1
|
Johansson PI, Vigstedt M, Curry NS, Davenport R, Juffermans NP, Stanworth SJ, Maegele M, Gaarder C, Brohi K, Stensballe J, Henriksen HH. Trauma induced coagulopathy is limited to only one out of four shock induced endotheliopathy (SHINE) phenotypes among moderate-severely injured trauma patients: an exploratory analysis. Scand J Trauma Resusc Emerg Med 2024; 32:71. [PMID: 39160625 PMCID: PMC11331676 DOI: 10.1186/s13049-024-01236-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 07/14/2024] [Indexed: 08/21/2024] Open
Abstract
BACKGROUND Trauma induced coagulopathy remains to be an important cause of high transfusion requirements and mortality and shock induced endotheliopathy (SHINE) has been implicated. METHODS European multicenter observational study of adult trauma patients with injury severity score ≥ 16 arriving within 2 h from injury to the trauma centers. Admission blood samples obtained were used for analysis of the SHINE biomarkers (syndecan-1, soluble thrombomodulin, adrenaline) and extensive analysis of coagulation, -and fibrinolytic factors together with collection of clinical data. Hierarchical clustering of the SHINE biomarkers was used to identify the SHINE phenotypes. RESULTS The 313 patients clustered into four SHINE phenotypes. Phenotype 2, having the highest glycocalyx shedding, encompassing 22% of the whole cohort, had severe coagulopathy with lower levels of prothrombin, FV, IX, X, XI and severe hyperfibrinolysis with higher plasmin - alpha 2-antiplasmin (PAP) - and tPA levels and lower alpha2 - antiplasmin levels. This phenotype had significantly higher transfusion requirements and higher mortality (39% vs. 23%, 15% and 14%) but similar injury severity score (ISS) compared to the others phenotypes. CONCLUSIONS Hierarchical clustering identified four SHINE phenotype in a cohort of trauma patients. Trauma induced coagulopathy was confined to only one of the SHINE phenotypes, encompassing 22% of the total cohort. This phenotype was characterized by severe hypocoagulability and hyperfibrinolysis, which translated to significantly higher transfusion requirements and higher mortality compared to the other SHINE phenotypes with similar injury severity, warranting further investigation.
Collapse
Affiliation(s)
- Pär I Johansson
- CAG Center for Endotheliomics, Copenhagen University Hospital - Rigshospitalet, Blegdamsvej 9, 2100, Copenhagen, Denmark.
- Department of Clinical Immunology, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark.
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark.
| | - Martin Vigstedt
- CAG Center for Endotheliomics, Copenhagen University Hospital - Rigshospitalet, Blegdamsvej 9, 2100, Copenhagen, Denmark
- Department of Clinical Immunology, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Nicola S Curry
- Oxford Haemophilia and Thrombosis Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- Radcliffe Department of Medicine, Oxford University, Oxford, UK
| | - Ross Davenport
- Trauma Sciences, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Nicole P Juffermans
- Department of Intensive Care Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Simon J Stanworth
- Radcliffe Department of Medicine, Oxford University, Oxford, UK
- NHS Blood and Transplant, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Marc Maegele
- Department of Traumatology and Orthopaedic Surgery, Cologne-Merheim Medical Center, University of Witten/Herdecke, Cologne, Germany
| | | | - Karim Brohi
- Trauma Sciences, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Jakob Stensballe
- CAG Center for Endotheliomics, Copenhagen University Hospital - Rigshospitalet, Blegdamsvej 9, 2100, Copenhagen, Denmark
- Department of Clinical Immunology, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Department of Anesthesiology and Trauma Center, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Hanne H Henriksen
- CAG Center for Endotheliomics, Copenhagen University Hospital - Rigshospitalet, Blegdamsvej 9, 2100, Copenhagen, Denmark
- Department of Clinical Immunology, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
2
|
Simovic MO, Yang Z, Jordan BS, Fraker TL, Cancio TS, Lucas ML, Cancio LC, Li Y. Immunopathological Alterations after Blast Injury and Hemorrhage in a Swine Model of Prolonged Damage Control Resuscitation. Int J Mol Sci 2023; 24:ijms24087494. [PMID: 37108656 PMCID: PMC10139120 DOI: 10.3390/ijms24087494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/08/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
