1
|
Shahbazi R, Lipson P, Gottimukkala KSV, Lane DD, Adair JE. CRISPR Gene Editing of Hematopoietic Stem and Progenitor Cells. Methods Mol Biol 2023; 2567:39-62. [PMID: 36255694 DOI: 10.1007/978-1-0716-2679-5_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Genetic editing of hematopoietic stem and progenitor cells can be employed to understand gene-function relationships underlying hematopoietic cell biology, leading to new therapeutic approaches to treat disease. The ability to collect, purify, and manipulate primary cells outside the body permits testing of many different gene editing approaches. RNA-guided nucleases, such as CRISPR, have revolutionized gene editing based simply on Watson-Crick base-pairing, employed to direct activity to specific genomic loci. Given the ease and affordability of synthetic, custom RNA guides, testing of precision edits or large random pools in high-throughput screening studies is now widely available. With the ever-growing number of CRISPR nucleases being discovered or engineered, researchers now have a plethora of options for directed genomic change, including single base edits, nicks or double-stranded DNA cuts with blunt or staggered ends, as well as the ability to target CRISPR to other cellular oligonucleotides such as RNA or mitochondrial DNA. Except for single base editing strategies, precise rewriting of larger segments of the genetic code requires delivery of an additional component, templated DNA oligonucleotide(s) encoding the desired changes flanked by homologous sequences that permit recombination at or near the site of CRISPR activity. Altogether, the ever-growing CRISPR gene editing toolkit is an invaluable resource. This chapter outlines available technologies and the strategies for applying CRISPR-based editing in hematopoietic stem and progenitor cells.
Collapse
Affiliation(s)
| | | | | | | | - Jennifer E Adair
- Fred Hutchinson Cancer Center, Seattle, WA, USA.
- University of Washington, Seattle, WA, USA.
| |
Collapse
|
2
|
Abstract
The earliest conceptual history of gene therapy began with the recognition of DNA as the transforming substance capable of changing the phenotypic character of a bacterium and then as the carrier of the genomic code. Early studies of oncogenic viruses that could insert into the mammalian genome led to the concept that these same viruses might be engineered to carry new genetic material into mammalian cells, including human hematopoietic stem cells (HSC). In addition to properly engineered vectors capable of efficient safe transduction of HSC, successful gene therapy required the development of efficient materials, methods, and equipment to procure, purify, and culture HSC. Increased understanding of the preparative conditioning of patients was needed to optimize the engraftment of genetically modified HSC. Testing concepts in pivotal clinical trials to assess the efficacy and determine the cause of adverse events has advanced the efficiency and safety of gene therapy. This article is a historical overview of the separate threads of discovery that joined together to comprise our current state of gene therapy targeting HSC.
Collapse
|
3
|
Comparative Mutational Profiling of Hematopoietic Progenitor Cells and Circulating Endothelial Cells (CECs) in Patients with Primary Myelofibrosis. Cells 2021; 10:cells10102764. [PMID: 34685741 PMCID: PMC8534986 DOI: 10.3390/cells10102764] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 10/06/2021] [Accepted: 10/07/2021] [Indexed: 01/08/2023] Open
Abstract
A role of endothelial cells (ECs) in Primary Myelofibrosis (PMF) was supposed since JAK2 mutation was found in endothelial precursor cells (EPCs) and in ECs captured by laser microdissection. By Cell Search method, the circulating endothelial cells (CECs) from 14 PMF patients and 5 healthy controls have been isolated and compared by NGS with CD34+Hematopoietic stem and progenitors cells (HSPCs) for panel of 54 myeloid-associated mutations. PMF patients had higher levels of CECs. No mutation was found in HSPCs and CECs from controls, while CECs from PMF patients presented several somatic mutations. 72% of evaluable patients shared at least one mutation between HSPCs and CECs. 2 patients shared the JAK2 mutation, together with ABL1, IDH1, TET2 and ASXL1, KMT2A, respectively. 6 out of 8 shared only NON MPN-driver mutations: TET2 and NOTCH1 in one case; individual paired mutations in TP53, KIT, SRSF2, NOTCH1 and WT1, in the other cases. In conclusion, 70% of PMF patients shared at least one mutation between HSPCs and CECs. These latter harbored several myeloid-associated mutations, besides JAK2V617F mutation. Our results support a primary involvement of EC in PMF and provide a new methodological approach for further studies exploring the role of the “neoplastic” vascular niche.
