1
|
da Gama ANS, Soeiro MDNC. Trypanosoma cruzi Transmission Through Blood Samples and Derivatives: Main Routes, Control Strategies, and Recent Advancements in Blood Banks. Pathogens 2025; 14:133. [PMID: 40005511 PMCID: PMC11858163 DOI: 10.3390/pathogens14020133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 01/27/2025] [Accepted: 01/28/2025] [Indexed: 02/27/2025] Open
Abstract
Neglected Tropical Diseases are a group of 25 conditions caused by diverse agents. They mostly affect people with poorer health outcomes, particularly preventable diseases. The social determinants of health influence the development and progression of these poverty diseases, with inadequate sanitation presenting chronicity, high morbidity, and economic impacts. Chagas disease, a prominent Neglected Tropical Disease caused by the intracellular pathogen Trypanosoma cruzi, is endemic in Latin America but is increasing as a global concern due to population migration. It is transmitted through insect vectors, congenitally, orally via contaminated food and beverage, via transfusions and organ donation, and due to laboratory accidents, among other minor relevant routes. As a silent illness, with many infected individuals remaining asymptomatic, it contributes to underdiagnosis, and delayed treatment that involves nitro derivatives is often discontinued due to side effects. Chagas disease spreads in non-endemic areas like the United States of America and Europe. Blood screening practices vary, with endemic regions implementing universal testing, while non-endemic areas rely on selective methods. Recent innovations, such as riboflavin-ultraviolet light treatment and arylimidamide compounds, represent promising alternatives to reduce transfusion transmission. This review presents an analysis of Trypanosoma cruzi transmission through blood and derivatives, addressing the main routes, globally implemented control strategies, and recent advancements in blood bank safety.
Collapse
|
2
|
Zhu L, Li C, Wang D. Photodynamic inactivation of antibiotic-resistant bacteria in whole blood using riboflavin photodynamic method. Front Microbiol 2024; 15:1404468. [PMID: 39015739 PMCID: PMC11250595 DOI: 10.3389/fmicb.2024.1404468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 06/13/2024] [Indexed: 07/18/2024] Open
Abstract
Treating bacteremia caused by antibiotic-resistant bacteria is a global concern. Antibacterial photodynamic inactivation is a promising strategy to combat it. However, it's challenging to achieve the inactivation of antibiotic-resistant bacteria in whole blood because of its opacity and complexity. We investigated a riboflavin photodynamic method to effectively inactivate antibiotic-resistant bacteria in whole blood. Four strains of antibiotic-resistant bacteria were isolated, identified, and cultured in this research: methicillin-resistant Staphylococcus aureus (MRSA), pan-drug-resistant Acinetobacter baumannii (PDRAB), ESBLs-producing Escherichia coli (EPEC) and pan-drug-resistant Klebsiella pneumoniae (PDRKP). To simulate bacteremia, antibiotic-resistant bacteria was added into whole blood. Whole blood was treated using riboflavin photodynamic method with ultraviolet irradiation (308 nm and 365 nm). The ultraviolet irradiation dose was divided into 18 J/cm2, 36 J/cm2, and 54 J/cm2. Microbial count of antibiotic-resistant bacteria in whole blood was used for evaluating inactivation effectiveness. The roles of red blood cells, lymphocytes, coagulation factors, and platelets in whole blood were assessed. In results, inactivation effectiveness increased as the ultraviolet dose increased from 18 J/cm2 to 54 J/cm2. At the dose of 18 J/cm2, inactivation effectiveness of four antibiotic-resistant bacteria were more than 80%, while only 67% of MRSA. The antibacterial effect was enhanced by the combination of riboflavin photodynamic treatment and antibiotic. The red blood cell function was susceptible to ultraviolet dose. At the dose of 18 J/cm2, hemolysis rate was less than 0.8% and there was no change in levels of ATP and 2,3-DPG. At the same dose, the proliferation, cell killing, and cytokine secretion activities of lymphocytes decreased 20-70%; Factor V and Factor VIII activities decreased 50%; Fibrinogen and platelet function loss significantly but reparable. Consequently, we speculated that riboflavin photodynamic method with a ultraviolet dose of 18 J/cm2 was effective in inactivating four antibiotic-resistant bacteria in whole blood while whole blood function was preserved. We also provided a novel extracorporeal circulation phototherapy mode for treating bacteremia caused by antibiotic-resistant bacteria.
