1
|
Westhoff CM, Floch A. Blood group genotype matching for transfusion. Br J Haematol 2025; 206:18-32. [PMID: 39104129 DOI: 10.1111/bjh.19664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 07/11/2024] [Indexed: 08/07/2024]
Abstract
The last decade has seen significant growth in the application of DNA-based methods for extended antigen typing, and the use of gene sequencing to consider variation in blood group genes to guide clinical care. The challenge for the field now lies in educating professionals, expanding accessibility and standardizing the use of genotyping for routine patient care. Here we discuss applications of genotyping when transfusion is not straightforward including when compatibility cannot be demonstrated by routine methods, when Rh type is unclear, when allo- and auto-antibodies are encountered in stem cell and organ transplantation, for prenatal testing to determine maternal and foetal risk for complications, and Group A subtyping for kidney and platelet donors. We summarize current commercial testing resources and new approaches to testing including high-density arrays and targeted next-generation sequencing (NGS).
Collapse
Affiliation(s)
- Connie M Westhoff
- New York Blood Center Enterprises, National Center for Blood Group Genomics, New York, New York, USA
| | - Aline Floch
- Univ Paris Est Creteil, INSERM U955 Equipe Transfusion et Maladies du Globule Rouge, IMRB, Creteil, France
- Laboratoire de Biologie Medicale de Référence en Immuno-Hematologie Moleculaire, Etablissement Francais du Sang Ile-de-France, Creteil, France
| |
Collapse
|
2
|
Cezar‐Schmidt A, Jean J, Lee P, Vege S, Westhoff CM, Hudgins JP. A splice site variant defining the novel RHD*01(487-3G) allele in trans to RHD*DAR1.2. Transfusion 2025; 65:E4-E6. [PMID: 39529456 PMCID: PMC11747121 DOI: 10.1111/trf.18057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 10/07/2024] [Accepted: 10/15/2024] [Indexed: 11/16/2024]
Affiliation(s)
- Augusto Cezar‐Schmidt
- Department of Pathology and Laboratory MedicineLos Angeles General Medical Center (LAGMC)Los AngelesCaliforniaUSA
| | - Jeffrey Jean
- Department of Pathology and Laboratory MedicineLos Angeles General Medical Center (LAGMC)Los AngelesCaliforniaUSA
| | - Patricia Lee
- Department of Pathology and Laboratory MedicineLos Angeles General Medical Center (LAGMC)Los AngelesCaliforniaUSA
| | - Sunitha Vege
- Immunohematology and Genomics LaboratoryNew York Blood Center Enterprises (NYBCE)Long Island CityNew YorkUSA
| | - Connie M Westhoff
- Immunohematology and Genomics LaboratoryNew York Blood Center Enterprises (NYBCE)Long Island CityNew YorkUSA
| | - Jay P Hudgins
- Department of Pathology and Laboratory MedicineLos Angeles General Medical Center (LAGMC)Los AngelesCaliforniaUSA
| |
Collapse
|
3
|
Chou ST, Mewha J, Friedman DF, Lazariu V, Makrm S, Ochoa G, Vege S, Westhoff CM. Genotyped RhD+ red cells for D-positive patients with sickle cell disease with conventional RHD and unexpected anti-D. Blood 2024; 144:2045-2049. [PMID: 39172743 PMCID: PMC11561532 DOI: 10.1182/blood.2024025602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/30/2024] [Accepted: 08/13/2024] [Indexed: 08/24/2024] Open
Abstract
ABSTRACT Anti-D can occur in D-positive patients who inherit RHD genetic variants encoding partial D antigen expression, but unexpected anti-D is also found in the plasma of patients with sickle cell disease who have conventional RHD gene(s) and are transfused with units from Black donors. These anti-D are likely stimulated by variant Rh expressed on donor cells; however, patients with anti-D, regardless of cause, are transfused for a lifetime with D-negative (Rh-negative) blood. This results in significant increased use of Rh-negative units, especially for those requiring chronic transfusion, which can strain Rh-negative blood inventories. We tested whether D-positive patients who made anti-D and had conventional RhD by RHD genotyping could safely be returned to D-positive transfusions without anti-D reappearance or compromised red blood cell survival using RHD genotype-matched units from Black donors. Five patients receiving chronic red cell exchange received an increasing number of D-positive units per procedure with a total of 72 D-positive RHD genotyped units transfused, with no anti-D restimulation. Unexpected anti-C and anti-E were identified during the study associated with donors with variant RHCE alleles. RH genotyping of D-positive units for transfusion may improve use and allocation of valuable Black donor units and reduce demand for Rh-negative blood. This trial was registered at www.clinicaltrials.gov as NCT04156906.
