1
|
Fiuza-Luces C, Valenzuela PL, Gálvez BG, Ramírez M, López-Soto A, Simpson RJ, Lucia A. The effect of physical exercise on anticancer immunity. Nat Rev Immunol 2024; 24:282-293. [PMID: 37794239 DOI: 10.1038/s41577-023-00943-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/07/2023] [Indexed: 10/06/2023]
Abstract
Regular physical activity is associated with lower cancer incidence and mortality, as well as with a lower rate of tumour recurrence. The epidemiological evidence is supported by preclinical studies in animal models showing that regular exercise delays the progression of cancer, including highly aggressive malignancies. Although the mechanisms underlying the antitumorigenic effects of exercise remain to be defined, an improvement in cancer immunosurveillance is likely important, with different immune cell subtypes stimulated by exercise to infiltrate tumours. There is also evidence that immune cells from blood collected after an exercise bout could be used as adoptive cell therapy for cancer. In this Perspective, we address the importance of muscular activity for maintaining a healthy immune system and discuss the effects of a single bout of exercise (that is, 'acute' exercise) and those of 'regular' exercise (that is, repeated bouts) on anticancer immunity, including tumour infiltrates. We also address the postulated mechanisms and the clinical implications of this emerging area of research.
Collapse
Affiliation(s)
- Carmen Fiuza-Luces
- Physical Activity and Health Research Group ('PaHerg'), Research Institute of the Hospital 12 de Octubre ('imas12'), Madrid, Spain.
| | - Pedro L Valenzuela
- Physical Activity and Health Research Group ('PaHerg'), Research Institute of the Hospital 12 de Octubre ('imas12'), Madrid, Spain
- Systems Biology Department, Universidad de Alcalá, Alcalá de Henares, Spain
| | - Beatriz G Gálvez
- Physical Activity and Health Research Group ('PaHerg'), Research Institute of the Hospital 12 de Octubre ('imas12'), Madrid, Spain
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Universidad Complutense de Madrid, Madrid, Spain
| | - Manuel Ramírez
- Oncohematology Unit, Hospital Infantil Universitario Niño Jesús, Madrid, Spain
- Biomedical Research Foundation, Hospital Infantil Universitario Niño Jesús, Madrid, Spain
- La Princesa Institute of Heah, Madrid, Spain
| | - Alejandro López-Soto
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Oviedo, Oviedo, Spain.
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Asturias, Spain.
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Asturias, Spain.
| | - Richard J Simpson
- School of Nutritional Sciences and Wellness, The University of Arizona, Tucson, AZ, USA
- Department of Paediatrics, The University of Arizona, Tucson, AZ, USA
- Department of Immunobiology, The University of Arizona, Tucson, AZ, USA
| | - Alejandro Lucia
- CIBER of Frailty and Healthy Aging (CIBERFES), Madrid, Spain.
- Faculty of Sport Sciences, Universidad Europea, Madrid, Spain.
| |
Collapse
|
2
|
Chiavelli C, Prapa M, Rovesti G, Silingardi M, Neri G, Pugliese G, Trudu L, Dall'Ora M, Golinelli G, Grisendi G, Vinet J, Bestagno M, Spano C, Papapietro RV, Depenni R, Di Emidio K, Pasetto A, Nascimento Silva D, Feletti A, Berlucchi S, Iaccarino C, Pavesi G, Dominici M. Autologous anti-GD2 CAR T cells efficiently target primary human glioblastoma. NPJ Precis Oncol 2024; 8:26. [PMID: 38302615 PMCID: PMC10834575 DOI: 10.1038/s41698-024-00506-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 01/05/2024] [Indexed: 02/03/2024] Open
Abstract
Glioblastoma (GBM) remains a deadly tumor. Treatment with chemo-radiotherapy and corticosteroids is known to impair the functionality of lymphocytes, potentially compromising the development of autologous CAR T cell therapies. We here generated pre-clinical investigations of autologous anti-GD2 CAR T cells tested against 2D and 3D models of GBM primary cells. We detected a robust antitumor effect, highlighting the feasibility of developing an autologous anti-GD2 CAR T cell-based therapy for GBM patients.
Collapse
Affiliation(s)
- Chiara Chiavelli
- Laboratory of Cellular Therapy, Division of Oncology, Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, Modena, Italy
| | - Malvina Prapa
- Laboratory of Cellular Therapy, Division of Oncology, Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, Modena, Italy
| | - Giulia Rovesti
- Laboratory of Cellular Therapy, Division of Oncology, Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, Modena, Italy
- Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, Modena, Italy
- Department of Oncology and Hematology, University-Hospital of Modena and Reggio Emilia, Modena, Italy
| | - Marco Silingardi
- Laboratory of Cellular Therapy, Division of Oncology, Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, Modena, Italy
- Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, Modena, Italy
| | - Giovanni Neri
- Laboratory of Cellular Therapy, Division of Oncology, Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, Modena, Italy
- Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, Modena, Italy
| | - Giuseppe Pugliese
- Laboratory of Cellular Therapy, Division of Oncology, Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, Modena, Italy
- Department of Oncology and Hematology, University-Hospital of Modena and Reggio Emilia, Modena, Italy
- Leucid Bio Ltd., Guy's Hospital, Great Maze Pond, London, SE1 9RT, UK
| | - Lucia Trudu
- Laboratory of Cellular Therapy, Division of Oncology, Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, Modena, Italy
- Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, Modena, Italy
- Department of Oncology and Hematology, University-Hospital of Modena and Reggio Emilia, Modena, Italy
| | | | - Giulia Golinelli
- Laboratory of Cellular Therapy, Division of Oncology, Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, Modena, Italy
- Center for Cellular Immunotherapies, Perelman School of Medicine, and Parker Institute for Cancer Immunotherapy at University of Pennsylvania, Philadelphia, PA, USA
| | - Giulia Grisendi
- Laboratory of Cellular Therapy, Division of Oncology, Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, Modena, Italy
| | - Jonathan Vinet
- Centro Interdipartimentale Grandi Strumenti (CIGS), University of Modena and Reggio Emilia, Modena, Italy
| | - Marco Bestagno
- International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Carlotta Spano
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Roberto Vito Papapietro
- Department of Oncology and Hematology, University-Hospital of Modena and Reggio Emilia, Modena, Italy
| | - Roberta Depenni
- Department of Oncology and Hematology, University-Hospital of Modena and Reggio Emilia, Modena, Italy
| | - Katia Di Emidio
- Department of Oncology and Hematology, University-Hospital of Modena and Reggio Emilia, Modena, Italy
| | - Anna Pasetto
- Section for Cell Therapy, Radiumhospitalet, Oslo University Hospital, Oslo, Norway
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | | | - Alberto Feletti
- Department of Neurosciences, Biomedicine and Movement Sciences, Neurosurgery Unit, University of Verona, Verona, Italy
| | - Silvia Berlucchi
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia - Division of Neurosurgery, Department of Neurosciences, University-Hospital of Modena and Reggio Emilia, Modena, Italy
| | - Corrado Iaccarino
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia - Division of Neurosurgery, Department of Neurosciences, University-Hospital of Modena and Reggio Emilia, Modena, Italy
| | - Giacomo Pavesi
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia - Division of Neurosurgery, Department of Neurosciences, University-Hospital of Modena and Reggio Emilia, Modena, Italy
| | - Massimo Dominici
- Laboratory of Cellular Therapy, Division of Oncology, Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, Modena, Italy.