Collapse
Affiliation(s)
- Liguo Zhu
- Department of Blood Transfusion, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China
| | - Changqing Li
- Institute of Blood Transfusion, Peking Union Medical College and Chinese Academy of Medical Sciences, Chengdu, China
| | - Deqing Wang
- Department of Blood Transfusion Medicine, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
3
|
Timm BL, da Gama ANS, Batista MM, Batista DDGJ, Boykin DW, De Koning HP, Correia Soeiro MDN. Arylimidamides Have Potential for Chemoprophylaxis against Blood-Transmitted Chagas Disease. Pathogens 2023; 12:pathogens12050701. [PMID: 37242371 DOI: 10.3390/pathogens12050701] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/28/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
Chagas disease (CD) affects over 6 million people worldwide and can be transmitted iatrogenically. Crystal violet (CV) was previously used for pathogen reduction but has harmful side-effects. In the present study, three arylimidamides (AIAs) and CV were used to sterilize mice blood samples experimentally contaminated with bloodstream trypomastigotes (BT) of Trypanosoma cruzi, at non hemolytic doses. All AIAs were not toxic to mouse blood cells until the highest tested concentration (96 µM). The previous treatment of BT with the AIAs impaired the infection establishment of cardiac cell cultures. In vivo assays showed that pre-incubation of mouse blood samples with the AIAs and CV (96 µM) significantly suppressed the parasitemia peak, but only the AIA DB1831 gave ≥90% animal survival, while vehicle treated samples reached 0%. Our findings support further studies regarding the potential use of AIAs for blood bank purposes.
Collapse
Affiliation(s)
- Bruno Lisboa Timm
- Laboratório de Biologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21045-900, Brazil
| | | | - Marcos Meuser Batista
- Laboratório de Biologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21045-900, Brazil
| | - Denise da Gama Jaén Batista
- Laboratório de Biologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21045-900, Brazil
| | - David W Boykin
- Department of Chemistry, Georgia State University, Atlanta, GA 30303, USA
| | - Harry P De Koning
- School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G43 2DX, UK
| | | |
Collapse
|
4
|
de Castro Nobre AC, Pimentel CF, do Rêgo GMS, Paludo GR, Pereira Neto GB, de Castro MB, Nitz N, Hecht M, Dallago B, Hagström L. Insights from the use of erythropoietin in experimental Chagas disease. Int J Parasitol Drugs Drug Resist 2022; 19:65-80. [PMID: 35772309 PMCID: PMC9253553 DOI: 10.1016/j.ijpddr.2022.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 05/26/2022] [Accepted: 05/31/2022] [Indexed: 11/23/2022]
Abstract
In addition to the long-established role in erythropoiesis, erythropoietin (Epo) has protective functions in a variety of tissues, including the heart. This is the most affected organ in chronic Chagas disease, caused by the protozoan Trypanosoma cruzi. Despite seven million people being infected with T. cruzi worldwide, there is no effective treatment preventing the disease progression to the chronic phase when the pathological involvement of the heart is often observed. Chronic chagasic cardiomyopathy has a wide variety of manifestations, like left ventricular systolic dysfunction, dilated cardiomyopathy, and heart failure. Since Epo may help maintain cardiac function by reducing myocardial necrosis, inflammation, and fibrosis, this study aimed to evaluate whether the Epo has positive effects on experimental Chagas disease. For that, we assessed the earlier (acute phase) and also the later (chronic phase) use of Epo in infected C57BL/6 mice. Blood cell count, biochemical parameters, parasitic load, and echocardiography data were evaluated. In addition, histopathological analysis was carried out. Our data showed that Epo had no trypanocide effect nor did it modify the production of anti-T. cruzi antibodies. Epo-treated groups exhibited parasitic burden much lower in the heart compared to blood. No pattern of hematological changes was observed combining infection with treatment with Epo. Chronic Epo administration reduced CK-MB serum activity from d0 to d180, irrespectively of T. cruzi infection. Likewise, echocardiography and histological results indicate that Epo treatment is more effective in the chronic phase of experimental Chagas disease. Since treatment is one of the greatest challenges of Chagas disease, alternative therapies should be investigated, including Epo combined with benznidazole.