Trauma-related hemorrhagic shock (HS) remains a leading cause of death among military and civilian trauma patients. We have previously shown that administration of complement and HMGB1 inhibitors attenuate morbidity and mortality 24 h after injury in a rat model of blast injury (BI) and HS. To further validate these results, this study aimed to develop a swine model and evaluate BI+HS-induced pathophysiology. Anesthetized Yucatan minipigs underwent combined BI and volume-controlled hemorrhage. After 30 min of shock, animals received an intravenous bolus of PlasmaLyte A and a continuous PlasmaLyte A infusion. The survival rate was 80% (4/5), and the non-survivor expired 72 min post-BI. Circulating organ-functional biomarkers, inflammatory biomarkers, histopathological evaluation, and CT scans indicated evidence of multiple-organ damage, systemic innate immunological activation, and local tissue inflammation in the injured animals. Interestingly, a rapid and dramatic increase in plasma levels of HMGB1 and C3a and markedly early myocarditis and encephalitis were associated with early death post-BI+HS. This study suggests that this model reflects the immunopathological alterations of polytrauma in humans during shock and prolonged damage control resuscitation. This experimental protocol could be helpful in the assessment of immunological damage control resuscitation approaches during the prolonged care of warfighters.
Collapse
Affiliation(s)
- Milomir O Simovic
- US Army Institute of Surgical Research, Fort Sam Houston, San Antonio, TX 78234, USA
- The Geneva Foundation, Tacoma, WA 98402, USA
| | - Zhangsheng Yang
- US Army Institute of Surgical Research, Fort Sam Houston, San Antonio, TX 78234, USA
| | - Bryan S Jordan
- US Army Institute of Surgical Research, Fort Sam Houston, San Antonio, TX 78234, USA
| | - Tamara L Fraker
- US Army Institute of Surgical Research, Fort Sam Houston, San Antonio, TX 78234, USA
- The Geneva Foundation, Tacoma, WA 98402, USA
| | - Tomas S Cancio
- US Army Institute of Surgical Research, Fort Sam Houston, San Antonio, TX 78234, USA
| | - Michael L Lucas
- US Army Institute of Surgical Research, Fort Sam Houston, San Antonio, TX 78234, USA
| | - Leopoldo C Cancio
- US Army Institute of Surgical Research, Fort Sam Houston, San Antonio, TX 78234, USA
| | - Yansong Li
- US Army Institute of Surgical Research, Fort Sam Houston, San Antonio, TX 78234, USA
- The Geneva Foundation, Tacoma, WA 98402, USA
| |
Collapse
|
3
|
Krocker JD, Lee KH, Henriksen HH, Wang YWW, Schoof EM, Karvelsson ST, Rolfsson Ó, Johansson PI, Pedroza C, Wade CE. Exploratory Investigation of the Plasma Proteome Associated with the Endotheliopathy of Trauma. Int J Mol Sci 2022; 23:6213. [PMID: 35682894 PMCID: PMC9181752 DOI: 10.3390/ijms23116213] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/27/2022] [Accepted: 05/30/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The endotheliopathy of trauma (EoT) is associated with increased mortality following injury. Herein, we describe the plasma proteome related to EoT in order to provide insight into the role of the endothelium within the systemic response to trauma. METHODS 99 subjects requiring the highest level of trauma activation were included in the study. Enzyme-linked immunosorbent assays of endothelial and catecholamine biomarkers were performed on admission plasma samples, as well as untargeted proteome quantification utilizing high-performance liquid chromatography and tandem mass spectrometry. RESULTS Plasma endothelial and catecholamine biomarker abundance was elevated in EoT. Patients with EoT (n = 62) had an increased incidence of death within 24 h at 21% compared to 3% for non-EoT (n = 37). Proteomic analysis revealed that 52 out of 290 proteins were differentially expressed between the EoT and non-EoT groups. These proteins are involved in endothelial activation, coagulation, inflammation, and oxidative stress, and include known damage-associated molecular patterns (DAMPs) and intracellular proteins specific to several organs. CONCLUSIONS We report a proteomic profile of EoT suggestive of a surge of DAMPs and inflammation driving nonspecific activation of the endothelial, coagulation, and complement systems with subsequent end-organ damage and poor clinical outcome. These findings support the utility of EoT as an index of cellular injury and delineate protein candidates for therapeutic intervention.