Collapse
Affiliation(s)
- Stella T. Chou
- Division of Hematology, Department of Pediatrics, University of Pennsylvania, The Children’s Hospital of Philadelphia, Philadelphia, PA
- Division of Transfusion Medicine, Department of Pathology and Laboratory Medicine, University of Pennsylvania, The Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Julia Mewha
- Division of Hematology, Department of Pediatrics, University of Pennsylvania, The Children’s Hospital of Philadelphia, Philadelphia, PA
| | - David F. Friedman
- Division of Hematology, Department of Pediatrics, University of Pennsylvania, The Children’s Hospital of Philadelphia, Philadelphia, PA
- Division of Transfusion Medicine, Department of Pathology and Laboratory Medicine, University of Pennsylvania, The Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Victoria Lazariu
- Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, PA
- Department of Epidemiology and Biostatistics, University at Albany, State University of New York, Albany, NY
| | - Shaimaa Makrm
- Immunohematology and Genomics Laboratory, New York Blood Center Enterprise, Long Island City, NY
| | - Gorka Ochoa
- Immunohematology and Genomics Laboratory, New York Blood Center Enterprise, Long Island City, NY
| | - Sunitha Vege
- Immunohematology and Genomics Laboratory, New York Blood Center Enterprise, Long Island City, NY
| | - Connie M. Westhoff
- Immunohematology and Genomics Laboratory, New York Blood Center Enterprise, Long Island City, NY
| |
Collapse
|
4
|
Li M, Wang L, Li A, Wang B, Yang X, Zhang Y, Chen C, Sun F, Zhu Z, Ye L. Integrated analyses reveal unexpected complex inversion and recombination in RH genes. Blood Adv 2024; 8:3154-3165. [PMID: 38551808 PMCID: PMC11222952 DOI: 10.1182/bloodadvances.2023012147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 02/28/2024] [Indexed: 06/15/2024] Open
Abstract
ABSTRACT Phenotype D-- is associated with severe hemolytic transfusion reactions and hemolytic disease of the fetus and newborn. It is typically caused by defective RHCE genes. In this study, we identified a D-- phenotype proband and verified Rh phenotypes of other 6 family members. However, inconsistent results between the phenotypic analysis and Sanger sequencing revealed intact RHCE exons with no mutations in the D-- proband, but the protein was not expressed. Subsequent whole-genome sequencing by Oxford Nanopore Technologies of the proband revealed an inversion with ambiguous breakpoints in intron 2 and intron 7 and copy number variation loss in the RHCE gene region. Given that the RHCE gene is highly homologous to the RHD gene, we conducted a comprehensive analysis using Pacific Biosciences long-read target sequencing, Bionano optical genome mapping, and targeted next-generation sequencing. Our findings revealed that the proband had 2 novel recombinant RHCE haplotypes, RHCE∗Ce(1-2)-D(3-10) and RHCE∗Ce(1-2)-D(3-10)-Ce(10-8)-Ce(3-10), with clear-cut breakpoints identified. Furthermore, the RH haplotypes of the family members were identified and verified. In summary, we made, to our knowledge, a novel discovery of hereditary large inversion and recombination events occurring between the RHD and RHCE genes, leading to a lack of RhCE expression. This highlights the advantages of using integrated genetic analyses and also provides new insights into RH genotyping.
Collapse
Affiliation(s)
- Minghao Li
- Immunohematology Laboratory, Shanghai Institute of Blood Transfusion, Shanghai Blood Centre, Shanghai, China
| | - Liping Wang
- Blood Transfusion Department, Weifang People’s Hospital, Shandong, China
| | - Aijing Li
- Immunohematology Laboratory, Shanghai Institute of Blood Transfusion, Shanghai Blood Centre, Shanghai, China
| | - Bo Wang
- Xi’an Haorui Genomics Technology Company Limited, Chang’an District, Xi’an, Shaanxi, China
| | - Xiaohong Yang
- Xi’an Haorui Genomics Technology Company Limited, Chang’an District, Xi’an, Shaanxi, China
| | - Yue Zhang
- Xi’an Haorui Genomics Technology Company Limited, Chang’an District, Xi’an, Shaanxi, China
| | - Chaoqiong Chen
- Xi’an Haorui Genomics Technology Company Limited, Chang’an District, Xi’an, Shaanxi, China
| | - Futing Sun
- Blood Transfusion Department, Weifang People’s Hospital, Shandong, China
| | - Ziyan Zhu
- Immunohematology Laboratory, Shanghai Institute of Blood Transfusion, Shanghai Blood Centre, Shanghai, China
| | - Luyi Ye
- Immunohematology Laboratory, Shanghai Institute of Blood Transfusion, Shanghai Blood Centre, Shanghai, China
| |
Collapse
|
5
|
Chang TC, Yu J, Wang Z, Hankins JS, Weiss MJ, Wu G, Westhoff CM, Chou ST, Zheng Y. Machine learning to optimize automated RH genotyping using whole-exome sequencing data. Blood Adv 2024; 8:2651-2659. [PMID: 38522094 PMCID: PMC11157206 DOI: 10.1182/bloodadvances.2023011660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 02/05/2024] [Accepted: 02/25/2024] [Indexed: 03/26/2024] Open
Abstract