Collapse
Affiliation(s)
| | - Carlos Fernando Pimentel
- Interdisciplinary Laboratory of Biosciences, Faculty of Medicine, University of Brasilia, Brasília, Brazil
| | - George Magno Sousa do Rêgo
- Laboratory of Veterinary Clinical Pathology, Faculty of Agronomy and Veterinary Medicine, University of Brasília, Brasília, Brazil
| | - Giane Regina Paludo
- Laboratory of Veterinary Clinical Pathology, Faculty of Agronomy and Veterinary Medicine, University of Brasília, Brasília, Brazil
| | - Glaucia Bueno Pereira Neto
- Veterinary Hospital, Faculty of Agronomy and Veterinary Medicine, University of Brasília, Brasília, Brazil
| | - Márcio Botelho de Castro
- Laboratory of Veterinary Pathology, Faculty of Agronomy and Veterinary Medicine, University of Brasília, Brasília, Brazil
| | - Nadjar Nitz
- Interdisciplinary Laboratory of Biosciences, Faculty of Medicine, University of Brasilia, Brasília, Brazil
| | - Mariana Hecht
- Interdisciplinary Laboratory of Biosciences, Faculty of Medicine, University of Brasilia, Brasília, Brazil
| | - Bruno Dallago
- Interdisciplinary Laboratory of Biosciences, Faculty of Medicine, University of Brasilia, Brasília, Brazil; Veterinary Hospital, Faculty of Agronomy and Veterinary Medicine, University of Brasília, Brasília, Brazil
| | - Luciana Hagström
- Interdisciplinary Laboratory of Biosciences, Faculty of Medicine, University of Brasilia, Brasília, Brazil; Faculty of Physical Education, University of Brasília, Brasília, Brazil.
| |
Collapse
|
5
|
Crowder LA, Wendel S, Bloch EM, O'Brien SF, Delage G, Sauleda S, Leiby DA. International survey of strategies to mitigate transfusion-transmitted Trypanosoma cruzi in non-endemic countries, 2016-2018. Vox Sang 2021; 117:58-63. [PMID: 34111301 DOI: 10.1111/vox.13164] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/20/2021] [Accepted: 05/22/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND AND OBJECTIVES Chagas disease, caused by Trypanosoma cruzi, is endemic to Mexico, Central and South America. While initially limited to the Americas, emigration of infected persons triggered geographically broader blood safety challenges. To mitigate transfusion-transmitted Chagas (TTC), transfusion services implemented approaches including risk factor questions and serologic testing. We sought to understand and compare strategies in non-endemic countries. MATERIALS AND METHODS Transfusion services in International Society of Blood Transfusion (ISBT)-affiliated organizations and members of the ISBT Working Party on Transfusion-Transmitted Infectious Diseases were invited to complete an online survey on T. cruzi mitigation strategies. The survey queried about cases of TTC, risk factors, testing methodology, educational materials, pathogen reduction, donor/product management, donor deferral and perceived public health concerns surrounding TTC. RESULTS Responses were received from 27 institutions in 22 countries. Most countries (77.3%) reported no historical TTC cases, while 18.2% reported 1-5 cases and 4.5% reported 6-10 cases. Concern about Chagas among the general public and public health authorities was low, but 12 of 25 blood centres reported moderate/high concern. Overall, 17 countries mitigated for TTC: 15 used risk factor questions and 10tested for T. cruzi antibodies. Ten countries used pathogen reduction but not specifically to prevent TTC. CONCLUSION While Chagas is rarely cited as a public health concern, blood centres in many non-endemic countries, including those outside the Americas, implemented measures to mitigate risk. Mitigation focussed on risk factors associated with Latin American immigrants and serologic testing. Thus, despite the rarity of TTC, many non-endemic countries continue to address it as an ongoing blood safety risk.