Collapse
|
4
|
Yang RZ, Xu WN, Zheng HL, Zheng XF, Li B, Jiang LS, Jiang SD. Exosomes derived from vascular endothelial cells antagonize glucocorticoid-induced osteoporosis by inhibiting ferritinophagy with resultant limited ferroptosis of osteoblasts. J Cell Physiol 2021; 236:6691-6705. [PMID: 33590921 DOI: 10.1002/jcp.30331] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 02/01/2021] [Accepted: 02/03/2021] [Indexed: 02/06/2023]
Abstract
High dose and long-term steroid treatment can alter antioxidative ability and decrease the viability and function of osteoblasts, leading to osteoporosis and osteonecrosis. Ferroptosis, a new type of cell death characterized by excessive lipid peroxidation due to the downregulation of GPX4 and system Xc- , is involved in glucocorticoid-induced osteoporosis. Endothelial cell-secreted exosomes (EC-Exos) are important mediators of cell-to-cell communication and are involved in many physiological and pathological processes. However, the effect of EC-Exos on osteoblasts exposed to glucocorticoids has not been reported. Here, we explored the role of EC-Exos in glucocorticoid-induced osteoporosis. In vivo and in vitro experiments indicated that EC-Exos reversed the glucocorticoid-induced osteogenic inhibition of osteoblasts by inhibiting ferritinophagy-dependent ferroptosis.
Collapse
Affiliation(s)
- Run-Ze Yang
- Department of Clinic of Spine Center, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wen-Ning Xu
- Department of Clinic of Spine Center, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huo-Liang Zheng
- Department of Clinic of Spine Center, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xin-Feng Zheng
- Department of Clinic of Spine Center, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bo Li
- Department of Clinic of Spine Center, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lei-Sheng Jiang
- Department of Clinic of Spine Center, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Sheng-Dan Jiang
- Department of Clinic of Spine Center, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
5
|
Avecilla ST, Boulad F, Yazdanbakhsh K, Sadelain M, Shi PA. Process and procedural adjustments to improve CD34+ collection efficiency of hematopoietic progenitor cell collections in sickle cell disease. Transfusion 2021; 61:2775-2781. [PMID: 34160085 DOI: 10.1111/trf.16551] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 05/24/2021] [Indexed: 12/18/2022]
Abstract
BACKGROUND Adequate CD34+ collection efficiency (CE) is critical to achieve target CD34+ cell doses in hematopoietic progenitor cell (HPC) collections. Autologous HPC collection in sickle cell disease (SCD) is associated with unstable collection interfaces and low CD34+ CEs. We hypothesized that variables specific to SCD, activation of blood cells and elevated viscosity, might contribute to these issues and made adjustments to the collection process and procedure to address our hypothesis. STUDY DESIGN AND METHODS In two patients with SCD undergoing autologous HPC collection on our clinical trial (NCT02193191), we therefore implemented adjustments to the process and procedure in the following areas: proximity of RBC exchange to HPC collection, the type of anticoagulation, and the packing factor setting. RESULTS There was no collection interface instability. Our CD34+ CE1s were high at 70% and 51%, and granulocyte CE, platelet CE, and product granulocyte % were remarkably low. Product hematocrits were not as high as previously reported to be required to obtain adequate CEs. Interestingly, one HPC product showed a hemoglobin S (HbS) of 91% at the same time that the peripheral blood (PB) showed a HbS of 22%. DISCUSSION Adjustments to the HPC collection process and procedure were associated with adequate CD34+ CEs and low granulocyte and platelet contamination in HPC products from SCD patients. Given the discrepancy in the percentage of sickle RBCs in the product versus the PB, we hypothesize that CD34+ cells and RBCs may aggregate. Our interventions and hypothesis should be further investigated in larger studies.
Collapse
Affiliation(s)
- Scott T Avecilla
- Department of Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Farid Boulad
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Karina Yazdanbakhsh
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, New York, USA
| | - Michel Sadelain
- Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Patricia A Shi
- Lindsley F. Kimball Research Institute (NYBC), Sickle Cell Program, Division of Hematology, Albert Einstein College of Medicine, Bronx, New York, USA
| |
Collapse
|
6
|
Optimizing leukapheresis product yield and purity for blood cell-based gene and immune effector cell therapy. Curr Opin Hematol 2021; 27:415-422. [PMID: 32889828 DOI: 10.1097/moh.0000000000000611] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
PURPOSE OF REVIEW A critical common step for blood-based ex-vivo gene and immune effector cell (IEC) therapies is the collection of target cells for further processing and manufacturing, often accomplished through a leukapheresis procedure to collect mononuclear cells (MNCs). The purpose of this review is to describe strategies to optimize the apheresis product cell yield and purity for gene and IEC therapies. Relevant data from the conventional bone marrow transplant literature is described where applicable. RECENT FINDINGS Product yield is affected by three main factors: the peripheral blood concentration of the target cell, optimized by mobilizing agents, donor interventions or donor selection; the volume of peripheral blood processed, tailored to the desired product yield using prediction algorithms; and target cell collection efficiency, optimized by a variety of device and donor-specific considerations. Factors affecting product purity include characteristics of the donor, mobilizing agent, device, and device settings. SUMMARY Strategies to optimize product yield and purity for gene and IEC therapies are important to consider because of loss of target cell numbers or function with downstream steps and detrimental effects of nontarget cells on further manufacturing and patient outcome.
