1
|
Garraud O, Hamzeh-Cognasse H, Chalayer E, Duchez AC, Tardy B, Oriol P, Haddad A, Guyotat D, Cognasse F. Platelet transfusion in adults: An update. Transfus Clin Biol 2023; 30:147-165. [PMID: 36031180 DOI: 10.1016/j.tracli.2022.08.147] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Many patients worldwide receive platelet components (PCs) through the transfusion of diverse types of blood components. PC transfusions are essential for the treatment of central thrombocytopenia of diverse causes, and such treatment is beneficial in patients at risk of severe bleeding. PC transfusions account for almost 10% of all the blood components supplied by blood services, but they are associated with about 3.25 times as many severe reactions (attributable to transfusion) than red blood cell transfusions after stringent in-process leukoreduction to less than 106 residual cells per blood component. PCs are not homogeneous, due to the considerable differences between donors. Furthermore, the modes of PC collection and preparation, the safety precautions taken to limit either the most common (allergic-type reactions and febrile non-hemolytic reactions) or the most severe (bacterial contamination, pulmonary lesions) adverse reactions, and storage and conservation methods can all result in so-called PC "storage lesions". Some storage lesions affect PC quality, with implications for patient outcome. Good transfusion practices should result in higher levels of platelet recovery and efficacy, and lower complication rates. These practices include a matching of tissue ABH antigens whenever possible, and of platelet HLA (and, to a lesser extent, HPA) antigens in immunization situations. This review provides an overview of all the available information relating to platelet transfusion, from donor and donation to bedside transfusion, and considers the impact of the measures applied to increase transfusion efficacy while improving safety and preventing transfusion inefficacy and refractoriness. It also considers alternatives to platelet component (PC) transfusion.
Collapse
Affiliation(s)
- O Garraud
- SAINBIOSE, INSERM, U1059, University of Lyon, Saint-Étienne, France.
| | | | - E Chalayer
- SAINBIOSE, INSERM, U1059, University of Lyon, Saint-Étienne, France; Saint-Etienne University Hospital, Department of Hematology and Cellular Therapy, Saint-Étienne, France
| | - A C Duchez
- SAINBIOSE, INSERM, U1059, University of Lyon, Saint-Étienne, France; Établissement Français du Sang Auvergne-Rhône-Alpes, Saint-Étienne, France
| | - B Tardy
- SAINBIOSE, INSERM, U1059, University of Lyon, Saint-Étienne, France; CHU de Saint-Etienne, INSERM and CIC EC 1408, Clinical Epidemiology, Saint-Étienne, France
| | - P Oriol
- CHU de Saint-Etienne, INSERM and CIC EC 1408, Clinical Epidemiology, Saint-Étienne, France
| | - A Haddad
- SAINBIOSE, INSERM, U1059, University of Lyon, Saint-Étienne, France; Sacré-Cœur Hospital, Beirut, Lebanon; Lebanese American University, Beirut, Lebanon
| | - D Guyotat
- Saint-Etienne University Hospital, Department of Hematology and Cellular Therapy, Saint-Étienne, France
| | - F Cognasse
- SAINBIOSE, INSERM, U1059, University of Lyon, Saint-Étienne, France; Établissement Français du Sang Auvergne-Rhône-Alpes, Saint-Étienne, France
| |
Collapse
|
2
|
Winskel-Wood B, Padula MP, Marks DC, Johnson L. Cold storage alters the immune characteristics of platelets and potentiates bacterial-induced aggregation. Vox Sang 2022; 117:1006-1015. [PMID: 35579630 DOI: 10.1111/vox.13293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/13/2022] [Accepted: 04/20/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND AND OBJECTIVES Cold-stored platelets are currently under clinical evaluation and have been approved for limited clinical use in the United States. Most studies have focused on the haemostatic functionality of cold-stored platelets; however, limited information is available examining changes to their immune function. MATERIALS AND METHODS Two buffy-coat-derived platelet components were combined and split into two treatment arms: room temperature (RT)-stored (20-24°C) or refrigerated (cold-stored, 2-6°C). The concentration of select soluble factors was measured in the supernatant using commercial ELISA kits. The abundance of surface receptors associated with immunological function was assessed by flow cytometry. Platelet aggregation was assessed in response to Escherichia coli and Staphylococcus aureus, in the presence and absence of RGDS (blocks active conformation of integrin α2 β3 ). RESULTS Cold-stored platelet components contained a lower supernatant