Collapse
Affiliation(s)
- Lauren A Crowder
- American Red Cross, Scientific Affairs, Rockville, Maryland, USA
| | | | - Evan M Bloch
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Sheila F O'Brien
- Epidemiology and Surveillance, Canadian Blood Services, Ottawa, Ontario, Canada
| | - Gilles Delage
- Medical Affairs - Microbiology, Héma-Québec, Montreal, Quebec, Canada
| | - Silvia Sauleda
- Transfusion Safety Laboratory, Catalonian Blood Bank (Banc de Sang i Teixits de Catalunya), Barcelona, Spain
| | - David A Leiby
- US Food and Drug Administration, CBER/OBRR, Silver Spring, Maryland, USA
| | | |
Collapse
|
6
|
Zhu L, Li C, Wang D. A novel ultraviolet illumination used in riboflavin photochemical method to inactivate drug-resistant bacteria in blood components. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2020; 204:111782. [PMID: 32062389 DOI: 10.1016/j.jphotobiol.2020.111782] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 01/06/2020] [Accepted: 01/07/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Ultraviolet (UV) fluorescent lamp (FL) was applied in mainstream riboflavin photochemical method (RPM) to inactivate pathogens in blood components. Low UV irradiance emitted by UV-FL resulted in more time to achieve effective inactivation. MATERIALS AND METHODS A novel light emitting diode (LED) UV illumination with adjustable irradiance was developed by us. Two strains of drug-resistant bacteria (DRB), pan-drug resistant Acinetobacter baumannii (PDRAB) and methicillin-resistant Staphylococcus aureus (MRSA) were cultured and used for evaluating the inactivation effectiveness of RPM using UV-LED or UV-FL against DRB in plasma or platelets. Three plasma factors and four platelet parameters were measured after treatments. RESULTS There was a linear relationship between UV-LED irradiance and electric current, the minimum UV irradiance was 24 mW/cm2, and the maximum was 258 mW/cm2. At the same UV dose of 15 J/cm2, inactivation effectiveness of UV-LED with 258 mW/cm2 against PDRAB in plasma or platelets were comparable to that of UV-FL with 16 mW/cm2, both above 98%. UV-FL treatment required 10-15 min, but UV-LED only required 1-2 min. However, MRSA showed a resistance to UV-LED (inactivation effectiveness was around 40%) compared with UV-FL (inactivation effectiveness was above 98%). The retention of fibrinogen, factor V, factor VII in plasma and platelet counts in platelets with UV-LED treatment were significantly higher than UV-FL at the same UV dose. CONCLUSION The treatment of RPM using UV-LED with high UV irradiance was able to dramatically shorten inactivation time against PDRAB in plasma or platelets and improve retention of blood components compared with UV-FL.
Collapse
Affiliation(s)
- Liguo Zhu
- Institute of Blood Transfusion, Peking Union Medical College and Chinese Academy of Medical Sciences, No.26 Huacai Road, Chenghua District, Chengdu, China.
| | - Changqing Li
- Institute of Blood Transfusion, Peking Union Medical College and Chinese Academy of Medical Sciences, No.26 Huacai Road, Chenghua District, Chengdu, China.
| | - Deqing Wang
- Department of Blood Transfusion, Chinese PLA General Hospital, No.28 Fuxing Road, Haidian District, Beijing, China.