Collapse
|
7
|
Pham HP, Dormesy S, Wolfe K, Budhai A, Sachais BS, Shi PA. Potentially modifiable predictors of cell collection efficiencies and product characteristics of allogeneic hematopoietic progenitor cell collections. Transfusion 2021; 61:1518-1524. [PMID: 33713454 DOI: 10.1111/trf.16370] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/12/2021] [Accepted: 02/13/2021] [Indexed: 01/27/2023]
Abstract
BACKGROUND Hematopoietic progenitor cell (HPC) and immune effector cell (IEC) therapies often require high doses of mononuclear cells (MNCs), whether CD34+ cells, lymphocytes, or monocytes. Cells for IEC can be sourced from HPC products. We thus examined potentially modifiable variables affecting collection efficiencies (CEs) of MNC subsets in HPC collection and also of the typically undesired cell types of platelets, granulocytes, and red cells, which hinder downstream processing. Finally, we sought to confirm previously indeterminate studies of the effect of an adjusted collect flow rate (CFR) on CD34+ CE. STUDY DESIGN AND METHODS We performed univariate and multivariate regression analyses of all 135 National Marrow Donor Program (NMDP) HPC collections in 2019 and compared these fixed CFR procedures to previous NMDP collections using adjusted CFRs. RESULTS Target cell CEs decreased with increasing peripheral blood (PB) concentration and were associated with different cell type locations within the MNC layer. CEs of undesired cell types varied with standard procedural parameters (inlet flow rate, whole blood processed, etc.). Interestingly, some CEs increased with preapheresis hematocrit. Finally, adjusting the CFR by PB MNC count improved MNC CE but not CD34+ CE. CONCLUSION Correlation of target cell CEs with their PB concentration and different cell type locations by depth within the MNC layer indicates the importance of investigating the compensatory fine-tuning of procedure variables to improve CE. Correlation of CEs with PB hematocrit, and CFR adjustment by a modified PB MNC and/or PB CD34 algorithm should be further explored. Adjusting standard procedural parameters may reduce product contamination.
Collapse
Affiliation(s)
- Huy P Pham
- Be The Match Seatte Collection Center, National Marrow Donor Program, Seattle, Washington, USA
| | | | - Kurt Wolfe
- New York Blood Center, Clinical Services, New York, New York, USA
| | - Alexandra Budhai
- New York Blood Center, Clinical Services, New York, New York, USA
| | - Bruce S Sachais
- New York Blood Center, Clinical Services, New York, New York, USA
- New York Blood Center, Lindsley F. Kimball Research Institute, New York, New York, USA
| | - Patricia A Shi
- New York Blood Center, Clinical Services, New York, New York, USA
- New York Blood Center, Lindsley F. Kimball Research Institute, New York, New York, USA
| |
Collapse
|
8
|
Ramalingam S, Shah A. Stem Cell Therapy as a Treatment for Autoimmune Disease-Updates in Lupus, Scleroderma, and Multiple Sclerosis. Curr Allergy Asthma Rep 2021; 21:22. [PMID: 33759038 DOI: 10.1007/s11882-021-00996-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/08/2021] [Indexed: 12/29/2022]
Abstract
PURPOSE OF REVIEW Evidence for hematopoietic stem cell transplantation (HCT) in autoimmune disease has been building since the 1990s; however, many clinicians may not yet be aware of its applications to autoimmune disease. We review the basic tenets of HCT and evidence for autologous HCT in multiple sclerosis (MS), systemic sclerosis (SSc), and lupus with an emphasis on recent advanced phase trials. RECENT FINDINGS In MS, the phase 3 randomized MIST trial and the phase 2 randomized ASTIMS trial demonstrated the efficacy of autologous HCT in refractory MS over disease-modifying therapies and mitoxantrone, respectively. In SSc, the phase 3 randomized ASTIS trial and the phase 2 randomized SCOT trial demonstrated the efficacy of autologous HCT in advanced SSc compared to cyclophosphamide. The evidence for HCT in autoimmune diseases continues to grow, particularly in MS and SSc. In lupus, large, comparative trials are still needed. Across autoimmune diseases, questions that still remain to be answered include optimizing patient selection to limit TRM, the appropriate use of MAC, and the necessity for graft manipulation. Furthermore, collaboration between disease-specific and transplant physicians is imperative to expand the appropriate use of HCT in routine clinical practice.