ABSTRACT Rh phenotype matching reduces but does not eliminate alloimmunization in patients with sickle cell disease (SCD) due to RH genetic diversity that is not distinguishable by serological typing. RH genotype matching can potentially mitigate Rh alloimmunization but comprehensive and accessible genotyping methods are needed. We developed RHtyper as an automated algorithm to predict RH genotypes using whole-genome sequencing (WGS) data with high accuracy. Here, we adapted RHtyper for whole-exome sequencing (WES) data, which are more affordable but challenged by uneven sequencing coverage and exacerbated sequencing read misalignment, resulting in uncertain predictions for (1) RHD zygosity and hybrid alleles, (2) RHCE∗C vs. RHCE∗c alleles, (3) RHD c.1136C>T zygosity, and (4) RHCE c.48G>C zygosity. We optimized RHtyper to accurately predict RHD and RHCE genotypes using WES data by leveraging machine learning models and improved the concordance of WES with WGS predictions from 90.8% to 97.2% for RHD and 96.3% to 98.2% for RHCE among 396 patients in the Sickle Cell Clinical Research and Intervention Program. In a second validation cohort of 3030 cancer survivors (15.2% Black or African Americans) from the St. Jude Lifetime Cohort Study, the optimized RHtyper reached concordance rates between WES and WGS predications to 96.3% for RHD and 94.6% for RHCE. Machine learning improved the accuracy of RH predication using WES data. RHtyper has the potential, once implemented, to provide a precision medicine-based approach to facilitate RH genotype-matched transfusion and improve transfusion safety for patients with SCD. This study used data from clinical trials registered at ClinicalTrials.gov as #NCT02098863 and NCT00760656.
Collapse
Affiliation(s)
- Ti-Cheng Chang
- Center for Applied Bioinformatics, St. Jude Children’s Research Hospital, Memphis, TN
| | - Jing Yu
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Zhaoming Wang
- Department of Epidemiology and Cancer Control, St. Jude Children’s Research Hospital, Memphis, TN
| | - Jane S. Hankins
- Department of Hematology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Mitchell J. Weiss
- Department of Hematology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Gang Wu
- Center for Applied Bioinformatics, St. Jude Children’s Research Hospital, Memphis, TN
| | - Connie M. Westhoff
- Laboratory of Immunohematology and Genomics, New York Blood Center Enterprises, New York, NY
| | - Stella T. Chou
- Department of Pediatrics, Children’s Hospital of Philadelphia, University of Pennsylvania School of Medicine, Philadelphia, PA
| | - Yan Zheng
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN
| |
Collapse
|
6
|
Matosinho CGR, Silva CGR, Martins ML, Silva-Malta MCF. Next Generation Sequencing of Red Blood Cell Antigens in Transfusion Medicine: Systematic Review and Meta-Analysis. Transfus Med Rev 2024; 38:150776. [PMID: 37914611 DOI: 10.1016/j.tmrv.2023.150776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 08/11/2023] [Accepted: 09/01/2023] [Indexed: 11/03/2023]
Abstract
Molecular analysis of blood groups is important in transfusion medicine, allowing the prediction of red blood cell (RBC) antigens. Many blood banks use single nucleotide variant (SNV) based methods for blood group analysis. While this is a well-established approach, it is limited to the polymorphisms included in genotyping panels. Thus, variants that alter antigenic expression may be ignored, resulting in incorrect prediction of phenotypes. The popularization of next-generation sequencing (NGS) has led to its application in transfusion medicine, including for RBC antigens determination. The present review/meta-analysis aimed to evaluate the applicability of the NGS for the prediction of RBC antigens. A systematic review was conducted following a comprehensive literature search in accordance with the Preferred Reporting Items for Systematic Review and Meta-Analysis guidelines. Studies were selected based on predefined criteria and evaluated using Strengthening the Reporting of Observational studies in Epidemiology guidelines. The characteristics and results of the studies were extracted and meta-analysis was performed to verify the agreement between results from standard molecular methods and NGS. Kell (rs8176058), Duffy (rs2814778, rs12078), or Kidd (rs1085396) alleles were selected as a model for comparisons. Additionally, results are presented for other blood group systems. Of the 864 eligible studies identified, 10 met the inclusion criteria and were selected for meta-analysis. The pooled concordance proportion for NGS compared to other methods ranged from 0.982 to 0.994. The sequencing depth coverage was identified as crucial parameters for the reliability of the results. Some studies reported difficulty in analyzing more complex systems, such as Rh and MNS, requiring the adoption of specific strategies. NGS is a technology capable of predicting blood group phenotypes and has many strengths such as the possibility of simultaneously analyzing hundred individuals and gene regions, and the ability to provide comprehensive genetic analysis, which is useful in the description of new alleles and a better understanding of the genetic basis of blood groups. The implementation of NGS in the routine of blood banks depends on several factors such as cost reduction, the availability of widely validated panels, the establishment of clear quality parameters and access to bioinformatics analysis tools that are easy to access and operate.
