guo Y, Atkinson J, Young PP. Prolonged hypoxia induces monocarboxylate transporter-4 expression in mesenchymal stem cells resulting in a secretome that is deleterious to cardiovascular repair. Stem Cells 2016; 33:1333-44. [PMID: 25537659 DOI: 10.1002/stem.1935] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 11/19/2014] [Accepted: 12/04/2014] [Indexed: 01/06/2023]
Abstract
MSCs encounter extended hypoxia in the wound microenvironment yet little is known about their adaptability to this prolonged hypoxic milieu. In this study, we evaluated the cellular and molecular response of MSCs in extended hypoxia (1% O2 ) versus normoxia (20% O2 ) culture. Prolonged hypoxia induced a switch toward anaerobic glycolysis transcriptome and a dramatic increase in the transcript and protein levels of monocarboxylate transporter-4 (MCT4) in MSCs. To clarify the impact of MCT4 upregulation on MSC biology, we generated MSCs which stably overexpressed MCT4 (MCT4-MSCs) at levels similar to wild-type MSCs following prolonged hypoxic culture. Consistent with its role to efflux lactate to maintain intracellular pH, MCT4-MSCs demonstrated reduced intracellular lactate. To explore the in vivo significance of MCT4 upregulation in MSC therapy, mice were injected intramuscularly following MI with control (GFP)-MSCs, MCT4-MSCs, or MSCs in which MCT4 expression was stably silenced (KDMCT4-MSCs). Overexpression of MCT4 worsened cardiac remodeling and cardiac function whereas silencing of MCT4 significantly improved cardiac function. MCT4-overexpressing MSC secretome induced reactive oxygen species-mediated cardiomyocyte but not fibroblast apoptosis in vitro and in vivo; lactate alone recapitulated the effects of the MCT4-MSC secretome. Our findings suggest that lactate extruded by MCT4-overexpressing MSCs preferentially induced cell death in cardiomyocytes but not in fibroblasts, leading ultimately to a decline in cardiac function and increased scar size. A better understanding of stem cells response to prolonged hypoxic stress and the resultant stem cell-myocyte/fibroblast cross-talk is necessary to optimize MSC-based therapy for cardiac regeneration.
Collapse
Affiliation(s)
- Sarika Saraswati
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, Tennessee, USA; The Department of Veterans Affairs Medical Center, Vanderbilt University, Nashville, Tennessee, USA
| | | | | | | |
Collapse
|
26
|
Pharmacological Therapy in the Heart as an Alternative to Cellular Therapy: A Place for the Brain Natriuretic Peptide? Stem Cells Int 2016; 2016:5961342. [PMID: 26880973 PMCID: PMC4735943 DOI: 10.1155/2016/5961342] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 09/08/2015] [Accepted: 10/08/2015] [Indexed: 02/08/2023] Open
Abstract
The discovery that stem cells isolated from different organs have the ability to differentiate into mature beating cardiomyocytes has fostered considerable interest in developing cellular regenerative therapies to treat cardiac diseases associated with the loss of viable myocardium. Clinical studies evaluating the potential of stem cells (from heart, blood, bone marrow, skeletal muscle, and fat) to regenerate the myocardium and improve its functional status indicated that although the method appeared generally safe, its overall efficacy has remained modest. Several issues raised by these studies were notably related to the nature and number of injected cells, as well as the route and timing of their administration, to cite only a few. Besides the direct administration of cardiac precursor cells, a distinct approach to cardiac regeneration could be based upon the stimulation of the heart's natural ability to regenerate, using pharmacological approaches. Indeed, differentiation and/or proliferation of cardiac precursor cells is controlled by various endogenous mediators, such as growth factors and cytokines, which could thus be used as pharmacological agents to promote regeneration. To illustrate such approach, we present recent results showing that the exogenous administration of the natriuretic peptide BNP triggers “endogenous” cardiac regeneration, following experimental myocardial infarction.
Collapse
|