Collapse
Affiliation(s)
- Sendhilnathan Ramalingam
- Division of Hematologic Malignancies and Cellular Therapy, Duke University School of Medicine, Durham, NC, USA
| | - Ankoor Shah
- Division of Rheumatology and Immunology, Duke University School of Medicine, Box 3874, Durham, NC, 27710, USA.
| |
Collapse
|
9
|
Mukherjee S, Reddy O, Panch S, Stroncek D. Establishment of a cell processing laboratory to support hematopoietic stem cell transplantation and chimeric antigen receptor (CAR)-T cell therapy. Transfus Apher Sci 2021; 60:103066. [PMID: 33472742 DOI: 10.1016/j.transci.2021.103066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Cell processing laboratories are an important part of cancer treatment centers. Cell processing laboratories began by supporting hematopoietic stem cell (HSC) transplantation programs. These laboratories adapted closed bag systems, centrifuges, sterile connecting devices and other equipment used in transfusion services/blood banks to remove red blood cells and plasma from marrow and peripheral blood stem cells products. The success of cellular cancer immunotherapies such as Chimeric Antigen Receptor (CAR) T-cells has increased the importance of cell processing laboratories. Since many of the diseases successfully treated by CAR T-cell therapy are also treated by HSC transplantation and since HSC transplantation teams are well suited to manage patients treated with CAR T-cells, many cell processing laboratories have begun to produce CAR T-cells. The methods that have been used to process HSCs have been modified for T-cell enrichment, culture, stimulation, transduction and expansion for CAR T-cell production. While processing laboratories are well suited to manufacture CAR T-cells and other cellular therapies, producing these therapies is challenging. The manufacture of cellular therapies requires specialized facilities which are costly to build and maintain. The supplies and reagents, especially vectors, can also be expensive. Finally, highly skilled staff are required. The use of automated equipment for cell production may reduce labor requirements and the cost of facilities. The steps used to produce CAR T-cells are reviewed, as well as various strategies for establishing a laboratory to manufacture these cells.
Collapse
Affiliation(s)
- Somnath Mukherjee
- Center for Cellular Engineering, Department of Transfusion Medicine, NIH Clinical Center, Bethesda, MD, USA; Department of Transfusion Medicine, All India Institute of Medical Sciences, Bhubaneswar, 751019, Odisha, India
| | - Opal Reddy
- Center for Cellular Engineering, Department of Transfusion Medicine, NIH Clinical Center, Bethesda, MD, USA
| | - Sandhya Panch
- Center for Cellular Engineering, Department of Transfusion Medicine, NIH Clinical Center, Bethesda, MD, USA
| | - David Stroncek
- Center for Cellular Engineering, Department of Transfusion Medicine, NIH Clinical Center, Bethesda, MD, USA.
| |
Collapse
|
10
|
Mesenchymal Stem/Progenitor Cells: The Prospect of Human Clinical Translation. Stem Cells Int 2020; 2020:8837654. [PMID: 33953753 PMCID: PMC8063852 DOI: 10.1155/2020/8837654] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/19/2020] [Accepted: 07/20/2020] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal stem/progenitor cells (MSCs) are key players in regenerative medicine, relying principally on their differentiation/regeneration potential, immunomodulatory properties, paracrine effects, and potent homing ability with minimal if any ethical concerns. Even though multiple preclinical and clinical studies have demonstrated remarkable properties for MSCs, the clinical applicability of MSC-based therapies is still questionable. Several challenges exist that critically hinder a successful clinical translation of MSC-based therapies, including but not limited to heterogeneity of their populations, variability in their quality and quantity, donor-related factors, discrepancies in protocols for isolation, in vitro expansion and premodification, and variability in methods of cell delivery, dosing, and cell homing. Alterations of MSC viability, proliferation, properties, and/or function are also affected by various drugs and chemicals. Moreover, significant safety concerns exist due to possible teratogenic/neoplastic potential and transmission of infectious diseases. Through the current review, we aim to highlight the major challenges facing MSCs' human clinical translation and shed light on the undergoing strategies to overcome them.