| |
Collapse
|
7
|
Domanović D, Ushiro-Lumb I, Compernolle V, Brusin S, Funk M, Gallian P, Georgsen J, Janssen M, Jimenez-Marco T, Knutson F, Liumbruno GM, Mali P, Marano G, Maryuningsih Y, Niederhauser C, Politis C, Pupella S, Rautmann G, Saadat K, Sandid I, Sousa AP, Vaglio S, Velati C, Verdun N, Vesga M, Rebulla P. Pathogen reduction of blood components during outbreaks of infectious diseases in the European Union: an expert opinion from the European Centre for Disease Prevention and Control consultation meeting. BLOOD TRANSFUSION = TRASFUSIONE DEL SANGUE 2019; 17:433-448. [PMID: 31846608 PMCID: PMC6917531 DOI: 10.2450/2019.0288-19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Accepted: 11/21/2019] [Indexed: 12/13/2022]
Abstract
Pathogen reduction (PR) of selected blood components is a technology that has been adopted in practice in various ways. Although they offer great advantages in improving the safety of the blood supply, these technologies have limitations which hinder their broader use, e.g. increased costs. In this context, the European Centre for Disease Prevention and Control (ECDC), in co-operation with the Italian National Blood Centre, organised an expert consultation meeting to discuss the potential role of pathogen reduction technologies (PRT) as a blood safety intervention during outbreaks of infectious diseases for which (in most cases) laboratory screening of blood donations is not available. The meeting brought together 26 experts and representatives of national competent authorities for blood from thirteen European Union and European Economic Area (EU/EEA) Member States (MS), Switzerland, the World Health Organization, the European Directorate for the Quality of Medicines and Health Care of the Council of Europe, the US Food and Drug Administration, and the ECDC. During the meeting, the current use of PRTs in the EU/EEA MS and Switzerland was verified, with particular reference to emerging infectious diseases (see Appendix). In this article, we also present expert discussions and a common view on the potential use of PRT as a part of both preparedness and response to threats posed to blood safety by outbreaks of infectious disease.
Collapse
Affiliation(s)
- Dragoslav Domanović
- European Centre for Disease Prevention and Control (ECDC), Stockholm, Sweden
| | - Ines Ushiro-Lumb
- National Transfusion Microbiology Reference Laboratory, NHS Blood and Transplant and Public Health England, London, England
| | | | - Sergio Brusin
- European Centre for Disease Prevention and Control (ECDC), Stockholm, Sweden
| | - Markus Funk
- Pharmacovigilance II, Paul-Ehrlich-Institut Federal Institute for Vaccines and Biomedicines, Langen, Germany
| | - Pierre Gallian
- Etablissement Français du Sang Provence Alpes Côte d’Azur et Corse, Marseille, France
| | - Jørgen Georgsen
- South Danish Transfusion Service, Department of Clinical Immunology, Odense University Hospital, Odense, Denmark
| | - Mart Janssen
- Department of Donor Medicine Research, Transfusion Technology Assessment, Sanquin Research, Amsterdam, The Netherlands
| | | | - Folke Knutson
- Clinical Immunology and Transfusion Medicine IGP, Uppsala University, Uppsala, Sweden
| | | | - Polonca Mali
- Blood Transfusion Center of Slovenia, Ljubljana, Slovenia
| | - Giuseppe Marano
- Italian National Blood Centre, National Institute of Health, Rome
| | | | - Christoph Niederhauser
- Interregional Blood Transfusion Swiss Red Cross, Laboratory Diagnostics, Bern, Switzerland
| | - Constantina Politis
- Hellenic Coordinating Hemovigilance Center, Hellenic National Public Health Organization, Athens, Greece
| | | | - Guy Rautmann
- European Directorate for the Quality of Medicines and HealthCare, Strasbourg, France
| | - Karmin Saadat
- Austrian Agency for Health and Food Safety, Wien, Austria
| | - Imad Sandid
- French National Agency for Medicines and Health Products Safety (ANSM), Saint Denis, France
| | - Ana P. Sousa