concentration of C3a, RANTES and PF4. The abundance of surface-bound P-selectin and integrin α2 β3 in the activated conformation increased during cold storage. In comparison, the abundance of CD86, CD44, ICAM-2, CD40, TLR1, TLR2, TLR4, TLR3, TLR7 and TLR9 was lower on the surface membrane of cold-stored platelets compared to RT-stored components. Cold-stored platelets exhibited an increased responsiveness to E. coli- and S. aureus-induced aggregation compared to RT-stored platelets. Inhibition of the active conformation of integrin α2 β3 using RGDS reduced the potentiation of bacterial-induced aggregation in cold-stored platelets. CONCLUSION Our data highlight that cold storage changes the in vitro immune characteristics of platelets, including their sensitivity to bacterial-induced aggregation. Changes in these immune characteristics may have clinical implications post transfusion.
Collapse
Affiliation(s)
- Ben Winskel-Wood
- Research and Development, Australian Red Cross Lifeblood, Alexandria, New South Wales, Australia.,School of Life Sciences, University of Technology Sydney, Sydney, New South Wales, Australia
| | - Matthew P Padula
- School of Life Sciences, University of Technology Sydney, Sydney, New South Wales, Australia
| | - Denese C Marks
- Research and Development, Australian Red Cross Lifeblood, Alexandria, New South Wales, Australia.,Sydney Medical School, The University of Sydney, Camperdown, New South Wales, Australia
| | - Lacey Johnson
- Research and Development, Australian Red Cross Lifeblood, Alexandria, New South Wales, Australia.,School of Life Sciences, University of Technology Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
3
|
Liu X, Ge H, Feng X, Hang J, Zhang F, Jin X, Bao H, Zhou M, Han F, Li S, Qian Y, Jie Z, Gu W, Gao B, Yu L, Wang J, Ji H, Zhang J, Zhu H. The Combination of Hemogram Indexes to Predict Exacerbation in Stable Chronic Obstructive Pulmonary Disease. Front Med (Lausanne) 2020; 7:572435. [PMID: 33381510 PMCID: PMC7769039 DOI: 10.3389/fmed.2020.572435] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 09/30/2020] [Indexed: 01/14/2023] Open
Abstract
Background: Chronic obstructive pulmonary disease (COPD) is characterized by pulmonary and systemic inflammatory processes, and exacerbation of COPD represents a critical moment in the progression of COPD. Several biomarkers of inflammation have been proposed to have a predictive function in acute exacerbation. However, their use is still limited in routine clinical practice. The purpose of our study is to explore the prognostic efficacy of novel inflammatory hemogram indexes in the exacerbation among stable COPD patients. Method: A total of 275 stable COPD patients from the Shanghai COPD Investigation Comorbidity Program were analyzed in our study. Blood examinations, especially ratio indexes like platelet-lymphocyte ratio (PLR), platelet × neutrophil/lymphocyte ratio [systemic immune-inflammation index (SII)], and monocyte × neutrophil/lymphocyte ratio [systemic inflammation response index (SIRI)], lung function test, CT scans, and questionnaires were performed at baseline and routine follow-ups. Clinical characteristics and information of exacerbations were collected every 6 months. The relationship between hemogram indexes and diverse degrees of exacerbation was assessed by logistic regression. The receiver operating characteristic (ROC) curve and area under the curve (AUC) were used to evaluate the ability of hemogram indexes to predict exacerbation of COPD. Furthermore, the discrimination and accuracy of combined indexes were measured by ROC and calibration curve. Result: There was a significant positive correlation between PLR levels and total exacerbation of COPD patients in a stable stage in a year. Also, the predictive ability of PLR exceeded any other ratio indexes, with an AUC of 0.66. SII and SIRI ranked second only to PLR, with an AUC of 0.64. When combining PLR with other indexes (sex, COPD year, and St. George's Respiratory Questionnaire scores), they were considered as the most suitable panel of index to predict total exacerbation. Based on the result of the ROC curve and calibration curve, the combination shows optimal discrimination and accuracy to predict exacerbation events in COPD patients. Conclusion: The hemogram indexes PLR, SII, and SIRI were associated with COPD exacerbation. Moreover, the prediction capacity of exacerbation was significantly elevated after combining inflammatory hemogram index PLR with other indexes, which will make it a promisingly simple and effective marker to predict exacerbation in patients with stable COPD.