- Department of Oncology and Hematology, University-Hospital of Modena and Reggio Emilia, Modena, Italy.
| |
Collapse
|
3
|
Leone G, Baldini V, Bramanti S, Crocchiolo R, Gattillo S, Ermini S, Giudice V, Ferrero I, Moscato T, Milani R, Gozzer M, Piccirillo N, Tassi C, Tassi V, Coluccia P. Managing leukapheresis in adult and pediatric patients eligible for chimeric antigen receptor T-cell therapy: suggestions from an Italian Expert Panel. BLOOD TRANSFUSION = TRASFUSIONE DEL SANGUE 2023; 21:514-525. [PMID: 37146295 PMCID: PMC10645345 DOI: 10.2450/bloodtransfus.471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 01/18/2023] [Indexed: 05/07/2023]
Abstract
Chimeric antigen receptor (CAR) T-cell therapy relies on T cells engineered to target specific tumor antigens such as CD-19 in B-cell malignancies. In this setting, the commercially available products have offered a potential long-term cure for both pediatric and adult patients. Yet manufacturing CAR T cells is a cumbersome, multistep process, the success of which strictly depends on the characteristics of the starting material, i.e., lymphocyte collection yield and composition. These, in turn, might be affected by patient factors such as age, performance status, comorbidities, and previous therapies. Ideally, CAR T-cell therapies are a one-off treatment; therefore, optimization and the possible standardization of the leukapheresis procedure is critical, also in view of the novel CAR T cells currently under investigation for hematological malignancies and solid tumors. The most recent Best Practice recommendations for the management of children and adults undergoing CAR T-cell therapy provide a comprehensive guide to their use. However, their application in local practice is not straightforward and some grey areas remain. An Italian Expert Panel of apheresis specialists and hematologists from the centers authorized to administer CAR T-cell therapy took part in a detailed discussion on the following: 1) pre-apheresis patient evaluation; 2) management of the leukapheresis procedure, also in special situations represented by low lymphocyte count, peripheral blastosis, pediatric population <25 kg, and the COVID-19 outbreak; and 3) release and cryopreservation of the apheresis unit. This article presents some of the important challenges that must be faced to optimize the leukapheresis procedure and offers suggestions as to how to improve it, some of which are specific to the Italian setting.
Collapse
Affiliation(s)
- Giovanna Leone
- Unit of Immuno-Hematology and Transfusion Medicine, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | | | - Stefania Bramanti
- Cancer Center, Humanitas Cancer Center, IRCCS, Rozzano, Milan, Italy
| | | | - Salvatore Gattillo
- Immuno-Hematology and Transfusion Medicine Unit, San Raffaele Hospital, Milan, Italy
| | - Stefano Ermini
- Transfusion Service, University Hospital Meyer, Children’s Hospital, Florence, Italy
| | - Valeria Giudice
- Immuno-Hematology and Transfusion Medicine Unit, University Hospital Sant’ Orsola-Malpighi, Bologna, Italy
| | - Ivana Ferrero
- Stem Cell Transplantation and Cellular Therapy Laboratory, Paediatric Onco-Hematology Division, Regina Margherita Children’s Hospital, City of Health and Science of Turin, Turin, Italy
| | - Tiziana Moscato
- Stem Cell Transplant and Cellular Therapies Unit, Hemato-Oncology and Radiotherapy Department, Bianchi-Melacrino-Morelli Hospital, Reggio Calabria, Italy
| | - Raffaella Milani
- Immunohematology and Transfusion Medicine Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Maria Gozzer
- Hematology, Department of Translational and Precision Medicine, Sapienza University Policlinico Umberto I, Rome, Italy
| | - Nicola Piccirillo
- Department of Diagnostic Imaging, Oncological Radiotherapy and Hematology, Complex Operational Unit of Blood Transfusion, Gemelli University Hospital IRCCS, Rome, Italy
| | - Cristina Tassi
- Stem Cell Transplantation and Cellular Therapy Laboratory, Paediatric Onco-Hematology Division, Regina Margherita Children’s Hospital, City of Health and Science of Turin, Turin, Italy
| | - Valter Tassi
- Blood Bank and Immunohematology, City of Health and Science of Turin, Turin, Italy
| | - Paola Coluccia
- Immunohematology and Transfusion Medicine Service, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| |
Collapse
|
4
|
O'Reilly MA, Malhi A, Cheok KPL, Ings S, Balsa C, Keane H, Jalowiec K, Neill L, Peggs KS, Roddie C. A novel predictive algorithm to personalize autologous T-cell harvest for chimeric antigen receptor T-cell manufacture. Cytotherapy 2023; 25:323-329. [PMID: 36513573 DOI: 10.1016/j.jcyt.2022.10.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 10/23/2022] [Accepted: 10/24/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND AIMS The most widely accepted starting materials for chimeric antigen receptor T-cell manufacture are autologous CD3+ T cells obtained via the process of leukapheresis, also known as T-cell harvest. As this treatment modality gains momentum and apheresis units struggle to meet demand for harvest slots, strategies to streamline this critical step are warranted. METHODS This retrospective review of 262 T-cell harvests, with a control cohort of healthy donors, analyzed the parameters impacting CD3+ T-cell yield in adults with B-cell malignancies. The overall aim was to design a novel predictive algorithm to guide the required processed blood volume (PBV) (L) on the apheresis machine to achieve a specific CD3+ target yield. RESULTS Factors associated with CD3+ T-cell yield on multivariate analysis included peripheral blood CD3+ count (natural log, ×109/L), hematocrit (HCT) and PBV with coefficients of 0.86 (95% confidence interval [CI], 0.80-0.92, P < 0.001), 1.30 (95% CI, 0.51-2.08, P = 0.001) and 0.09 (95% CI, 0.07-0.11, P < 0.001), respectively. The authors' model, incorporating CD3+ cell count, HCT and PBV (L), with an adjusted R2 of 0.87 and root-mean-square error of 0.26 in the training dataset, was highly predictive of CD3+ cell yield in the testing dataset. An online application to estimate PBV using this algorithm can be accessed at https://cd3yield.shinyapps.io/cd3yield/. CONCLUSIONS The authors propose a transferrable model that incorporates clinical and laboratory variables accessible pre-harvest for use across the field of T-cell therapy. Pending further validation, such a model may be used to generate an individual leukapheresis plan and streamline the process of cell harvest, a well-recognized bottleneck in the industry.