Collapse
|
7
|
Elgun T, Musteri Oltulu Y, Yurttas Gok A, Agyuz U, Kilic U. DETERMINATION OF RH TYPE AND GENDER USING CIRCULATING CELL-FREE FETAL DNA IN EARLY PREGNANCY OF RH NEGATIVE WOMEN IN TURKEY. Transfus Clin Biol 2023:S1246-7820(23)00063-0. [PMID: 37116742 DOI: 10.1016/j.tracli.2023.04.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 04/14/2023] [Accepted: 04/21/2023] [Indexed: 04/30/2023]
Abstract
INTRODUCTION Choosing the right clinical approach for early and reliable diagnosis/screening is becoming more important day by day. The aim of the study was to determine the early RhD type with cff-DNA obtained from maternal plasma, especially in the light of recent developments. In this way, it is aimed to apply Rh Ig only to mothers who are determined to have RhD (+) fetuses and to prevent unnecessary further tests that may possess a risk for RhD (-) fetuses. METHODS Prediction of fetal gender and RH genotype was performed by using RT-qPCR method. With simultaneous amplification of sequences of SRY, DYS14 and RH genes (exon 7 and exon 10). Fetal gender and RhD were determined in 30 RHD (-) pregnant women with cfDNA. RESULTS As a result of genotyping, the gender of 67% (20/30) fetuses was determined as male; the gender of 33% (10/30) fetuses was determined as female in a sample group of 30 pregnancies. It was determined that the DYS14 100% (20/20) gene was more sensitive than the SRY 97% (18/20) gene in gender determination after examining prenatal and postnatal results. As a result of the analysis, the presence of 17% (5/30) RhD (-) fetuses and 83% (25/30) RhD (+) fetuses were determined which is 100% compatible with postnatal results. DISCUSSION Detecting fetal RhD gene in maternal plasma made an important contribution to its use in non-invasive prenatal screening. This study shows that unnecessary intervention and cost can be avoided with successful genotyping analysis performed with RT-qPCR.
Collapse
Affiliation(s)
- Tugba Elgun
- Department of Medical Biology/Biruni University/Faculty of Medicine/ Istanbul, Turkey.
| | | | - Asiye Yurttas Gok
- Department of Biochemistry/ Istanbul Health and Technology University/Faculty of Pharmacy/Istanbul, Turkey.
| | | | - Ulkan Kilic
- Department of Medical Biology/University of Health Science/Hamidiye School of Medicine/Istanbul, Turkey.
| |
Collapse
|
8
|
Laget L, Izard C, Durieux-Roussel E, Filosa L, Bailly P, Mazières S, Chiaroni J. Frequency and characterization of RHD and RHCE variants in the Noir Marron population from French Guiana. Transfusion 2022; 62:2631-2638. [PMID: 36286083 DOI: 10.1111/trf.17132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 08/19/2022] [Accepted: 08/21/2022] [Indexed: 12/13/2022]
Abstract
BACKGROUND The RH system is one of the most polymorphic blood group systems due to the proximity and opposite orientation of RHD and RHCE genes. Numerous alleles are described and can affect Rh protein expression. This complexity is especially evident in populations of African origin. We performed RHD and RHCE genotyping of the Noir Marron population in French Guiana. This population belongs to the Maroon community who are direct descendants of African slaves, who escaped from Dutch plantations, in the current day Suriname, during the 17th century. They represent an original ethnic group with highly blended culture. METHODS AND MATERIALS A total of 89 DNA samples were collected from four different ethnic groups of the Noir Marron population of French Guiana. RHD and RHCE genotyping was performed using DNA microarray and/or sequencing. RESULTS AND DISCUSSION Significant allelic diversity was shown, with 45% of individuals presenting an RHD gene variant (most common: RHD*DAU, RHD*DIVa, and RHD*DIIIa allele) and 9.4% with a partial D phenotype. Likewise, 85% presenting an RHCE gene variant and 9% a partial RH2 antigen. One original allele was identified in two D+ Noir Marron individuals: a hybrid RHD*DIIIa-CE(9)-D allele, encoding probably a partial D antigen and associated with an RHCE*ce(48C,733G,1006T) allele. The African diversity of RHD and RHCE genes is found in this population with preserved genetic but mixed cultural backgrounds. These data allow us to describe the characteristics of the RH system antigen and highlights a significant number of partial antigens with a risk of alloimmunization.