Collapse
|
11
|
Valid Presumption of Shiga Toxin-Mediated Damage of Developing Erythrocytes in EHEC-Associated Hemolytic Uremic Syndrome. Toxins (Basel) 2020; 12:toxins12060373. [PMID: 32512916 PMCID: PMC7354503 DOI: 10.3390/toxins12060373] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/02/2020] [Accepted: 06/03/2020] [Indexed: 02/06/2023] Open
Abstract
The global emergence of clinical diseases caused by enterohemorrhagic Escherichia coli (EHEC) is an issue of great concern. EHEC release Shiga toxins (Stxs) as their key virulence factors, and investigations on the cell-damaging mechanisms toward target cells are inevitable for the development of novel mitigation strategies. Stx-mediated hemolytic uremic syndrome (HUS), characterized by the triad of microangiopathic hemolytic anemia, thrombocytopenia, and acute renal injury, is the most severe outcome of an EHEC infection. Hemolytic anemia during HUS is defined as the loss of erythrocytes by mechanical disruption when passing through narrowed microvessels. The formation of thrombi in the microvasculature is considered an indirect effect of Stx-mediated injury mainly of the renal microvascular endothelial cells, resulting in obstructions of vessels. In this review, we summarize and discuss recent data providing evidence that HUS-associated hemolytic anemia may arise not only from intravascular rupture of erythrocytes, but also from the extravascular impairment of erythropoiesis, the development of red blood cells in the bone marrow, via direct Stx-mediated damage of maturing erythrocytes, leading to “non-hemolytic” anemia.
Collapse
|
12
|
Fontaine MJ, Selogie E, Stroncek D, McKenna D, Szczepiorkowski ZM, Takanashi M, Garritsen H, Girdlestone J, Reems JA. Variations in novel cellular therapy products manufacturing. Cytotherapy 2020; 22:337-342. [PMID: 32223996 DOI: 10.1016/j.jcyt.2020.01.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 01/26/2020] [Accepted: 01/27/2020] [Indexed: 11/19/2022]
Abstract
BACKGROUND AIMS At the frontier of transfusion medicine and transplantation, the field of cellular therapy is emerging. Most novel cellular therapy products are produced under investigational protocols with no clear standardization across cell processing centers. Thus, the purpose of this study was to uncover any variations in manufacturing practices for similar cellular therapy products across different cell processing laboratories worldwide. METHODS An exploratory survey that was designed to identify variations in manufacturing practices in novel cellular therapy products was sent to cell processing laboratory directors worldwide. The questionnaire focused on the manufacturing life cycle of different cell therapies (i.e., collection, purification, in vitro expansion, freezing and storage, and thawing and washing), as well as the level of regulations followed to process each product type. RESULTS The majority of the centers processed hematopoietic progenitor cells (HPCs) from peripheral blood (n = 18), bone marrow (n = 16) or cord blood (n = 19), making HPCs the most commonly processed cells. The next most commonly produced cellular therapies were lymphocytes (n = 19) followed by mesenchymal stromal cells (n = 14), dendritic cells (n = 9) and natural killer (NK) cells (n = 9). A minority of centers (<5) processed pancreatic islet cells (n = 4), neural cells (n = 3) and induced-pluripotent stem cells (n = 3). Thirty-two laboratories processed products under an investigational status, for either phase I/II (n = 27) or phase III (n = 17) clinical trials. If purification methods were used, these varied for the type of product processed and by institution. Environmental monitoring methods also varied by product type and institution. CONCLUSION This exploratory survey shows a wide variation in cellular therapy manufacturing practices across different cell processing laboratories. A better understanding of the effect of these variations on the quality of these cell-based therapies will be important to assess for further process evaluation and development.
Collapse
Affiliation(s)
- Magali J Fontaine
- University of Maryland School of Medicine, Baltimore, Maryland, USA; Biomedical Excellence for Safer Transfusion (BEST).