- Portuguese Blood and Transplantation Center, Lisbon, Portugal
| | - Stefania Vaglio
- Italian National Blood Centre, National Institute of Health, Rome
| | - Claudio Velati
- Italian National Blood Centre, National Institute of Health, Rome
| | - Nicole Verdun
- Office of Blood Research and Review, Center for Biologics Evaluation and Research, FDA, Silver Spring, United States of America
| | - Miguel Vesga
- Basque Center for Transfusion and Human Tissues/Spanish Scientific Committee for Transfusion Safety, Galdakao, Spain
| | - Paolo Rebulla
- IRCCS Foundation Ca’ Granda Maggiore Policlinico Hospital, Milan, Italy
| |
Collapse
|
8
|
Hagström L, Marques ALP, Nitz N, Hecht MM. The use of qPCR in human Chagas disease: a systematic review. Expert Rev Mol Diagn 2019; 19:875-894. [DOI: 10.1080/14737159.2019.1659729] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Luciana Hagström
- Laboratório Interdisciplinar de Biociências, Faculdade de Medicina, Universidade de Brasília, Campus Darcy Ribeiro, Brasília, Brazil
| | - Ana Luisa Pereira Marques
- Laboratório Interdisciplinar de Biociências, Faculdade de Medicina, Universidade de Brasília, Campus Darcy Ribeiro, Brasília, Brazil
| | - Nadjar Nitz
- Laboratório Interdisciplinar de Biociências, Faculdade de Medicina, Universidade de Brasília, Campus Darcy Ribeiro, Brasília, Brazil
| | - Mariana Machado Hecht
- Laboratório Interdisciplinar de Biociências, Faculdade de Medicina, Universidade de Brasília, Campus Darcy Ribeiro, Brasília, Brazil
| |
Collapse
|
9
|
Jimenez-Marco T, Girona-Llobera E. Leucoreduction for preventing parasite transfusion-transmission: an overlooked strategy. Vox Sang 2019; 114:291. [PMID: 30820952 DOI: 10.1111/vox.12769] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 02/07/2019] [Indexed: 11/29/2022]
|
10
|
Leiby DA, O'Brien SF, Wendel S, Nguyen ML, Delage G, Devare SG, Hardiman A, Nakhasi HL, Sauleda S, Bloch EM. International survey on the impact of parasitic infections: frequency of transmission and current mitigation strategies. Vox Sang 2018; 114:17-27. [PMID: 30523642 DOI: 10.1111/vox.12727] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 10/25/2018] [Accepted: 10/29/2018] [Indexed: 11/26/2022]
Abstract
BACKGROUND AND OBJECTIVES Globally, blood safety interventions have been successful in mitigating risk of the major transfusion-transmitted (TT) viruses. However, strategies that address risk from parasites are comparatively limited. TT parasites are often regional in nature, posing unique challenges; we sought to understand their impact on blood safety. MATERIALS AND METHODS An electronic questionnaire was distributed to transfusion medicine leaders in 100 countries. The survey focused on specific questions pertaining to four parasitic diseases: babesiosis, Chagas, leishmaniasis and malaria. Respondents provided data on historical TT cases, local epidemiology, policies to mitigate risk and an assessment of public health perceptions for each aetiologic agent. RESULTS Twenty-eight (28%) surveys were returned from countries in Europe (n = 13), the Americas (n = 6), Africa (n = 4), Asia (n = 3) and Oceana (n = 2). Historically, no cases of TT leishmaniasis were reported, TT babesiosis was exclusive to Canada and the USA, TT Chagas was limited to the Americas and Spain, while TT malaria was cosmopolitan. Mitigation efforts varied widely; malaria was the most frequently tested parasitic disease. The public's perception of risk for parasitic agents was low, while that of health authorities in endemic countries was higher. CONCLUSION The global impact of parasitic infections on blood safety and related mitigation efforts varied widely by parasite epidemiology, test availability, public health priorities and socioeconomic constraints. While parasites continue to pose a risk to blood safety, the successful mitigation of viral risk has elevated the prominence of TT parasites in many locations, thereby requiring consideration of mitigation efforts.