Collapse
Affiliation(s)
- Maeve A O'Reilly
- University College London Cancer Institute, London, UK; Department of Hematology, University College London Hospital, London, UK. maeve.o'
| | - Aman Malhi
- Cancer Research UK & University College London Cancer Trials Center, University College London, London, UK
| | - Kathleen P L Cheok
- Department of Hematology, University College London Hospital, London, UK
| | - Stuart Ings
- Department of Hematology, University College London Hospital, London, UK
| | - Carmen Balsa
- Department of Hematology, University College London Hospital, London, UK
| | - Helen Keane
- Department of Hematology, University College London Hospital, London, UK
| | - Katarzyna Jalowiec
- Department of Hematology, University College London Hospital, London, UK
| | - Lorna Neill
- Department of Hematology, University College London Hospital, London, UK
| | - Karl S Peggs
- University College London Cancer Institute, London, UK; Department of Hematology, University College London Hospital, London, UK
| | - Claire Roddie
- University College London Cancer Institute, London, UK; Department of Hematology, University College London Hospital, London, UK
| |
Collapse
|
5
|
Piñeyroa JA, Cid J, Vlagea A, Carbassé G, Henao P, Bailo N, Ortiz-Maldonado V, Martínez-Cibrian N, Español M, Delgado J, Urbano-Ispizua Á, Lozano M. Evaluation of cell collection efficiency in non-mobilized adult donors for autologous chimeric antigen receptor T-cell manufacturing. Vox Sang 2023; 118:217-222. [PMID: 36516201 DOI: 10.1111/vox.13394] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 11/08/2022] [Accepted: 11/30/2022] [Indexed: 12/15/2022]
Abstract
BACKGROUND AND OBJECTIVES Data about collection efficiency 1 (CE1), which takes into account blood cell counts before and after collection, thus providing a more accurate estimate, in the collection of autologous T lymphocytes by apheresis for chimeric antigen receptor (CAR) T-cells remain scarce. We evaluated donor- and procedure-related characteristics that might influence the CE1 of lymphocytes. MATERIALS AND METHODS We retrospectively reviewed all mononuclear cell (MNC) collections) performed for CAR T-cell manufacturing in our institution from May 2017 to June 2021 in adult patients. Age, gender, weight, total blood volume (TBV), prior haematopoietic cell transplant, diagnosis, days between last treatment and apheresis, pre-collection cell counts, duration of apheresis, TBV processed, vascular access, inlet flow and device type were analysed as potential factors affecting CE1 of lymphocytes. RESULTS A total of 127 autologous MNC collections were performed on 118 patients diagnosed with acute lymphoblastic leukaemia (n = 53, 45%), non-Hodgkin lymphoma (n = 40, 34%), multiple myeloma (n = 19, 16%), and chronic lymphocytic leukaemia (n = 6, 5%). The median CE1 of lymphocytes was 47% (interquartile range: 32%-65%). In multiple regression analysis, Amicus device was associated with higher CE1 of lymphocytes (p = 0.01) and lower CE1 of platelets (p < 0.01) when compared with Optia device. CONCLUSION The knowledge of the MNC and lymphocyte CE1 of each apheresis device used to collect cells for CAR T therapy, together with the goal of the number of cells required, is essential to define the volume to be processed and to ensure the success of the collection.
Collapse
Affiliation(s)
- Juan A Piñeyroa
- Apheresis & Cellular Therapy Unit, Department of Hemotherapy and Hemostasis, ICMHO, Hospital Clínic, Barcelona, Spain
| | - Joan Cid
- Apheresis & Cellular Therapy Unit, Department of Hemotherapy and Hemostasis, ICMHO, Hospital Clínic, Barcelona, Spain.,IDIBAPS, Barcelona, Spain.,University of Barcelona, Barcelona, Spain
| | - Alexandru Vlagea
- Department of Immunology, CDB, Hospital Clínic, Barcelona, Spain
| | - Gloria Carbassé
- Apheresis & Cellular Therapy Unit, Department of Hemotherapy and Hemostasis, ICMHO, Hospital Clínic, Barcelona, Spain
| | - Paola Henao
- Apheresis & Cellular Therapy Unit, Department of Hemotherapy and Hemostasis, ICMHO, Hospital Clínic, Barcelona, Spain
| | - Noemí Bailo
- Apheresis & Cellular Therapy Unit, Department of Hemotherapy and Hemostasis, ICMHO, Hospital Clínic, Barcelona, Spain
| | | | | | - Marta Español
- Department of Immunology, CDB, Hospital Clínic, Barcelona, Spain
| | - Julio Delgado
- IDIBAPS, Barcelona, Spain.,University of Barcelona, Barcelona, Spain.,Department of Hematology, ICMHO, Hospital Clínic, Barcelona, Spain
| | - Álvaro Urbano-Ispizua
- IDIBAPS, Barcelona, Spain.,University of Barcelona, Barcelona, Spain.,Department of Hematology, ICMHO, Hospital Clínic, Barcelona, Spain
| | - Miquel Lozano
- Apheresis & Cellular Therapy Unit, Department of Hemotherapy and Hemostasis, ICMHO, Hospital Clínic, Barcelona, Spain.,IDIBAPS, Barcelona, Spain.,University of Barcelona, Barcelona, Spain
| |
Collapse
|
6
|
Qayed M, McGuirk JP, Myers GD, Parameswaran V, Waller EK, Holman P, Rodrigues M, Clough LF, Willert J. Leukapheresis guidance and best practices for optimal chimeric antigen receptor T-cell manufacturing. Cytotherapy 2022; 24:869-878. [PMID: 35718701 DOI: 10.1016/j.jcyt.2022.05.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 04/22/2022] [Accepted: 05/11/2022] [Indexed: 11/03/2022]
Abstract
Chimeric antigen receptor (CAR) T-cell therapy is an individualized immunotherapy that genetically reprograms a patient's T cells to target and eliminate cancer cells. Tisagenlecleucel is a US Food and Drug Administration-approved CD19-directed CAR T-cell therapy for patients with relapsed/refractory (r/r) B-cell acute lymphoblastic leukemia and r/r diffuse large B-cell lymphoma. Manufacturing CAR T cells is an intricate process that begins with leukapheresis to obtain T cells from the patient's peripheral blood. An optimal leukapheresis product is essential to the success of CAR T-cell therapy; therefore, understanding factors that may affect the quality or T-cell content is imperative. CAR T-cell therapy requires detailed organization throughout the entire multistep process, including appropriate training of a multidisciplinary team in leukapheresis collection, cell processing, timing and coordination with manufacturing and administration to achieve suitable patient care. Consideration of logistical parameters, including leukapheresis timing, location and patient availability, when clinically evaluating the patient and the trajectory of their disease progression must be reflected in the overall collection strategy. Challenges of obtaining optimal leukapheresis product for CAR T-cell manufacturing include vascular access for smaller patients, achieving sufficient T-cell yield, eliminating contaminating cell types in the leukapheresis product, determining appropriate washout periods for medication and managing adverse events at collection. In this review, the authors provide recommendations on navigating CAR T-cell therapy and leukapheresis based on experience and data from tisagenlecleucel manufacturing in clinical trials and the real-world setting.
Collapse
Affiliation(s)
- Muna Qayed
- Blood and Marrow Transplant Program, Aflac Cancer and Blood Disorders Center, Emory University, Atlanta, Georgia, USA.