Collapse
Affiliation(s)
- Laurine Laget
- EFS PACA Corse, Laboratoire Immuno-Hématologie Receveur, Marseille, France
| | - Caroline Izard
- EFS PACA Corse, Laboratoire Immuno-Hématologie Receveur, Marseille, France
| | | | - Lugdivine Filosa
- EFS PACA Corse, Laboratoire Immuno-Hématologie Receveur, Marseille, France
| | - Pascal Bailly
- EFS PACA Corse, Laboratoire Immuno-Hématologie Receveur, Marseille, France
| | - Stéphane Mazières
- Aix-Marseille-University Anthropologie Droit Ethique Santé-UMR7268, Marseille, France
| | - Jacques Chiaroni
- EFS PACA Corse, Laboratoire Immuno-Hématologie Receveur, Marseille, France
| |
Collapse
|
9
|
Orzińska A, Kluska A, Balabas A, Piatkowska M, Kulecka M, Ostrowski J, Mikula M, Dębska M, Uhrynowska M, Guz K. Prediction of fetal blood group antigens from maternal plasma using Ion AmpliSeq HD technology. Transfusion 2022; 62:458-468. [PMID: 34997618 DOI: 10.1111/trf.16780] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 09/24/2021] [Accepted: 11/18/2021] [Indexed: 12/22/2022]
Abstract
BACKGROUND Fetal blood group (BG) and platelet (HPA) antigens may trigger maternal immunization, causing a fetal disease. Noninvasive prenatal diagnostics (NIPT) predicts fetal genotype, identifying pregnancies with no risk. All current techniques detect fetal antigen alleles with unspecific background and without estimation of fetal fraction, thus new protocols for detection of fetal BG/HPA alleles with ultrahigh sensitivity still need to be tested to improve NIPT. AIM To design NIPT of clinically important antigens using Ion AmpliSeq HD technology. METHODS Plasma DNA from 36 pregnant women (9-33 week of gestation, 24 immunized with anti-HPA-1a,-3b,-15a, -K, or -D+C+S), with known BG/HPA genotypes of their neonates/partners, was tested on Ion S5 System using the Ion AmpliSeq HD designer custom gene panel. NGS contained 25 rs-targets encoding relevant BG/HPA antigens and 10 markers. RESULTS Using the NGS protocol, 76 out of 85 differences in fetal/maternal BG/HPA genotypes were determined in concentration above 2% fetal paternally inherited allele chimerism. The level of unspecific reads for BG/HPA alleles was below 0.87%. In 24 immunized women NGS revealed feto-maternal incompatibility in 11 cases (from 2.44% to 7.41%) and excluded in 10 (<0.05%), three cases had inconclusive results (1.79%, 0.19%, 0.11%). The presence of fetal DNA was confirmed in each case by detecting markers with at least 2% chimerism. CONCLUSION The use of Ion AmpliSeq HD technology improves the prediction of feto-maternal incompatibility, increasing the sensitivity of BG/HPA NIPT and serving confirmation of the fetal DNA at the same workflow.
Collapse
Affiliation(s)
- Agnieszka Orzińska
- Department of Hematological and Transfusion Immunology, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
| | - Anna Kluska
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Aneta Balabas
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Magdalena Piatkowska
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Maria Kulecka
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland.,Medical Centre of Postgraduate Education, Department of Gastroenterology, Hepatology and Clinical Oncology, Warsaw, Poland
| | - Jerzy Ostrowski
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland.,Medical Centre of Postgraduate Education, Department of Gastroenterology, Hepatology and Clinical Oncology, Warsaw, Poland
| | - Michal Mikula
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Marzena Dębska
- 1st Department of Obstetrics and Gynaecology, Medical University of Warsaw, Warsaw, Poland
| | - Małgorzata Uhrynowska
- Department of Hematological and Transfusion Immunology, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
| | - Katarzyna Guz
- Department of Hematological and Transfusion Immunology, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
| |
Collapse
|
10
|
Fennell K, Keller MA, Villa MA, Paccapelo C, Kucerakova M, Rosochova J, Clemente DosSantos C, Brackney L, Lee CJ, Metcalf R, Crovetti G, Barbieri M, Travali S, Barrotta G, Giuca G, Guerra LE, Ochoa-Garay G. New ABO intron 1 variant alleles. Immunohematology 2021; 37:178-184. [PMID: 34964317 DOI: 10.21307/immunohematology-2021-029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Unusual and discrepant ABO phenotypes are often due to genetic variants that lead to altered levels or activity of ABO transferases and consequently to altered expression of ABO antigens. This report describes eight genetic alterations found in 15 cases with reduced or undetectable expression of ABO antigens. Forward and reverse ABO grouping was performed by standard gel or tube methods. Adsorption-heat elution and saliva testing for H and A substances followed the AABB technical manual procedures. Genomic DNA extracted from whole blood was PCR-amplified to cover the entire ABO coding sequence, splice junctions, proximal promoter, and intron 1 enhancer. Amplification products were sequenced by next-generation or Sanger dideoxy methods, either directly or after cloning into a bacterial plasmid vector. Eight unreported alleles were found in the 15 cases analyzed. Alleles ABO*A(28+1C) and ABO*A(29-5G) harbor variants that alter the consensus sequence at the intron 1 donor and acceptor splice sites, respectively. The other alleles harbor variants that alter the consensus sequence at transcription