Collapse
Affiliation(s)
- David A Leiby
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Sheila F O'Brien
- Epidemiology and Surveillance, Canadian Blood Services, Ottawa, ON, USA
| | | | - Megan L Nguyen
- Transmissible Diseases Department, American Red Cross Holland Laboratory, Rockville, MD, USA
| | - Gilles Delage
- Medical Affairs, Microbiology, Héma-Quebec, Montreal, Quebec, Canada
| | | | | | - Hira L Nakhasi
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Silvia Sauleda
- Transfusion Safety Laboratory, Catalonian Blood Bank (Banc de Sang i Teixits de Catalunya), Barcelona, Spain
| | - Evan M Bloch
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | |
Collapse
|
11
|
Jimenez-Marco T, Garcia-Recio M, Girona-Llobera E. Our experience in riboflavin and ultraviolet light pathogen reduction technology for platelets: from platelet production to patient care. Transfusion 2018; 58:1881-1889. [DOI: 10.1111/trf.14797] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 03/19/2018] [Accepted: 03/19/2018] [Indexed: 12/18/2022]
|
12
|
Garraud O, Sut C, Haddad A, Tariket S, Aloui C, Laradi S, Hamzeh-Cognasse H, Bourlet T, Zeni F, Aubron C, Ozier Y, Laperche S, Peyrard T, Buffet P, Guyotat D, Tavernier E, Cognasse F, Pozzetto B, Andreu G. Transfusion-associated hazards: A revisit of their presentation. Transfus Clin Biol 2018; 25:118-135. [PMID: 29625790 DOI: 10.1016/j.tracli.2018.03.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
As a therapy or a support to other therapies, despite being largely beneficial to patients in general, transfusion it is not devoid of some risks. In a moderate number of cases, patients may manifest adverse reactions, otherwise referred to as transfusion-associated hazards (TAHs). The latest French 2016 haemovigilance report indicates that 93% of TAHs are minor (grade 1), 5.5% are moderate (grade 2) and 1.6% are severe (grade 3), with only five deaths (grade 4) being attributed to transfusion with relative certainty (imputability of level [or grade] 1 to 3). Health-care providers need to be well aware of the benefits and potential risks (to best evaluate and discuss the benefit-risk ratio), how to prevent TAHs, the overall costs and the availability of alternative therapeutic options. In high-income countries, most blood establishments (BEs) and hospital blood banks (HBBs) have developed tools for reporting and analysing at least severe transfusion reactions. With nearly two decades of haemovigilance, transfusion reaction databases should be quite informative, though there are four main caveats that prevent it from being fully efficient: (ai) reporting is mainly declarative and is thus barely exhaustive even in countries where it is mandatory by law; (aii) it is often difficult to differentiate between the different complications related to transfusion, diseases, comorbidities and other types of therapies in patients suffering from debilitating conditions; (aiii) there is a lack of consistency in the definitions used to describe and report some transfusion reactions, their severity and their likelihood of being related to transfusion; and (aiv) it is difficult to assess the imputability of a particular BC given to a patient who has previously received many BCs over a relatively short period of time. When compiling all available information published so far, it appears that TAHs can be analysed using different approaches: (bi) their pathophysiological nature; (bii) their severity; (biii) the onset scheme; (biv) a quality assessment (preventable or non-preventable); (bv) their impact on ongoing therapy. Moreover, TAHs can be reported either in a non-integrative or in an integrative way; in the latter case, presentation may also differ when issued by a blood establishment or a treating ward. At some point, a recapitulative document would be useful to gain a better understanding of TAHs in order to decrease their occurrence and severity and allow decision makers to determine action plans: this is what this review attempts to make. This review attempts to merge the different aspects, with a focus on the hospital side, i.e., how the most frequent TAHs can be avoided or mitigated.
Collapse
Affiliation(s)
- O Garraud
- EA3064, University of Lyon/Saint-Etienne, Saint-Etienne, France; Institut National de la Transfusion Sanguine, 75017 Paris, France.