| | | | - David Stroncek
- Biomedical Excellence for Safer Transfusion (BEST); Center for Cellular Engineering, Department of Transfusion Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - David McKenna
- Biomedical Excellence for Safer Transfusion (BEST); Molecular and Cellular Therapeutics, University of Minnesota, Saint Paul, Minnesota, USA
| | - Zbigniew M Szczepiorkowski
- Biomedical Excellence for Safer Transfusion (BEST); Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire, USA
| | - Minoko Takanashi
- Biomedical Excellence for Safer Transfusion (BEST); Japanese Red Cross Society Blood Service Headquarters, Tokyo, Japan
| | - Henk Garritsen
- Biomedical Excellence for Safer Transfusion (BEST); Institut für Klinische Transfusionsmedizin, Städtisches Klinikum Braunschweig gGmbH, Braunschweig, Germany
| | - John Girdlestone
- Biomedical Excellence for Safer Transfusion (BEST); NHS Blood and Transplant, The John Radcliffe Hospital, Oxford, UK
| | - Jo-Anna Reems
- Biomedical Excellence for Safer Transfusion (BEST); University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
13
|
Lu J, Yang J, Zheng Y, Chen X, Fang S. Extracellular vesicles from endothelial progenitor cells prevent steroid-induced osteoporosis by suppressing the ferroptotic pathway in mouse osteoblasts based on bioinformatics evidence. Sci Rep 2019; 9:16130. [PMID: 31695092 PMCID: PMC6834614 DOI: 10.1038/s41598-019-52513-x] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 10/17/2019] [Indexed: 12/21/2022] Open
Abstract
Abnormal antioxidative capabilities were observed in the pathogenesis of steroid-induced osteoporosis (SIOP). Ferroptosis is a recently discovered type of cell death that is characterized by the overproduction of ROS in response to GPX4 and system Xc- downregulation, which is mediated by an Fe2+ fenton reaction. However, investigations focusing on the relationship between ferroptosis and steroid-induced bone disease remain limited. In the present study, high-dose dexamethasone was used to establish a mouse SIOP model, and extracellular vesicles extracted from bone marrow-derived endothelial progenitor cells (EPC-EVs) alleviated the pathological changes in SIOP via microtomography (micro-CT), with elevations in bone volume (BV), bone surface (BS), trabecular thickness (Tb.Th), and trabecular connectivity density (Conn-D) and decreases in trabecular separation (Tb.sp) and the structure model index (SMI). Histopathological analysis, such as haematoxylin and eosin (HE) and Masson staining, showed that EPC-EVs treatment increased the volume and density of the trabecular bone and bone marrow. RNA sequencing (RNA-seq) and bioinformatics analysis revealed subcellular biological alterations upon steroid and EPC-EVs treatment. Compared with the control, high-dose dexamethasone downregulated GPX4 and system XC-, and the Kyoto Encyclopedia of Genes and Genomes (KEGG)-based gene set enrichment analysis suggested that the ferroptotic pathway was activated. In contrast, combination treatment with EPC-EVs partly reversed the KEGG-mapped changes in the ferroptotic pathway at both the gene and mRNA expression levels. In addition, alterations in ferroptotic marker expression, such as SLC3A2, SLC7A11, and GPX4, were further confirmed by RNA-seq. EPC-EVs were able to reverse dexamethasone treatment-induced alterations in cysteine and several oxidative injury markers, such as malondialdehyde (MDA), glutathione (GSH), and glutathione disulphide (GSSG) (as detected by ELISA). In conclusion, EPC-EVs prevented mouse glucocorticoid-induced osteoporosis by suppressing the ferroptotic pathway in osteoblasts, which may provide a basis for novel therapies for SIOP in humans.
Collapse
Affiliation(s)
- Jinsen Lu
- Department of Orthopaedics, Anhui Provincial Hospital, Anhui Medical University, Lujiang Road No. 17, 230001, Hefei, China.
| | - Jiazhao Yang
- Department of Orthopaedics, Anhui Provincial Hospital, Anhui Medical University, Lujiang Road No. 17, 230001, Hefei, China
| | - Yongshun Zheng
- Department of Orthopaedics, Anhui Provincial Hospital, Anhui Medical University, Lujiang Road No. 17, 230001, Hefei, China
| | - Xiaoyu Chen
- Department of Histology and Embryology, Anhui Medical University, Meishan Road No. 81, 230032, Hefei, China
| | - Shiyuan Fang
- Department of Orthopaedics, Anhui Provincial Hospital, Anhui Medical University, Lujiang Road No. 17, 230001, Hefei, China.