| | - Joseph P McGuirk
- Division of Hematologic Malignancies and Cellular Therapeutics, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - G Doug Myers
- Children's Mercy Hospital, Kansas City, Missouri, USA
| | - Vinod Parameswaran
- Avera Medical Group Hematology, Transplant & Cellular Therapy, Sioux Falls, South Dakota, USA
| | - Edmund K Waller
- Bone Marrow and Stem Cell Transplant Center, Winship Cancer Institute of Emory University, Atlanta, Georgia, USA
| | - Peter Holman
- Novartis Pharmaceuticals Corporation, East Hanover, New Jersey, USA
| | | | - Lee F Clough
- Novartis Pharmaceuticals Corporation, East Hanover, New Jersey, USA
| | - Jennifer Willert
- Novartis Pharmaceuticals Corporation, East Hanover, New Jersey, USA
| |
Collapse
|
7
|
Jo T, Yoshihara S, Hada A, Arai Y, Kitawaki T, Ikemoto J, Onomoto H, Sugiyama H, Yoshihara K, Obi N, Matsui K, Niwa N, Nakagawa Y, Kanda J, Kondo T, Saida S, Kato I, Hiramatsu H, Adachi S, Takita J, Takaori-Kondo A, Nagao M. A clinically applicable prediction model to improve T-cell collection in CAR-T cell therapy. Transplant Cell Ther 2022; 28:365.e1-365.e7. [PMID: 35460928 DOI: 10.1016/j.jtct.2022.04.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/07/2022] [Accepted: 04/14/2022] [Indexed: 01/09/2023]
Abstract
As chimeric antigen receptor T (CAR-T) cell therapy targeting CD19 has shown favorable outcomes in patients with relapsed or refractory (r/r) mature B-cell lymphomas and B-cell acute lymphoblastic leukemia (B-ALL), the number of patients who are waiting to receive these treatments is increasing. Optimized protocols for T-cell collection by lymphapheresis for chimeric antigen receptor (CAR) -T cell therapy must be urgently established to provide CAR-T cell therapy for patients with refractory and progressive disease, and/or a low number of lymphocytes due to prior chemotherapies. Predicted collection efficiency of CD3+ cells in apheresis can guide protocols for apheresis, but a clinically applicable model to produce reliable estimates has not been established yet. Therefore, we prospectively analyzed lymphapheresis procedures for tisagenlecleucel therapy at two centers. A total of 108 apheresis procedures included 20 procedures for patients with B-cell acute lymphoblastic leukemia, and 88 for patients with diffuse large B-cell lymphoma, with a median age at apheresis of 58 years (1-71). After lymphapheresis with a median processing blood volume of 10 L (3-16), a median of 3.2 × 109 (0.1-15.0) CD3+ cells were harvested. Collection efficiency 2 (CE2) for CD3+ cells was highly variable (median, 59.3%; range 11.0-199.8). Multivariate analyses revealed that lower Hgb levels, higher circulating CD3+ cell counts, and higher platelet counts before apheresis significantly decreased apheresis CE2. Based on multivariate analyses, we developed a novel formula that estimates CE2 from pre-collection parameters with high accuracy (r = 0.56, p < 0.01), which also suggests the necessary processing blood volume. Our strategy in lymphapheresis should be helpful to reduce collection failure, as well as to achieve efficient utilization of medical resources in clinical practice, thereby delivering CAR-T cell therapy to more patients in a timely manner.
Collapse
Affiliation(s)
- Tomoyasu Jo
- Department of Clinical Laboratory Medicine and Center for Research and Application of Cellular Therapy, Kyoto University Hospital, Kyoto, Japan; Department of Hematology and Oncology, Kyoto University Hospital, Kyoto, Japan
| | - Satoshi Yoshihara
- Department of Transfusion Medicine and Cell Therapy, Hyogo College of Medicine Hospital, Hyogo, Japan; Department of Hematology, Hyogo College of Medicine Hospital, Hyogo, Japan
| | - Asuka Hada
- Department of Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yasuyuki Arai
- Department of Clinical Laboratory Medicine and Center for Research and Application of Cellular Therapy, Kyoto University Hospital, Kyoto, Japan; Department of Hematology and Oncology, Kyoto University Hospital, Kyoto, Japan.
| | - Toshio Kitawaki
- Department of Hematology and Oncology, Kyoto University Hospital, Kyoto, Japan
| | - Junko Ikemoto
- Department of Transfusion Medicine and Cell Therapy, Hyogo College of Medicine Hospital, Hyogo, Japan
| | - Hitomi Onomoto
- Department of Transfusion Medicine and Cell Therapy, Hyogo College of Medicine Hospital, Hyogo, Japan
| | - Hiroki Sugiyama
- Department of Transfusion Medicine and Cell Therapy, Hyogo College of Medicine Hospital, Hyogo, Japan
| | - Kyoko Yoshihara
- Department of Transfusion Medicine and Cell Therapy, Hyogo College of Medicine Hospital, Hyogo, Japan; Department of Hematology, Hyogo College of Medicine Hospital, Hyogo, Japan
| | - Natsuno Obi
- Department of Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Keiko Matsui
- Department of Clinical Laboratory Medicine and Center for Research and Application of Cellular Therapy, Kyoto University Hospital, Kyoto, Japan
| | - Norimi Niwa
- Department of Clinical Laboratory Medicine and Center for Research and Application of Cellular Therapy, Kyoto University Hospital, Kyoto, Japan
| | - Yoko Nakagawa
- Department of Clinical Laboratory Medicine and Center for Research and Application of Cellular Therapy, Kyoto University Hospital, Kyoto, Japan
| | - Junya Kanda
- Department of Hematology and Oncology, Kyoto University Hospital, Kyoto, Japan
| | - Tadakazu Kondo
- Department of Hematology and Oncology, Kyoto University Hospital, Kyoto, Japan
| | - Satoshi Saida
- Department of Pediatrics, Kyoto University Hospital, Kyoto, Japan
| | - Itaru Kato
- Department of Pediatrics, Kyoto University Hospital, Kyoto, Japan
| | | | - Souichi Adachi
- Department of Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Junko Takita
- Department of Pediatrics, Kyoto University Hospital, Kyoto, Japan
| | - Akifumi Takaori-Kondo
- Department of Clinical Laboratory Medicine and Center for Research and Application of Cellular Therapy, Kyoto University Hospital, Kyoto, Japan; Department of Hematology and Oncology, Kyoto University Hospital, Kyoto, Japan
| | - Miki Nagao
- Department of Clinical Laboratory Medicine and Center for Research and Application of Cellular Therapy, Kyoto University Hospital, Kyoto, Japan
| |
Collapse
|
8
|
Considerations for immune effector cell therapy collections: a white paper from the American Society for Apheresis. Cytotherapy 2022; 24:916-922. [DOI: 10.1016/j.jcyt.2022.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 02/14/2022] [Accepted: 02/15/2022] [Indexed: 11/18/2022]
|
9
|
Abstract
In 1891, Dr. William B. Coley, an American surgeon, made a compelling observation that immune system can be triggered to shrink tumors. The quest to exploit the power of immunotherapy however was forestalled by an era of chemotherapy that ensued. During World War II, the accidental sinking of a US naval ship led to a group of sailors developing pancytopenia due to poisoning from mustard gas (nitrogen mustard). The observation prompted wide-scale screening of these chemical compounds with cytotoxic potential; further clinical trials led to the first Food and Drug Administration (FDA) approval of a chemotherapy drug, nitrogen mustard. Immunotherapy field took further impetus, not until the last two decades, due to our deeper understanding of the immune system and the cellular and molecular pathways leading to tumor development. Two groundbreaking therapies which have shown great promise in this field involve "taking the breaks off" and "pushing the pedal" of the immune system. These therapies, namely, immune checkpoint inhibitors and adoptive cell therapy, respectively, have been successful in a variety of malignancies, while the former mostly in solid tumors and the latter in hematological malignancies.
Collapse
Affiliation(s)
- Ranjit Nair
- Department of Lymphoma and Myeloma, University of Texas M.D. Anderson Cancer Center, Houston, TX, USA.
| | - Jason Westin
- Department of Lymphoma and Myeloma, University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
10
|
Mehta PH, Fiorenza S, Koldej RM, Jaworowski A, Ritchie DS, Quinn KM. T Cell Fitness and Autologous CAR T Cell Therapy in Haematologic Malignancy. Front Immunol 2021; 12:780442. [PMID: 34899742 PMCID: PMC8658247 DOI: 10.3389/fimmu.2021.780442] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 11/05/2021] [Indexed: 12/14/2022] Open
Abstract
A range of emerging therapeutic approaches for the treatment of cancer aim to induce or augment endogenous T cell responses. Chimeric antigen receptor (CAR) T cell therapy (CTT) is one such approach that utilises the patient’s own T cells, engineered ex vivo to target cell surface antigens, to eliminate haematological malignancies. Despite mediating high rates of responses in some clinical trials, this approach can be limited by dysfunctional T cells if they are present at high frequencies either in the starting material from the patient or the CAR T cell product. The fitness of an individual’s T cells, driven by age, chronic infection, disease burden and cancer treatment, is therefore likely to be a crucial limiting factor of CTT. Currently, T cell dysfunction and its impact on CTT is not specifically quantified when patients are considering the therapy. Here, we review our current understanding of T cell fitness for CTT, how fitness may be impacted by age, chronic infection, malignancy, and treatment. Finally, we explore options to specifically tailor clinical decision-making and the CTT protocol for patients with more extensive dysfunction to improve treatment efficacy. A greater understanding of T cell fitness throughout a patient’s treatment course could ultimately be used to identify patients likely to achieve favourable CTT outcomes and improve methods for T cell collection and CTT delivery.