factor-binding sites in the intron 1 enhancer: specifically, ABO*A(28+5792T), ABO*A(28+5859A), and ABO*A(28+5860G) at GATA-1 sites; ABO*B(28+5877T) and ABO*B(28+5878G) at a RUNX1 site; and ABO*A(28+5843A) at or near a C/EBP site. Molecular and serologic characterization of ABO alleles can help in their future identification and in the resolution of discrepancies. Unusual and discrepant ABO phenotypes are often due to genetic variants that lead to altered levels or activity of ABO transferases and consequently to altered expression of ABO antigens. This report describes eight genetic alterations found in 15 cases with reduced or undetectable expression of ABO antigens. Forward and reverse ABO grouping was performed by standard gel or tube methods. Adsorption-heat elution and saliva testing for H and A substances followed the AABB technical manual procedures. Genomic DNA extracted from whole blood was PCR-amplified to cover the entire ABO coding sequence, splice junctions, proximal promoter, and intron 1 enhancer. Amplification products were sequenced by next-generation or Sanger dideoxy methods, either directly or after cloning into a bacterial plasmid vector. Eight unreported alleles were found in the 15 cases analyzed. Alleles ABO*A(28+1C) and ABO*A(29–5G) harbor variants that alter the consensus sequence at the intron 1 donor and acceptor splice sites, respectively. The other alleles harbor variants that alter the consensus sequence at transcription factor–binding sites in the intron 1 enhancer: specifically, ABO*A(28+5792T), ABO*A(28+5859A), and ABO*A(28+5860G) at GATA-1 sites; ABO*B(28+5877T) and ABO*B(28+5878G) at a RUNX1 site; and ABO*A(28+5843A) at or near a C/EBP site. Molecular and serologic characterization of ABO alleles can help in their future identification and in the resolution of discrepancies.
Collapse
Affiliation(s)
- K Fennell
- Laboratory Manager, Thermo Fisher Scientific , Austin, TX
| | - M A Keller
- Executive at American Red Cross Biomedical Services , Philadelphia, PA
| | - M A Villa
- Retired from Fondazione IRCCS Ca'Granda-Ospedale Maggiore Policlinico , Milan , Italy
| | - C Paccapelo
- Cinzia Paccapelo, SDc Biology, Senior Assistant in Immunohematology, Fondazione IRCCS Ca'Granda-Ospedale Maggiore Policlinico , Milan , Italy
| | - M Kucerakova
- Head, Department of Hematology and Blood Bank Narodna Transfuzna Sluzba SR , Bratislava , Slovakia
| | - J Rosochova
- Specialist in Transfusion Medicine, Narodna Transfuzna Sluzba SR , Bratislava , Slovakia
| | | | - L Brackney
- Medical Director of Blood Bank, Elmhurst Memorial Hospital , Elmhurst, IL
| | - C J Lee
- Assistant Professor of Internal Medicine, University of Utah Health , Salt Lake City , UT
| | - R Metcalf
- Medical Director of Transfusion Service, University of Utah Health , Salt Lake City, UT
| | - G Crovetti
- Medical Director, Immunoematologia e Centro Trasfusionale , ASST Valle Olona , Italy
| | - M Barbieri
- Lab Technician, Immunoematologia e Centro Trasfusionale , ASST Valle Olona , Italy
| | - S Travali
- Biologist, Laboratory Director, Servizio di Immunoematologia e Medicina Trasfusionale , Ragusa , Italy
| | - G Barrotta
- Biologist, Executive Biologist, Servizio di Immunoematologia e Medicina Trasfusionale , Ragusa , Italy
| | - G Giuca
- Biologist, Executive Biologist, Servizio di Immunoematologia e Medicina Trasfusionale , Ragusa , Italy
| | - L E Guerra
- Immunohematologist, Independent Consultant , Wimberly , TX
| | - G Ochoa-Garay
- New York Blood Center , 45-01 Vernon Boulevard, Long Island City , NY 11101
| |
Collapse
|
11
|
Pirenne F. How to avoid the problem of erythrocyte alloimmunization in sickle cell disease. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2021; 2021:689-695. [PMID: 34889373 PMCID: PMC8877235 DOI: 10.1182/hematology.2021000306] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Erythrocyte alloimmunization is a major barrier to transfusion in sickle cell disease (SCD) because it can lead to transfusion deadlock and the development of life-threatening hemolytic transfusion reactions (HTRs). Several risk factors have been identified, such as blood group polymorphism in these patients of African ancestry frequently exposed to antigens they do not carry and an inflammatory clinical state of the disease. The most important preventive measure is prophylactic red blood cell antigen matching, and there is a consensus that matching for Rh (D, C, E, c, e) and K antigens should be performed for all SCD patients. However, some patients are high responders and more at risk of developing antibodies and HTRs. For these patients, the extension of matching to other blood groups, including variant antigens of the RH blood group, the use of genotyping rather than serology to characterize significant blood groups, and the prophylactic administration of immunosuppressive treatments remain a matter of debate due to low levels of certainty concerning their effects and the difficulty of determining which patients, other than those already immunized, are at high risk. These issues were recently addressed by a panel of experts established by the American Society of Hematology. Here, we review and stratify the various interventions for preventing alloimmunization, based on the literature and our experience and taking into account the obstacles to their implementation and any future developments required.