| |
Collapse
|
14
|
Stroncek DF, Reddy O, Highfill S, Panch SR. Advances in T-cell Immunotherapies. Hematol Oncol Clin North Am 2019; 33:825-837. [DOI: 10.1016/j.hoc.2019.05.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
15
|
Panch SR, Reddy OL, Li K, Bikkani T, Rao A, Yarlagadda S, Highfill S, Fowler D, Childs RW, Battiwalla M, Barrett J, Larochelle A, Mackall C, Shah N, Stroncek DF. Robust Selections of Various Hematopoietic Cell Fractions on the CliniMACS Plus Instrument. Clin Hematol Int 2019; 1:161-167. [PMID: 34595426 PMCID: PMC8432366 DOI: 10.2991/chi.d.190529.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 05/26/2019] [Indexed: 11/30/2022] Open
Abstract
Cell separation technologies play a vital role in the graft engineering of hematopoietic cellular fractions, particularly with the rapid expansion of the field of cellular therapeutics. The CliniMACS Plus Instrument (Miltenyi Biotec) utilizes immunomagnetic techniques to isolate hematopoietic progenitor cells (HPCs), T cells, NK cells, and monocytes. These products are ultimately used for HPC transplantation and for the manufacture of adoptive immunotherapies. We evaluated the viable cell recovery and cell purity of selections and depletions performed on the CliniMACS Plus over a 10-year period at our facility, specifically assessing for the isolation of CD34+, CD4+, CD3+/CD56+, CD4+/CD8+, and CD25+ cells. Additionally, patient- and instrument-related factors affecting these parameters were examined. Viable cell recovery ranged from 32.3 ± 10.2% to 65.4 ± 15.4%, and was the highest for CD34+ selections. Cell purity ranged from 86.3 ± 7.2% to 99.0 ± 1.1%, and was the highest for CD4+ selections. Undesired cell fractions demonstrated a range of 1.2 ± 0.45 to 5.1 ± 0.4 log reductions. Red cell depletions averaged 2.12 ± 0.68 logs, while platelets were reduced by an average of 4.01 ± 1.57 logs. Donor characteristics did not impact viable cell recovery or cell purity for CD34+ or CD4+ cell enrichments; however, these were affected by manufacturing variables, including tubing size, bead quantity, and whether preselection platelet washes were performed. Our data demonstrate the efficient recovery of hematopoietic cellular fractions on the CliniMACS Plus that may be optimized by adjusting manufacturing variables.
Collapse
Affiliation(s)
- Sandhya R Panch
- Center for Cellular Engineering, Department of Transfusion Medicine, National Institutes of Health Clinical Center, Bethesda, Maryland, USA
| | - Opal L Reddy
- Center for Cellular Engineering, Department of Transfusion Medicine, National Institutes of Health Clinical Center, Bethesda, Maryland, USA
| | - Katherine Li
- Center for Cellular Engineering, Department of Transfusion Medicine, National Institutes of Health Clinical Center, Bethesda, Maryland, USA
| | - Thejaswi Bikkani
- Center for Cellular Engineering, Department of Transfusion Medicine, National Institutes of Health Clinical Center, Bethesda, Maryland, USA
| | - Anusha Rao
- Center for Cellular Engineering, Department of Transfusion Medicine, National Institutes of Health Clinical Center, Bethesda, Maryland, USA
| | - Swathi Yarlagadda
- Center for Cellular Engineering, Department of Transfusion Medicine, National Institutes of Health Clinical Center, Bethesda, Maryland, USA
| | - Steven Highfill
- Center for Cellular Engineering, Department of Transfusion Medicine, National Institutes of Health Clinical Center, Bethesda, Maryland, USA
| | - Daniel Fowler
- Experimental Transplantation and Immunology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Richard W Childs
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Minocher Battiwalla
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - John Barrett
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Andre Larochelle
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Crystal Mackall
- Cancer Immunology and Immunotherapy Program, Stanford Cancer Institute, Palo Alto, California, USA
| | - Nirali Shah
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - David F Stroncek
- Center for Cellular Engineering, Department of Transfusion Medicine, National Institutes of Health Clinical Center, Bethesda, Maryland, USA
| |
Collapse
|
16
|
Kilic P, Bay M, Yildirim Y, Coskun O, Seker S, Baydin P, Lalegul Ulker O, Parmaksiz M, Cubukcuoglu Deniz G, Yilmazer A, Dalva K, Elcin AE, Akcali KC, Ilhan O, Gurman G. A CD34+ Cell Enrichment Protocol of Hematopoietic Stem Cells in a Well-Established Quality Management System. Cells Tissues Organs 2019; 207:15-20. [PMID: 31357194 DOI: 10.1159/000501167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 05/27/2019] [Indexed: 11/19/2022] Open
Abstract
Allogeneic stem cell transplantation applications have improved tremendously over the past quarter of a century. The use of new immunosuppressive protocols and elimination of T cells by CD34+ cell enrichment or T cell depletion on apheresis products increases the chance of using partially matched or haploidentical grafts. This is without increasing the risk of graft-versus-host disease, which is observed as a major complication of hematopoietic stem cell transplantation. The aim of this protocol is to evaluate the results obtained from 6 different process cycles performed on 6 different days. We used the CliniMACS Plus system located in our Cell and Tissue Manufacturing Center Quality Control Unit which is already calibrated as a class D room and includes a class A microbiological safety cabinet inside. The average purity of the end products was 95.66%, excluding only one end product which was 70%; this was higher than the values in current studies in the field. Superior to the reported studies, the CD3 quantity in each end product was below the dedicated thresholds. BactecTM FX40 blood culture system test results were detected as negative for each end product. Endotoxin testing suggested the absence of endotoxin within the products. The consistent outcomes obtained from these 6 different process cycles confirmed that the CliniMACS® Plus process cycles performed in accordance with our well-defined quality management system procedure is sufficient for the routine application of high-quality and safe CD34+ enrichment processes within our clean room area.