Collapse
Affiliation(s)
- Palak H Mehta
- School of Health and Biomedical Sciences, Royal Melbourne Institute of Technology (RMIT) University, Bundoora, VIC, Australia
| | - Salvatore Fiorenza
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Rachel M Koldej
- Australian Cancer Research Foundation (ACRF) Translational Laboratory, Royal Melbourne Hospital, Melbourne, VIC, Australia.,Department of Medicine, University of Melbourne, Melbourne, VIC, Australia
| | - Anthony Jaworowski
- School of Health and Biomedical Sciences, Royal Melbourne Institute of Technology (RMIT) University, Bundoora, VIC, Australia
| | - David S Ritchie
- Australian Cancer Research Foundation (ACRF) Translational Laboratory, Royal Melbourne Hospital, Melbourne, VIC, Australia.,Department of Medicine, University of Melbourne, Melbourne, VIC, Australia
| | - Kylie M Quinn
- School of Health and Biomedical Sciences, Royal Melbourne Institute of Technology (RMIT) University, Bundoora, VIC, Australia.,Department of Biochemistry, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| |
Collapse
|
11
|
Han L, Zhou J, Li L, Zhou K, Zhao L, Zhu X, Yin Q, Li Y, You H, Zhang J, Song Y, Gao Q. Culturing adequate CAR-T cells from less peripheral blood to treat B-cell malignancies. Cancer Biol Med 2021; 18:j.issn.2095-3941.2021.0040. [PMID: 34390235 PMCID: PMC8610157 DOI: 10.20892/j.issn.2095-3941.2021.0040] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 04/07/2021] [Indexed: 11/29/2022] Open
Abstract
OBJECTIVE Chimeric antigen receptor-modified T (CAR-T) cells have shown impressive results against relapsed/refractory B cell malignancies. However, the traditional manufacture of CAR-T cells requires leukapheresis to isolate large amounts of peripheral blood T cells, thus making some patients ineligible for the procedure. METHODS We developed a simple method for CAR-T cell preparation requiring small volumes of peripheral blood. First, CD3+ T cells isolated from 50 mL peripheral blood from patients (B-cell malignancies) were stimulated with immobilized anti-CD3/RetroNectin in 6-well plates and then transduced with CAR-expressing lentiviral vector. After 4 d, the T cells were transferred to culture bags for large-scale CAR-T cell expansion. In vitro and animal experiments were performed to evaluate the activity of the manufactured CAR-T cells. Finally, 29 patients with B-cell acute lymphoblastic leukemia (B-ALL) and 9 patients with B-cell lymphoma were treated with the CAR-T cells. RESULTS The CAR-T cells were expanded to 1-3 × 108 cells in 8-10 d and successfully killed B cell-derived malignant tumor cells in vitro and in vivo. For patients with B-ALL, the complete remission rate was 93% 1 month after CAR-T cell infusion; after 12 months, the overall survival (OS) and leukemia-free survival rates were 69% and 31%, respectively. For patients with lymphoma, the objective response rate (including complete and partial remission) was 78% 2 months after CAR-T cell infusion, and after 12 months, the OS and progression-free survival rates were 71% and 43%, respectively. Cytokine-release syndrome (CRS) occurred in 65.51% and 55.56% of patients with B-ALL and B-cell lymphoma, respectively; severe CRS developed in 20.69% of patients with B-ALL and in no patients with lymphoma. CONCLUSIONS Our novel method can generate sufficient numbers of CAR-T cells for clinical use from 50-100 mL peripheral blood, thus providing an alternative means of CAR-T cell generation for patients ineligible for leukapheresis.
Collapse
Affiliation(s)
- Lu Han
- Department of Immunology, Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou 450008, China
| | - Jian Zhou
- Department of Hematology, Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou 450008, China
| | - Linlin Li
- Department of Medical Microbiology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, China
| | - Keshu Zhou
- Department of Hematology, Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou 450008, China
| | - Lingdi Zhao
- Department of Immunology, Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou 450008, China
| | - Xinghu Zhu
- Department of Hematology, Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou 450008, China
| | - Qingsong Yin
- Department of Hematology, Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou 450008, China
| | - Yufu Li
- Department of Hematology, Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou 450008, China
| | - Hongqin You
- Department of Immunology, Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou 450008, China
| | - Jishuai Zhang
- The Shenzhen Pregene Biopharma Company, Ltd., Shenzhen 518118, China
| | - Yongping Song
- Department of Hematology, Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou 450008, China
| | - Quanli Gao
- Department of Immunology, Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou 450008, China
| |
Collapse
|
12
|
Yamanaka I, Yamauchi T, Henzan T, Sakoda T, Miyamoto K, Mishima H, Ono H, Koga Y, Nakashima Y, Kato K, Miyamoto T, Mizuno S, Ogawa Y, Ohga S, Akashi K, Maeda T, Kunisaki Y. Optimization of lymphapheresis for manufacturing autologous CAR-T cells. Int J Hematol 2021; 114:449-458. [PMID: 34275066 DOI: 10.1007/s12185-021-03191-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 07/09/2021] [Accepted: 07/12/2021] [Indexed: 01/28/2023]
Abstract
Collection of CD3+ lymphocytes via lymphapheresis is essential for manufacturing autologous chimeric antigen receptor (CAR) T cells. Optimization of timing and procedures for lymphapheresis for each patient is critical because patients often have progressive diseases and receive medications that could reduce T cell counts. We conducted a retrospective study of clinical data from 28 patients who underwent lymphapheresis for CD19-directed CAR-T therapy with tisagenlecleucel to identify factors that could affect CD3+ lymphocyte yields. The numbers of CD3+ cells in peripheral blood were significantly correlated with CD3+ cell yields (correlation coefficient r = 0.84), which enabled us to estimate the volume of blood to process before apheresis. We also found that small cell ratio (SCR) at the apheresis site precisely reflected the proportion of lymphocytes, especially in patients without circulating blasts (coefficient of determination: r2 = 0.9). We were able to predict the CD3+ cell yield and prevent excessive apheresis by measuring pre-apheresis circulating CD3+ cell counts and monitoring SCR. Collectively, these results will help us to establish a strategy for optimization of lymphapheresis procedures for CAR-T cell production on a patient-by-patient basis.