Collapse
Affiliation(s)
- France Pirenne
- University Paris Est Creteil, Inserm, Institut Mondor de Recherche Biomedicale, Creteil, France
- Etablissement Français du sang Ile-de-France, Institut Mondor de Recherche Biomedicale, Creteil, France
- Correspondence France Pirenne, Etablissement Français du Sang, Hôpital Henri Mondor, 51 Ave du Maréchal de Lattre de Tassigny, 94000 Créteil, France; e-mail:
| |
Collapse
|
12
|
Ying Y, Zhang J, Hong X, Xu X, He J, Zhu F. The Significance of RHD Genotyping and Characteristic Analysis in Chinese RhD Variant Individuals. Front Immunol 2021; 12:755661. [PMID: 34867989 PMCID: PMC8633534 DOI: 10.3389/fimmu.2021.755661] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 10/26/2021] [Indexed: 11/13/2022] Open
Abstract
Background RhD is the most important and complex blood group system because of its highly polymorphic and immunogenic nature. RhD variants can induce immune response by allogeneic transfusion, organ transplantation, and fetal immunity. The transfusion strategies are different for RhD variants formed by various alleles. Therefore, extensive investigation of the molecular mechanism underlying RhD variants is critical for preventing immune-related blood transfusion reactions and fetal immunity. Methods RhD variants were collected from donors and patients in Zhejiang Province, China. The phenotypes were classified using the serologic method. The full coding regions of RHD gene were analyzed using the PCR-SBT method. The multiplex ligation-dependent probe amplification (MLPA) assay was used to analyze the genotype and gene copy number. SWISS-MODLE and PyMOL software were used to analyze 3D structures of RhD caused by the variant alleles. The effect of non-synonymous substitutions was predicted using Polymorphism Phenotyping algorithm (PolyPhen-2), Sorting Intolerant From Tolerant (SIFT), and Protein Variation Effect Analyzer (PROVEAN) software. Results In the collected RhD variants, 28 distinct RHD variant alleles were identified, including three novel variant alleles. RH-MLPA assay is advantageous for determining the copy number of RHD gene. 3D homology modeling predicted that protein conformation was disrupted and may explain RhD epitope differential expression. A total of 14 non-synonymous mutations were determined to be detrimental to the protein structure. Discussion We revealed the diversity of RHD alleles present in eastern Chinese RhD variants. The bioinformatics of these variant alleles extended our knowledge of RhD variants, which was crucial for evaluating their impact to guide transfusion support and avoid immune-related blood transfusion reactions.
Collapse
Affiliation(s)
- Yanling Ying
- Blood Center of Zhejiang Province, Institute of Transfusion Medicine, Hangzhou, China.,Key Laboratory of Blood Safety Research of Zhejiang Province, Hangzhou, China
| | - Jingjing Zhang
- Blood Center of Zhejiang Province, Institute of Transfusion Medicine, Hangzhou, China.,Key Laboratory of Blood Safety Research of Zhejiang Province, Hangzhou, China
| | - Xiaozhen Hong
- Blood Center of Zhejiang Province, Institute of Transfusion Medicine, Hangzhou, China.,Key Laboratory of Blood Safety Research of Zhejiang Province, Hangzhou, China
| | - Xianguo Xu
- Blood Center of Zhejiang Province, Institute of Transfusion Medicine, Hangzhou, China.,Key Laboratory of Blood Safety Research of Zhejiang Province, Hangzhou, China
| | - Ji He
- Blood Center of Zhejiang Province, Institute of Transfusion Medicine, Hangzhou, China.,Key Laboratory of Blood Safety Research of Zhejiang Province, Hangzhou, China
| | - Faming Zhu
- Blood Center of Zhejiang Province, Institute of Transfusion Medicine, Hangzhou, China.,Key Laboratory of Blood Safety Research of Zhejiang Province, Hangzhou, China
| |
Collapse
|
13
|