Collapse
Affiliation(s)
- Pelin Kilic
- Stem Cell Institute, Ankara University, Ankara, Turkey,
| | - Meltem Bay
- Stem Cell Institute, Ankara University, Ankara, Turkey
| | - Yasin Yildirim
- School of Medicine Therapeutic Apheresis Center, Ankara University, Ankara, Turkey
| | - Oznur Coskun
- Stem Cell Institute, Ankara University, Ankara, Turkey
| | - Sukran Seker
- Stem Cell Institute, Ankara University, Ankara, Turkey
| | - Pinar Baydin
- Stem Cell Institute, Ankara University, Ankara, Turkey
| | | | | | | | | | - Klara Dalva
- Stem Cell Institute, Ankara University, Ankara, Turkey
| | | | | | - Osman Ilhan
- School of Medicine Therapeutic Apheresis Center, Ankara University, Ankara, Turkey.,School of Medicine Department of Hematology, Ankara University, Ankara, Turkey
| | - Gunhan Gurman
- Stem Cell Institute, Ankara University, Ankara, Turkey.,School of Medicine Department of Hematology, Ankara University, Ankara, Turkey
| |
Collapse
|
17
|
Adair JE, Chandrasekaran D, Sghia-Hughes G, Haworth KG, Woolfrey AE, Burroughs LM, Choi GY, Becker PS, Kiem HP. Novel lineage depletion preserves autologous blood stem cells for gene therapy of Fanconi anemia complementation group A. Haematologica 2018; 103:1806-1814. [PMID: 29976742 PMCID: PMC6278989 DOI: 10.3324/haematol.2018.194571] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 07/04/2018] [Indexed: 01/20/2023] Open
Abstract
A hallmark of Fanconi anemia is accelerated decline in hematopoietic stem and progenitor cells (CD34 +) leading to bone marrow failure. Long-term treatment requires hematopoietic cell transplantation from an unaffected donor but is associated with potentially severe side-effects. Gene therapy to correct the genetic defect in the patient's own CD34+ cells has been limited by low CD34+ cell numbers and viability. Here we demonstrate an altered ratio of CD34Hi to CD34Lo cells in Fanconi patients relative to healthy donors, with exclusive in vitro repopulating ability in only CD34Hi cells, underscoring a need for novel strategies to preserve limited CD34+ cells. To address this need, we developed a clinical protocol to deplete lineage+(CD3+, CD14+, CD16+ and CD19+) cells from blood and marrow products. This process depletes >90% of lineage+cells while retaining ≥60% of the initial CD34+cell fraction, reduces total nucleated cells by 1-2 logs, and maintains transduction efficiency and cell viability following gene transfer. Importantly, transduced lineage- cell products engrafted equivalently to that of purified CD34+ cells from the same donor when xenotransplanted at matched CD34+ cell doses. This novel selection strategy has been approved by the regulatory agencies in a gene therapy study for Fanconi anemia patients (NCI Clinical Trial Reporting Program Registry ID NCI-2011-00202; clinicaltrials.gov identifier: 01331018).
Collapse
Affiliation(s)
- Jennifer E Adair
- Fred Hutchinson Cancer Research Center
- University of Washington School of Medicine, Seattle, WA, USA
| | | | | | | | - Ann E Woolfrey
- Fred Hutchinson Cancer Research Center
- University of Washington School of Medicine, Seattle, WA, USA
| | - Lauri M Burroughs
- Fred Hutchinson Cancer Research Center
- University of Washington School of Medicine, Seattle, WA, USA
| | | | - Pamela S Becker
- Fred Hutchinson Cancer Research Center
- University of Washington School of Medicine, Seattle, WA, USA
| | - Hans-Peter Kiem
- Fred Hutchinson Cancer Research Center
- University of Washington School of Medicine, Seattle, WA, USA
| |
Collapse
|