| | - C Sut
- EA3064, University of Lyon/Saint-Etienne, Saint-Etienne, France
| | - A Haddad
- EA3064, University of Lyon/Saint-Etienne, Saint-Etienne, France; Sacré-Cœur University Hospital, Beirut, Lebanon
| | - S Tariket
- EA3064, University of Lyon/Saint-Etienne, Saint-Etienne, France
| | - C Aloui
- EA3064, University of Lyon/Saint-Etienne, Saint-Etienne, France
| | - S Laradi
- EA3064, University of Lyon/Saint-Etienne, Saint-Etienne, France; Sacré-Cœur University Hospital, Beirut, Lebanon
| | | | - T Bourlet
- EA3064, University of Lyon/Saint-Etienne, Saint-Etienne, France; Department of Microbiology, University Hospital, 42023 Saint-Etienne, France
| | - F Zeni
- EA3064, University of Lyon/Saint-Etienne, Saint-Etienne, France; Department of Critical Care, University Hospital, 29200 Saint-Etienne, France
| | - C Aubron
- Université de Bretagne Occidentale, 29200 Brest, France; Department of Critical Care, University Hospital, 75005 Brest, France
| | - Y Ozier
- Université de Bretagne Occidentale, 29200 Brest, France; Department of Critical Care, University Hospital, 75005 Brest, France
| | - S Laperche
- Institut National de la Transfusion Sanguine, 75017 Paris, France
| | - T Peyrard
- Institut National de la Transfusion Sanguine, 75017 Paris, France; Inserm S_1134, 75015 Paris, France
| | - P Buffet
- Institut National de la Transfusion Sanguine, 75017 Paris, France; Inserm S_1134, 75015 Paris, France; University Paris-Descartes, Paris, France
| | - D Guyotat
- UMR_5229, University of Lyon, 69675 Lyon, France; Institut du Cancer Lucien Neuwirth, 42023 Saint-Etienne, France
| | - E Tavernier
- UMR_5229, University of Lyon, 69675 Lyon, France; Institut du Cancer Lucien Neuwirth, 42023 Saint-Etienne, France
| | - F Cognasse
- EA3064, University of Lyon/Saint-Etienne, Saint-Etienne, France; Sacré-Cœur University Hospital, Beirut, Lebanon
| | - B Pozzetto
- EA3064, University of Lyon/Saint-Etienne, Saint-Etienne, France; Department of Microbiology, University Hospital, 42023 Saint-Etienne, France
| | - G Andreu
- Institut National de la Transfusion Sanguine, 75017 Paris, France
| |
Collapse
|
13
|
Allain JP, Goodrich R. Pathogen reduction of whole blood: utility and feasibility. Transfus Med 2017; 27 Suppl 5:320-326. [PMID: 28875531 DOI: 10.1111/tme.12456] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 07/06/2017] [Accepted: 08/07/2017] [Indexed: 12/26/2022]
Abstract
OBJECTIVES To collect information on pathogen reduction applied to whole blood. BACKGROUND Pathogen reduction (PR) of blood components has been developed over the past two decades, and pathogen-reduced fresh-frozen plasma and platelet concentrates are currently in clinical use. High cost and incomplete coverage of components make PR out of reach for low- and middle-income countries (LMIC). However, should PR become applicable to whole blood (WB), the main product transfused in sub-Saharan Africa, and be compatible with the preparation of clinically suitable components, cost would be minimised, and a range of safety measures in place at high cost in developed areas would become redundant. METHODS All articles called with "pathogen reduction", "pathogen inactivation" and "whole blood" were retrieved from Medline. References in articles were utilised. RESULTS One such PR technology (PRT) applied to WB has been developed and has shown efficacious against viruses, bacteria and parasites in vitro; and has been able to inactivate nucleated blood cells whilst retaining the ability to prepare components with acceptable characteristics. The efficacy of this WB PRT has been demonstrated in vivo using the inactivation of Plasmodium falciparum as a model and showing a high degree of correlation between in vitro and in vivo data. Obtaining further evidence of efficacy on other suitable targets is warranted. Shortening of the process, which is currently around 50 min, or increasing the number of units simultaneously processed would be necessary to make PRT WB conducive to LMIC blood services' needs. CONCLUSIONS Even if not 100% effective against agents that are present in high pathogen load titres, WB PRT could massively impact blood safety in LMIC by providing safer products at an affordable cost.
Collapse
Affiliation(s)
| | - R Goodrich
- Infectious Disease Research Center, University of Colorado, Denver, Colorado, USA
| |
Collapse
|