Collapse
Affiliation(s)
- Xuanqi Liu
- Department of Respiratory and Critical Care Medicine, Huadong Hospital, Fudan University, Shanghai, China
| | - Haiyan Ge
- Department of Respiratory and Critical Care Medicine, Huadong Hospital, Fudan University, Shanghai, China
| | - Xiumin Feng
- Department of Respiratory and Critical Care Medicine, Changji Branch of First Affiliated Hospital of Xinjiang Medical University, Xinjiang, China
| | - Jingqing Hang
- Department of Respiratory Medicine, Putuo People's Hospital, Shanghai, China
| | - Fengying Zhang
- Department of Respiratory Medicine, Putuo People's Hospital, Shanghai, China
| | - Xiaoyan Jin
- Department of Respiratory Medicine, Tongren Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Hong Bao
- Department of Respiratory Medicine Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Min Zhou
- Department of Respiratory and Critical Care Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Fengfeng Han
- Department of Respiratory Medicine, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Shengqing Li
- Department of Respiratory and Critical Care Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Yechang Qian
- Baoshan District Hospital of Integrated Traditional Chinese and Western Medicine Hospital, Shanghai, China
| | - Zhijun Jie
- Department of Respiratory Medicine, Shanghai Fifth's Hospital, Fudan University, Shanghai, China
| | - Wenchao Gu
- Department of Respiratory Medicine, Pudong New District People's Hospital, Shanghai, China
| | - Beilan Gao
- Department of Respiratory Medicine, Shanghai Pulmonary Hospital, Tongji University, Shanghai, China
| | - Li Yu
- Department of Pulmonary and Critical Care Medicine, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jian Wang
- Department of Respiratory Medicine, Shanghai Ninth's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Haiying Ji
- Department of Respiratory and Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jingxi Zhang
- Department of Respiratory and Critical Care Medicine, Changji Branch of First Affiliated Hospital of Xinjiang Medical University, Xinjiang, China.,Department of Respiratory and Critical Care Medicine, Changhai Hospital Affiliated to Navy Military Medical University, Shanghai, China
| | - Huili Zhu
- Department of Respiratory and Critical Care Medicine, Huadong Hospital, Fudan University, Shanghai, China
| |
Collapse
|
5
|
Platelet and TRALI: From blood component to organism. Transfus Clin Biol 2018; 25:204-209. [PMID: 29631963 DOI: 10.1016/j.tracli.2018.03.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 03/07/2018] [Indexed: 12/20/2022]
Abstract
Even though used systematically with leukocyte reduction, platelet transfusions still cause adverse reactions in recipients. They include Transfusion-Related Acute Lung Injury (TRALI), respiratory distress that occurs within six hours of the transfusion. The pathophysiology of this transfusion complication brings complex cellular communication into play. The role, particularly inflammatory, played by blood platelets in TRALI pathophysiology has been demonstrated, but is still under debate. Blood platelets play a role in inflammation, particularly via the CD40/CD40L (sCD40L) immunomodulator complex. In this study, we examine in particular the specific involvement of the CD40/CD40L (sCD40L) complex in the inflammatory pathogenesis of TRALI. This molecular complex could be a major target in a TRALI prevention strategy. Improving the conditions in which the platelet concentrates (PC) are prepared and stored would contribute to controlling partly the risks of non-immune TRALI.
Collapse
|