Collapse
Affiliation(s)
- Ikumi Yamanaka
- Center for Cellular and Molecular Medicine, Kyushu University Hospital, 3-1-1, Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Takuji Yamauchi
- Center for Cellular and Molecular Medicine, Kyushu University Hospital, 3-1-1, Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Tomoko Henzan
- Center for Cellular and Molecular Medicine, Kyushu University Hospital, 3-1-1, Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Teppei Sakoda
- Center for Cellular and Molecular Medicine, Kyushu University Hospital, 3-1-1, Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Kyoko Miyamoto
- Center for Cellular and Molecular Medicine, Kyushu University Hospital, 3-1-1, Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Hiroyuki Mishima
- Department of Medical Technology, Kyushu University Hospital, Fukuoka, 812-8582, Japan
| | - Hiroaki Ono
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Yuhki Koga
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Yasuhiro Nakashima
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Koji Kato
- Department of Medicine and Biosystemic Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Toshihiro Miyamoto
- Department of Medicine and Biosystemic Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Shinichi Mizuno
- Molecular and Cell Processing Center, Kyushu University Hospital, Fukuoka, 812-8582, Japan
| | - Yoshihiro Ogawa
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Shouichi Ohga
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Koichi Akashi
- Department of Medicine and Biosystemic Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Takahiro Maeda
- Center for Cellular and Molecular Medicine, Kyushu University Hospital, 3-1-1, Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
- Division of Precision Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Yuya Kunisaki
- Center for Cellular and Molecular Medicine, Kyushu University Hospital, 3-1-1, Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.
| |
Collapse
|
13
|
Gustafson MP, Wheatley-Guy CM, Rosenthal AC, Gastineau DA, Katsanis E, Johnson BD, Simpson RJ. Exercise and the immune system: taking steps to improve responses to cancer immunotherapy. J Immunother Cancer 2021; 9:e001872. [PMID: 34215686 PMCID: PMC8256759 DOI: 10.1136/jitc-2020-001872] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/30/2021] [Indexed: 12/18/2022] Open
Abstract
The remarkable success of cancer immunotherapies has provided new hope to cancer patients. Unfortunately, a significant proportion of patients remain unable to respond to immunotherapy or maintain durable clinical responses. The lack of objective responses likely results from profound immune dysfunction often observed in patients with cancer. There is substantial evidence that exercise and physical activity can reduce incidence and improve outcomes in cancer patients. As the immune system is highly responsive to exercise, one potential avenue to improve immune function is through exercise and physical activity. A single event of dynamic exercise results in the substantial mobilization of leukocytes with increased functional capacities into the circulation. Chronic, or long-term, exercise leads to higher physical fitness in terms of greater cardiorespiratory function and/or muscle strength and endurance. High aerobic capacity, as measured by maximal oxygen uptake, has been associated with the reduction of dysfunctional T cells and improvements in the abundance of some T cell populations. To be sure, however, the mechanisms of exercise-mediated immune changes are both extensive and diverse. Here, we examine the evidence and theorize how acute and chronic exercise could be used to improve responses to cancer immunotherapies including immune checkpoint inhibitors, dendritic cell vaccines, natural killer cell therapies, and adoptive T cell therapies such as chimeric antigen receptor (CAR) T cells. Although the parameters of optimal exercise to yield defined outcomes remain to be determined, the available current data provide a compelling justification for additional human studies and clinical trials investigating the adjuvant use of exercise in immuno-oncology.
Collapse
Affiliation(s)
- Michael P Gustafson
- Laboratory Medicine and Pathology, Mayo Clinic Arizona, Phoenix, Arizona, USA
| | | | | | - Dennis A Gastineau
- Laboratory Medicine and Pathology, Mayo Clinic Arizona, Phoenix, Arizona, USA
| | - Emmanuel Katsanis
- Pediatrics, Immunobiology, University of Arizona Medical Center - University Campus, Tucson, Arizona, USA
| | - Bruce D Johnson
- Department of Cardiovascular Diseases, Mayo Clinic Arizona, Scottsdale, Arizona, USA
| | - Richard J Simpson
- Pediatrics, Immunobiology, and Nutritional Sciences, University of Arizona Medical Center - University Campus, Tucson, Arizona, USA
| |
Collapse
|
14
|
Optimizing leukapheresis product yield and purity for blood cell-based gene and immune effector cell therapy. Curr Opin Hematol 2021; 27:415-422. [PMID: 32889828 DOI: 10.1097/moh.0000000000000611] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
PURPOSE OF REVIEW A critical common step for blood-based ex-vivo gene and immune effector cell (IEC) therapies is the collection of target cells for further processing and manufacturing, often accomplished through a leukapheresis procedure to collect mononuclear cells (MNCs). The purpose of this review is to describe strategies to optimize the apheresis product cell yield and purity for gene and IEC therapies. Relevant data from the conventional bone marrow transplant literature is described where applicable. RECENT FINDINGS Product yield is affected by three main factors: the peripheral blood concentration of the target cell, optimized by mobilizing agents, donor interventions or donor selection; the volume of peripheral blood processed, tailored to the desired product yield using prediction algorithms; and target cell collection efficiency, optimized by a variety of device and donor-specific considerations. Factors affecting product purity include characteristics of the donor, mobilizing agent, device, and device settings. SUMMARY Strategies to optimize product yield and purity for gene and IEC therapies are important to consider because of loss of target cell numbers or function with downstream steps and detrimental effects of nontarget cells on further manufacturing and patient outcome.
Collapse
|
15
|
Dasyam N, George P, Weinkove R. Chimeric antigen receptor T-cell therapies: Optimising the dose. Br J Clin Pharmacol 2020; 86:1678-1689. [PMID: 32175617 PMCID: PMC7444796 DOI: 10.1111/bcp.14281] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 02/13/2020] [Accepted: 03/01/2020] [Indexed: 12/11/2022] Open
Abstract
Lymphocytes such as T-cells can be genetically transduced to express a synthetic chimeric antigen receptor (CAR) that re-directs their cytotoxic activity against a tumour-expressed antigen of choice. Autologous (patient-derived) CAR T-cells have been licensed to treat certain relapsed and refractory B-cell malignancies, and numerous CAR T-cell products are in clinical development. As living gene-modified cells, CAR T-cells exhibit unique pharmacokinetics, typically proliferating within the recipient during the first 14 days after administration before contracting in number, and sometimes exhibiting long-term persistence. The relationship between CAR T-cell dose and exposure is highly variable, and may be influenced by CAR design, patient immune function at the time of T-cell harvest, phenotype of the CAR T-cell product, disease burden, lymphodepleting chemotherapy and subsequent immunomodulatory therapies. Recommended CAR T-cell doses are typically established for a specific product and indication, although for some products, stratification of dose based on disease burden may mitigate toxicity while maintaining efficacy. Re-evaluation of CAR T-cell dosing may be necessary following changes to the lymphodepleting regimen, for different disease indications, and following significant manufacturing changes, if product comparability cannot be demonstrated. Dose escalation trials have typically employed 3 + 3 designs, although this approach has limitations, and alternative phase I trial designs may facilitate the identification of CAR T-cell doses that strike an optimal balance of safety, efficacy and manufacturing feasibility.
Collapse
Affiliation(s)
- Nathaniel Dasyam
- Cancer Immunotherapy ProgrammeMalaghan Institute of Medical ResearchWellingtonNew Zealand
| | - Philip George
- Cancer Immunotherapy ProgrammeMalaghan Institute of Medical ResearchWellingtonNew Zealand
- Wellington Blood & Cancer Centre, Capital & Coast DHBWellingtonNew Zealand
| | - Robert Weinkove
- Cancer Immunotherapy ProgrammeMalaghan Institute of Medical ResearchWellingtonNew Zealand
- Wellington Blood & Cancer Centre, Capital & Coast DHBWellingtonNew Zealand
- Department of Pathology & Molecular MedicineUniversity of Otago WellingtonWellingtonNew Zealand
| |
Collapse
|
16
|
Jarisch A, Rettinger E, Sörensen J, Klingebiel T, Schäfer R, Seifried E, Bader P, Bonig H. Unstimulated apheresis for chimeric antigen receptor manufacturing in pediatric/adolescent acute lymphoblastic leukemia patients. J Clin Apher 2020; 35:398-405. [PMID: 32750197 DOI: 10.1002/jca.21812] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/22/2020] [Accepted: 06/22/2020] [Indexed: 12/30/2022]
Abstract
Autologous unstimulated leukapheresis product serves as starting material for a variety of innovative cell therapy products, including chimeric antigen receptor (CAR)-modified T-cells. Although it may be reasonable to assume feasibility and efficiency of apheresis for CAR-T cell manufacture, several idiosyncrasies of these patients warrant their separate analysis: target cells (mononuclear cells [MNC] and T-cells) are relatively few which may instruct the selection of apheresis technology, low body weight, and, hence, low total blood volume (TBV) can restrict process and product volume, and patients may be in compromised health. We here report outcome data from 46 consecutive leukaphereses in 33 unique pediatric patients performed for the purpose of CD19-CAR-T-cell manufacturing. Apheresis targets of 2×109 MNC/1×109 T-cells were defined by marketing authorization holder specification. Patient weight was 8 to 84 kg; TBV was 0.6 to 5.1 L. Spectra Optia apheresis technology was used. For 23 patients, a single apheresis sufficed to generate enough cells and manufacture CAR-T-cells, the remainder required two aphereses to meet target dose and/or two apheresis series because of production failure. Aphereses were technically feasible and clinically tolerable without serious adverse effects. The median collection efficiencies for MNC and T-cells were 53% and 56%, respectively. In summary, CAR apheresis in pediatric patients, including the very young, is feasible, safe and efficient, but the specified cell dose targets can be challenging in smaller children. Continuous monitoring of apheresis outcomes is advocated in order to maintain quality.