Montemayor C, Simone A, Long J, Montemayor O, Delvadia B, Rivera R, Lewis KL, Shahsavari S, Gandla D, Dura K, Krishnan US, Wendzel NC, Elavia N, Grissom S, Karagianni P, Bueno M, Loy D, Cacanindin R, McLaughlin S, Tynuv M, Brunker PAR, Roback J, Adams S, Smith H, Biesecker L, Klein HG. An open-source python library for detection of known and novel Kell, Duffy and Kidd variants from exome sequencing. Vox Sang 2021; 116:451-463. [PMID: 33567470 DOI: 10.1111/vox.13035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 10/30/2020] [Accepted: 11/02/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND AND OBJECTIVES Next generation sequencing (NGS) has promising applications in transfusion medicine. Exome sequencing (ES) is increasingly used in the clinical setting, and blood group interpretation is an additional value that could be extracted from existing data sets. We provide the first release of an open-source software tailored for this purpose and describe its validation with three blood group systems. MATERIALS AND METHODS The DTM-Tools algorithm was designed and used to analyse 1018 ES NGS files from the ClinSeq® cohort. Predictions were correlated with serology for 5 antigens in a subset of 108 blood samples. Discrepancies were investigated with alternative phenotyping and genotyping methods, including a long-read NGS platform. RESULTS Of 116 genomic variants queried, those corresponding to 18 known KEL, FY and JK alleles were identified in this cohort. 596 additional exonic variants were identified KEL, ACKR1 and SLC14A1, including 58 predicted frameshifts. Software predictions were validated by serology in 108 participants; one case in the FY blood group and three cases in the JK blood group were discrepant. Investigation revealed that these discrepancies resulted from (1) clerical error, (2) serologic failure to detect weak antigenic expression and (3) a frameshift variant absent in blood group databases. CONCLUSION DTM-Tools can be employed for rapid Kell, Duffy and Kidd blood group antigen prediction from existing ES data sets; for discrepancies detected in the validation data set, software predictions proved accurate. DTM-Tools is open-source and in continuous development.
Collapse
Affiliation(s)
- Celina Montemayor
- Department of Transfusion Medicine, NIH Clinical Center, Bethesda, MD, USA
| | - Alexandra Simone
- Department of Transfusion Medicine, NIH Clinical Center, Bethesda, MD, USA
| | - James Long
- Department of Pathology, Walter Reed NMMC, Bethesda, MD, USA
| | - Oscar Montemayor
- Department of Transfusion Medicine, NIH Clinical Center, Bethesda, MD, USA
| | - Bhavesh Delvadia
- Blood Bank, Emory Medical Laboratories, Emory University Hospital, Atlanta, GA, USA
| | - Robert Rivera
- Department of Anatomic Pathology, Navy Medical Center, San Diego, CA, USA
| | - Katie L Lewis
- Medical Genomics and Metabolic Genetics Branch, NHGRI, Bethesda, MD, USA
| | - Shahin Shahsavari
- Department of Transfusion Medicine, NIH Clinical Center, Bethesda, MD, USA
| | - Divya Gandla
- Department of Transfusion Medicine, NIH Clinical Center, Bethesda, MD, USA
| | - Katherine Dura
- Department of Transfusion Medicine, NIH Clinical Center, Bethesda, MD, USA
| | - Uma S Krishnan
- Department of Transfusion Medicine, NIH Clinical Center, Bethesda, MD, USA
| | - Nena C Wendzel
- Department of Pathology, Walter Reed NMMC, Bethesda, MD, USA
| | - Nasha Elavia
- Department of Transfusion Medicine, NIH Clinical Center, Bethesda, MD, USA
| | - Spencer Grissom
- Department of Transfusion Medicine, NIH Clinical Center, Bethesda, MD, USA
| | - Panagiota Karagianni
- Department of Pathophysiology, National and Kapodistrian University of Athens, Athens, Greece
| | - Marina Bueno
- Department of Transfusion Medicine, NIH Clinical Center, Bethesda, MD, USA
| | - Debrean Loy
- Department of Transfusion Medicine, NIH Clinical Center, Bethesda, MD, USA
| | - Rizaldi Cacanindin
- Department of Transfusion Medicine, NIH Clinical Center, Bethesda, MD, USA
| | - Steven McLaughlin
- Department of Transfusion Medicine, NIH Clinical Center, Bethesda, MD, USA
| | - Maxim Tynuv
- Department of Transfusion Medicine, NIH Clinical Center, Bethesda, MD, USA
| | - Patricia A R Brunker
- Division of Transfusion Medicine, Department of Pathology, The Johns Hopkins Hospital, Baltimore, MD, USA
| | - John Roback
- Center for Transfusion and Cellular Therapies, Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Sharon Adams
- Department of Transfusion Medicine, NIH Clinical Center, Bethesda, MD, USA
| | | | - Leslie Biesecker
- Medical Genomics and Metabolic Genetics Branch, NHGRI, Bethesda, MD, USA
| | - Harvey G Klein
- Department of Transfusion Medicine, NIH Clinical Center, Bethesda, MD, USA
| |
Collapse
|