Collapse
Affiliation(s)
- Joseph D. Krocker
- Center for Translational Injury Research, Department of Surgery, McGovern Medical School at the University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (Y.-W.W.W.); (C.E.W.)
| | - Kyung Hyun Lee
- Center for Clinical Research and Evidence-Based Medicine, Department of Pediatrics, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (K.H.L.); (C.P.)
| | - Hanne H. Henriksen
- Center for Endotheliomics CAG, Department of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, 2200 Copenhagen, Denmark;
| | - Yao-Wei Willa Wang
- Center for Translational Injury Research, Department of Surgery, McGovern Medical School at the University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (Y.-W.W.W.); (C.E.W.)
| | - Erwin M. Schoof
- Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800 Lyngby, Denmark;
| | - Sigurdur T. Karvelsson
- Center for Systems Biology, University of Iceland, 101 Reykjavik, Iceland; (S.T.K.); (Ó.R.)
| | - Óttar Rolfsson
- Center for Systems Biology, University of Iceland, 101 Reykjavik, Iceland; (S.T.K.); (Ó.R.)
| | - Pär I. Johansson
- Center for Endotheliomics CAG, Department of Clinical Immunology, Rigshospitalet, & Department of Clinical Medicine, University of Copenhagen, 2200 Copenhagen, Denmark;
| | - Claudia Pedroza
- Center for Clinical Research and Evidence-Based Medicine, Department of Pediatrics, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (K.H.L.); (C.P.)
| | - Charles E. Wade
- Center for Translational Injury Research, Department of Surgery, McGovern Medical School at the University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (Y.-W.W.W.); (C.E.W.)
| |
Collapse
|
4
|
Duque P, Calvo A, Lockie C, Schöchl H. Pathophysiology of Trauma-Induced Coagulopathy. Transfus Med Rev 2021; 35:80-86. [PMID: 34610877 DOI: 10.1016/j.tmrv.2021.07.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/07/2021] [Accepted: 07/09/2021] [Indexed: 10/20/2022]
Abstract
There is no standard definition for trauma-induced coagulopathy (TIC). However, it could be defined as an abnormal hemostatic response secondary to trauma. The terms "early TIC" and "late TIC" have been recently suggested. "Early TIC" would refer to the inability to achieve effective hemostasis exacerbating an uncontrolled bleeding in a shocked patient with ischemia-reperfusion damage (bleeding phenotype) and takes place usually early after injury, whereas "late TIC" would represent a hypercoagulable state after surviving a severe tissue injury, that would contribute to thromboembolic events and multiorgan failure (MOF), (thrombotic phenotype), occurring typically hours after the trauma insult though it could be delayed for days. In addition, severe tissue injury when there is no associated shock could be followed by an early hypercoagulable state, representing an evolutionary maladaptive response of a physiologic mechanism created to increase clot formation and prevent bleeding. Therefore, TIC is not a uniform phenotype, ranging from bleeding to pro-thrombotic profiles. This current concept of TIC is mainly based on the recognition of TIC as a unique clotting disorder following trauma in which alterations in the endothelial function, fibrinolysis regulation and platelet behavior after major trauma are the main cornerstones.