Collapse
Affiliation(s)
- Andrea Jarisch
- Division for Stem Cell Transplantation, Immunology and Intensive Care Medicine, Department for Children and Adolescents, Goethe University, Frankfurt/Main, Germany
| | - Eva Rettinger
- Division for Stem Cell Transplantation, Immunology and Intensive Care Medicine, Department for Children and Adolescents, Goethe University, Frankfurt/Main, Germany
| | - Jan Sörensen
- Division for Stem Cell Transplantation, Immunology and Intensive Care Medicine, Department for Children and Adolescents, Goethe University, Frankfurt/Main, Germany
| | - Thomas Klingebiel
- Division for Stem Cell Transplantation, Immunology and Intensive Care Medicine, Department for Children and Adolescents, Goethe University, Frankfurt/Main, Germany
| | - Richard Schäfer
- German Red Cross Blood Service Baden-Württemberg-Hessen, Institute Frankfurt/Main, Frankfurt/Main, Germany
| | - Erhard Seifried
- German Red Cross Blood Service Baden-Württemberg-Hessen, Institute Frankfurt/Main, Frankfurt/Main, Germany.,Institute for Transfusion Medicine and Immunohematology, Goethe University, Frankfurt/Main, Germany
| | - Peter Bader
- Division for Stem Cell Transplantation, Immunology and Intensive Care Medicine, Department for Children and Adolescents, Goethe University, Frankfurt/Main, Germany
| | - Halvard Bonig
- German Red Cross Blood Service Baden-Württemberg-Hessen, Institute Frankfurt/Main, Frankfurt/Main, Germany.,Institute for Transfusion Medicine and Immunohematology, Goethe University, Frankfurt/Main, Germany.,Division of Hematology, Department of Medicine, University of Washington, Seattle, Washington, USA
| |
Collapse
|
17
|
Arcangeli S, Falcone L, Camisa B, De Girardi F, Biondi M, Giglio F, Ciceri F, Bonini C, Bondanza A, Casucci M. Next-Generation Manufacturing Protocols Enriching T SCM CAR T Cells Can Overcome Disease-Specific T Cell Defects in Cancer Patients. Front Immunol 2020; 11:1217. [PMID: 32636841 PMCID: PMC7317024 DOI: 10.3389/fimmu.2020.01217] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 05/15/2020] [Indexed: 12/21/2022] Open
Abstract
Chimeric antigen receptor (CAR) T cell expansion and persistence emerged as key efficacy determinants in cancer patients. These features are typical of early-memory T cells, which can be enriched with specific manufacturing procedures, providing signal one and signal two in the proper steric conformation and in the presence of homeostatic cytokines. In this project, we exploited our expertise with paramagnetic beads and IL-7/IL-15 to develop an optimized protocol for CAR T cell production based on reagents, including a polymeric nanomatrix, which are compatible with automated manufacturing via the CliniMACS Prodigy. We found that both procedures generate similar CAR T cell products, highly enriched of stem cell memory T cells (TSCM) and equally effective in counteracting tumor growth in xenograft mouse models. Most importantly, the optimized protocol was able to expand CAR TSCM from B-cell acute lymphoblastic leukemia (B-ALL) patients, which in origin were highly enriched of late-memory and exhausted T cells. Notably, CAR T cells derived from B-ALL patients proved to be as efficient as healthy donor-derived CAR T cells in mediating profound and prolonged anti-tumor responses in xenograft mouse models. On the contrary, the protocol failed to expand fully functional CAR TSCM from patients with pancreatic ductal adenocarcinoma, suggesting that patient-specific factors may profoundly affect intrinsic T cell quality. Finally, by retrospective analysis of in vivo data, we observed that the proportion of TSCM in the final CAR T cell product positively correlated with in vivo expansion, which in turn proved to be crucial for achieving long-term remissions. Collectively, our data indicate that next-generation manufacturing protocols can overcome initial T cell defects, resulting in TSCM-enriched CAR T cell products qualitatively equivalent to the ones generated from healthy donors. However, this positive effect may be decreased in specific conditions, for which the development of further improved protocols and novel strategies might be highly beneficial.
Collapse
Affiliation(s)
- Silvia Arcangeli
- Innovative Immunotherapies Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Laura Falcone
- Innovative Immunotherapies Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Barbara Camisa
- Innovative Immunotherapies Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Experimental Hematology Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Federica De Girardi
- Innovative Immunotherapies Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Marta Biondi
- Innovative Immunotherapies Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Fabio Giglio
- Hematology and Hematopoietic Stem Cell Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Fabio Ciceri
- Hematology and Hematopoietic Stem Cell Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| | - Chiara Bonini
- Experimental Hematology Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| | - Attilio Bondanza
- Innovative Immunotherapies Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Monica Casucci
- Innovative Immunotherapies Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
18
|
Hutt D, Bielorai B, Baturov B, Z'orbinski I, Ilin N, Adam E, Itzhaki O, Besser MJ, Toren A, Jacoby E. Feasibility of leukapheresis for CAR T-cell production in heavily pre-treated pediatric patients. Transfus Apher Sci 2020; 59:102769. [PMID: 32414613 DOI: 10.1016/j.transci.2020.102769] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 03/26/2020] [Accepted: 03/26/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND Autologous CD19 chimeric-antigen receptor (CAR) T-cells are an effective salvage therapy for patients with relapsed or refractory B cell malignancies. The essential first step in the production is the collection of mature lymphocytes through leukapheresis. It is a challenging procedure given the fact patients are heavily pretreated and the special considerations of pediatric apheresis. METHODS We analyzed the data of leukapheresis outcome for CAR T production in a phase 1b/2 clinical trial enrolling 34 children, adolescents and young adults with relapsed or refractory B-cell malignancies. RESULTS All patients underwent a single leukapheresis. Given a short production time for CAR T-cells, most patients received bridging therapy prior to apheresis. Leukapheresis was performed using peripheral venous access in the majority (82%) of patients, and the remainder required arterial line or central venous access. T-cell collection efficiency (CE) was variable with a median of 18%. No apheresis-related adverse events were noted, and all procedures were successful but two: one resulting in lower than target dose (1 × 106 CAR + cells/kg) and the other in failure of CAR T-cell production. CONCLUSIONS Collection of sufficient T-cells in heavily pretreated pediatric patients via a single apheresis procedure is feasible even with relatively low T-cell CE.