Collapse
Affiliation(s)
- Patricia Duque
- Anesthesiology and Critical Care Department, Gregorio Marañon Hospital, Madrid, Spain.
| | - Alberto Calvo
- Anesthesiology and Critical Care Department, Gregorio Marañon Hospital, Madrid, Spain
| | - Christopher Lockie
- Department of Anesthesiology and Intensive Care Medicine AUVA Trauma Centre Salzburg, Academic Teaching Hospital of the Paracelsus Medical University, Salzburg, and Ludwig Boltzmann Institute for experimental and clinical traumatology Vienna, Austria
| | - Herbert Schöchl
- Department of Anesthesiology and Intensive Care Medicine AUVA Trauma Centre Salzburg, Academic Teaching Hospital of the Paracelsus Medical University, Salzburg, and Ludwig Boltzmann Institute for experimental and clinical traumatology Vienna, Austria
| |
Collapse
|
5
|
Moore EE, Moore HB, Kornblith LZ, Neal MD, Hoffman M, Mutch NJ, Schöchl H, Hunt BJ, Sauaia A. Trauma-induced coagulopathy. Nat Rev Dis Primers 2021; 7:30. [PMID: 33927200 PMCID: PMC9107773 DOI: 10.1038/s41572-021-00264-3] [Citation(s) in RCA: 312] [Impact Index Per Article: 104.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/19/2021] [Indexed: 12/12/2022]
Abstract
Uncontrolled haemorrhage is a major preventable cause of death in patients with traumatic injury. Trauma-induced coagulopathy (TIC) describes abnormal coagulation processes that are attributable to trauma. In the early hours of TIC development, hypocoagulability is typically present, resulting in bleeding, whereas later TIC is characterized by a hypercoagulable state associated with venous thromboembolism and multiple organ failure. Several pathophysiological mechanisms underlie TIC; tissue injury and shock synergistically provoke endothelial, immune system, platelet and clotting activation, which are accentuated by the 'lethal triad' (coagulopathy, hypothermia and acidosis). Traumatic brain injury also has a distinct role in TIC. Haemostatic abnormalities include fibrinogen depletion, inadequate thrombin generation, impaired platelet function and dysregulated fibrinolysis. Laboratory diagnosis is based on coagulation abnormalities detected by conventional or viscoelastic haemostatic assays; however, it does not always match the clinical condition. Management priorities are stopping blood loss and reversing shock by restoring circulating blood volume, to prevent or reduce the risk of worsening TIC. Various blood products can be used in resuscitation; however, there is no international agreement on the optimal composition of transfusion components. Tranexamic acid is used in pre-hospital settings selectively in the USA and more widely in Europe and other locations. Survivors of TIC experience high rates of morbidity, which affects short-term and long-term quality of life and functional outcome.
Collapse
Affiliation(s)
- Ernest E Moore
- Ernest E Moore Shock Trauma Center at Denver Health, Denver, CO, USA.
- Department of Surgery, University of Colorado Denver, Aurora, CO, USA.
| | - Hunter B Moore
- Department of Surgery, University of Colorado Denver, Aurora, CO, USA
| | - Lucy Z Kornblith
- Trauma and Surgical Critical Care, Zuckerberg San Francisco General Hospital, University of California San Francisco, San Francisco, CA, USA
| | - Matthew D Neal
- Pittsburgh Trauma Research Center, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Maureane Hoffman
- Duke University School of Medicine, Transfusion Service, Durham VA Medical Center, Durham, NC, USA
| | - Nicola J Mutch
- Aberdeen Cardiovascular & Diabetes Centre, School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - Herbert Schöchl
- Department of Anesthesiology and Intensive Care Medicine, AUVA Trauma Centre Salzburg, Academic Teaching Hospital of the Paracelsus Medical University, Salzburg and Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, AUVA Trauma Research Centre, Vienna, Austria
| | | | - Angela Sauaia
- Department of Surgery, University of Colorado Denver, Aurora, CO, USA
- Colorado School of Public Health, University of Colorado Denver, Aurora, CO, USA
| |
Collapse
|