Collapse
Affiliation(s)
- Daphna Hutt
- Division of Pediatric Hematology and Oncology, The Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, Israel
| | - Bella Bielorai
- Division of Pediatric Hematology and Oncology, The Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Bella Baturov
- Division of Pediatric Hematology and Oncology, The Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, Israel
| | - Inna Z'orbinski
- Division of Pediatric Hematology and Oncology, The Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, Israel
| | - Natalia Ilin
- Division of Pediatric Hematology and Oncology, The Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, Israel
| | - Etai Adam
- Division of Pediatric Hematology and Oncology, The Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, Israel
| | - Orit Itzhaki
- Ella Institute of Immuno-Oncology, Sheba Medical Center, Ramat Gan, Israel
| | - Michal J Besser
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Ella Institute of Immuno-Oncology, Sheba Medical Center, Ramat Gan, Israel
| | - Amos Toren
- Division of Pediatric Hematology and Oncology, The Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Elad Jacoby
- Division of Pediatric Hematology and Oncology, The Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
19
|
de Macedo Abdo L, Barros LRC, Saldanha Viegas M, Vieira Codeço Marques L, de Sousa Ferreira P, Chicaybam L, Bonamino MH. Development of CAR-T cell therapy for B-ALL using a point-of-care approach. Oncoimmunology 2020; 9:1752592. [PMID: 32363126 PMCID: PMC7185214 DOI: 10.1080/2162402x.2020.1752592] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 03/31/2020] [Accepted: 03/31/2020] [Indexed: 12/31/2022] Open
Abstract
Recently approved by the FDA and European Medicines Agency, CAR-T cell therapy is a new treatment option for B-cell malignancies. Currently, CAR-T cells are manufactured in centralized facilities and face bottlenecks like complex scaling up, high costs, and logistic operations. These difficulties are mainly related to the use of viral vectors and the requirement to expand CAR-T cells to reach the therapeutic dose. In this paper, by using Sleeping Beauty-mediated genetic modification delivered by electroporation, we show that CAR-T cells can be generated and used without the need for ex vivo activation and expansion, consistent with a point-of-care (POC) approach. Our results show that minimally manipulated CAR-T cells are effective in vivo against RS4;11 leukemia cells engrafted in NSG mice even when inoculated after only 4 h of gene transfer. In an effort to better characterize the infused CAR-T cells, we show that 19BBz T lymphocytes infused after 24 h of electroporation (where CAR expression is already detectable) can improve the overall survival and reduce tumor burden in organs of mice engrafted with RS4;11 or Nalm-6 B cell leukemia. A side-by-side comparison of POC approach with a conventional 8-day expansion protocol using Transact beads demonstrated that both approaches have equivalent antitumor activity in vivo. Our data suggest that POC approach is a viable alternative for the generation and use of CAR-T cells, overcoming the limitations of current manufacturing protocols. Its use has the potential to expand CAR immunotherapy to a higher number of patients, especially in the context of low-income countries.
Collapse
Affiliation(s)
- Luiza de Macedo Abdo
- Immunology and Tumor Biology Program - Research Coordination, Brazilian National Cancer Institute (INCA), Rio de Janeiro, Brazil
| | | | - Mariana Saldanha Viegas
- Immunology and Tumor Biology Program - Research Coordination, Brazilian National Cancer Institute (INCA), Rio de Janeiro, Brazil
| | - Luisa Vieira Codeço Marques
- Immunology and Tumor Biology Program - Research Coordination, Brazilian National Cancer Institute (INCA), Rio de Janeiro, Brazil
| | - Priscila de Sousa Ferreira
- Immunology and Tumor Biology Program - Research Coordination, Brazilian National Cancer Institute (INCA), Rio de Janeiro, Brazil
| | - Leonardo Chicaybam
- Vice-Presidency of Research and Biological Collections (VPPCB), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
| | - Martín Hernán Bonamino
- Immunology and Tumor Biology Program - Research Coordination, Brazilian National Cancer Institute (INCA), Rio de Janeiro, Brazil.,Vice-Presidency of Research and Biological Collections (VPPCB), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
| |
Collapse
|
20
|
Reddy OL, Stroncek DF, Panch SR. Improving CAR T cell therapy by optimizing critical quality attributes. Semin Hematol 2020; 57:33-38. [PMID: 32892841 PMCID: PMC7518470 DOI: 10.1053/j.seminhematol.2020.07.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Indexed: 12/13/2022]
Abstract
Whether as a cure or bridge to transplant, chimeric antigen receptor (CAR)-T cell therapies have shown dramatic outcomes for the treatment of hematologic malignancies, and particularly relapsed/refractory B cell leukemia and lymphoma. However, these therapies are not effective for all patients, and are not without toxicities. The challenge now is to optimize these products and their manufacture. The manufacturing process is complex and subject to numerous variabilities at each step. These variabilities can affect the critical quality attributes of the final product, and this can ultimately impact clinical outcomes. This review will focus on optimizing the manufacturing variables that can impact the safety, purity, potency, consistency and durability of CAR-T cells.
Collapse
|
21
|
Annen K, Zubair A, Schwartz E, Schwartz J, Szczepiorkowski ZM. What's in Your CART? Clinical insights on challenges in mononuclear cell collection for CAR-T therapy. J Clin Apher 2020; 35:234-235. [PMID: 32186782 DOI: 10.1002/jca.21776] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 02/17/2020] [Accepted: 02/28/2020] [Indexed: 12/25/2022]
Affiliation(s)
- Kyle Annen
- Department of Pathology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Abba Zubair
- Laboratory Medicine and Pathology, Mayo Clinic Florida, Jacksonville, Florida, USA
| | - Eileen Schwartz
- Therapeutic Apheresis, Children's Hospital Colorado, Aurora, Colorado, USA
| | - Joseph Schwartz
- Cell Biology, Columbia University Medical Center & the New York Presbyterian Hospital, New York, New York, USA
| | | |
Collapse
|
22
|
|
23
|
Allen ES, Conry-Cantilena C. Mobilization and collection of cells in the hematologic compartment for cellular therapies: Stem cell collection with G-CSF/plerixafor, collecting lymphocytes/monocytes. Semin Hematol 2019; 56:248-256. [PMID: 31836031 DOI: 10.1053/j.seminhematol.2019.11.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 11/01/2019] [Indexed: 12/13/2022]
Abstract
An essential and influential first step in all cellular therapies is collecting donor or patient cells. In hematopoietic progenitor cell transplantation, autologous or allogeneic hematopoietic progenitor cells (HPCs) are collected from either the bone marrow or the peripheral blood. Peripheral blood collection by apheresis requires mobilization with chemotherapy, granulocyte colony stimulating factor (G-CSF), plerixafor, or a combination. The modalities of mobilization and collection each carry a unique set of risks and benefits for both the donor and the recipient. In other types of cell therapy, most notably chimeric antigen receptor T cells, lymphocytes or monocytes are collected from the peripheral blood. The risks of collecting these cells by apheresis are similar to HPCs, but less is known about the composition, timing and qualitative cell characteristics which contribute to an optimal collection. Here, we review the mobilization and collection of HPCs and the collection of lymphocytes and monocytes. Donor safety is of primary importance when collecting material for any type of cell therapy. Every aspect of mobilization and collection can be studied and potentially optimized to improve patient outcomes.
Collapse
Affiliation(s)
- Elizabeth S Allen
- Department of Pathology, University of California San Diego, La Jolla, CA.
| | - Cathy Conry-Cantilena
- Department of Transfusion Medicine, National Institutes of Health Clinical Center, Bethesda, MD
| |
Collapse
|