1
|
Hernández-Bello J, Lorenzo-Leal AC, Muñoz-Valle JF, Morales-Núñez JJ, Díaz-Pérez SA, Hernández-Gutiérrez R, Bach H. Neutralizing antibody responses to the Delta variant of SARS-CoV-2 following vaccination with Ad5-nCoV (CanSino) in the Mexican population. PLoS One 2024; 19:e0299520. [PMID: 38573914 PMCID: PMC10994301 DOI: 10.1371/journal.pone.0299520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 02/13/2024] [Indexed: 04/06/2024] Open
Abstract
During the COVID-19 pandemic, the Ad5-nCoV vaccine was applied to the Mexican population before the WHO approved it. In a transversal study, we compare the CanSino vaccine efficacy and a natural SARS-CoV-2 infection in eliciting neutralizing antibodies against the SARS-CoV-2 Delta variant in Guadalajara, Mexico. Participants between 30-60 years were included in the study and classified into three groups: 1) Natural immunity (unvaccinated), 2) Vaccine-induced immunity (vaccinated individuals without a COVID-19 history), and 3) Natural immunity + vaccine-induced immunity. These groups were matched by age and gender. We assessed the ability of individuals' serum to neutralize the Delta variant and compared the results of the different groups using a neutralization test followed by plaque-forming units. Results showed that 39% of individuals' serum with a history of COVID-19 (natural immunity, Group 1) could not neutralize the Delta variant, compared to 33% in vaccinated individuals without COVID-19 (vaccine immunity, Group 2). In contrast, only 7% of vaccinated individuals with a history of COVID-19 (natural + vaccine immunities) could not neutralize the Delta variant. We concluded that the effectiveness of the Ad5-nCoV vaccine to induce neutralizing antibodies against the Delta variant is comparable to that of natural infection (61% vs. 67%). However, in individuals with both forms of immunity (Group 3), it increased to 93%. Based on these results, despite the Ad5-nCoV vaccine originally being designed as a single-dose regimen, it could be recommended that even those who have recovered from COVID-19 should consider vaccination to boost their immunity against this variant.
Collapse
Affiliation(s)
- Jorge Hernández-Bello
- Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud Universidad de Guadalajara, Guadalajara, Mexico
| | - Ana C. Lorenzo-Leal
- Division of Infectious Diseases, Faculty of Medicine, The University of British Columbia, Vancouver, BC, Canada
| | - José F. Muñoz-Valle
- Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud Universidad de Guadalajara, Guadalajara, Mexico
| | - José J. Morales-Núñez
- Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud Universidad de Guadalajara, Guadalajara, Mexico
| | - Saul A. Díaz-Pérez
- Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud Universidad de Guadalajara, Guadalajara, Mexico
| | | | - Horacio Bach
- Division of Infectious Diseases, Faculty of Medicine, The University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
2
|
Tsuchiya K, Maeda K, Matsuda K, Takamatsu Y, Kinoshita N, Kutsuna S, Hayashida T, Gatanaga H, Ohmagari N, Oka S, Mitsuya H. Neutralization activity of IgG antibody in COVID‑19‑convalescent plasma against SARS-CoV-2 variants. Sci Rep 2023; 13:1263. [PMID: 36690803 PMCID: PMC9869318 DOI: 10.1038/s41598-023-28591-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 01/20/2023] [Indexed: 01/24/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We evaluated the anti-SARS-CoV-2 antibody levels, anti-spike (S)-immunoglobulin G (IgG) and anti-nucleocapsid (N)-IgG, and the neutralization activity of IgG antibody in COVID‑19‑convalescent plasma against variants of SARS-CoV-2, alpha, beta, gamma, delta, kappa, omicron and R.1 strains. The study included 30 patients with clinically diagnosed COVID-19. The anti-S-IgG and anti-N-IgG levels ranged from 30.0 to 555.1 and from 10.1 to 752.6, respectively. The neutralization activity (50% inhibition concentration: IC50) for the wild-type Wuhan strain ranged from < 6.3 to 81.5 µg/ml. IgG antibodies were > 100 µg/ml in 18 of 30 (60%) subjects infected with the beta variant. The IC50 values for wild-type and beta variants correlated inversely with anti-S-IgG levels (p < 0.05), but no such correlation was noted with anti-N-IgG. IgG antibodies prevented infectivity and cytopathic effects of six different variants of concern in the cell-based assays of wild-type, alpha, gamma, delta, kappa and R.1 strains, but not that of the beta and omicron strains. IgG is considered the main neutralizing activity in the blood, although other factors may be important in other body tissues.
Collapse
Affiliation(s)
- Kiyoto Tsuchiya
- AIDS Clinical Center, National Center for Global Health and Medicine, Tokyo, Japan.
| | - Kenji Maeda
- Department of Refractory Viral Infections, National Center for Global Health and Medicine Research Institute, Tokyo, Japan
| | - Kouki Matsuda
- Department of Refractory Viral Infections, National Center for Global Health and Medicine Research Institute, Tokyo, Japan
| | - Yuki Takamatsu
- Department of Refractory Viral Infections, National Center for Global Health and Medicine Research Institute, Tokyo, Japan
| | - Noriko Kinoshita
- Disease Control and Prevention Center, National Center for Global Health and Medicine, Tokyo, Japan
| | - Satoshi Kutsuna
- Disease Control and Prevention Center, National Center for Global Health and Medicine, Tokyo, Japan
| | - Tsunefusa Hayashida
- AIDS Clinical Center, National Center for Global Health and Medicine, Tokyo, Japan
| | - Hiroyuki Gatanaga
- AIDS Clinical Center, National Center for Global Health and Medicine, Tokyo, Japan
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Norio Ohmagari
- Disease Control and Prevention Center, National Center for Global Health and Medicine, Tokyo, Japan
| | - Shinichi Oka
- AIDS Clinical Center, National Center for Global Health and Medicine, Tokyo, Japan
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Hiroaki Mitsuya
- Department of Refractory Viral Infections, National Center for Global Health and Medicine Research Institute, Tokyo, Japan.
- Experimental Retrovirology Section, HIV and AIDS Malignancy Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
- Department of Clinical Sciences, Kumamoto University Hospital, Kumamoto, Japan.
| |
Collapse
|
3
|
Gaber Y, Abdel Alem S, Musa S, Amer K, Elnagdy T, Hassan WA, Abdelrahman RZ, Gad A, Ali MA, Badary HA, Shawky S, Talaat H, Kassem AM, Fouad R. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) immunoglobulins using chemiluminescence immunoassay and its correlation with neutralizing antibodies. Virus Res 2022; 319:198852. [PMID: 35834979 PMCID: PMC9273163 DOI: 10.1016/j.virusres.2022.198852] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 06/13/2022] [Accepted: 06/23/2022] [Indexed: 12/15/2022]
Abstract
BACKGROUND Neutralizing antibodies (NAbs) against SARS-CoV-2 infection have a pivotal role in protective immune response; however, their measurement requires specialized facilities. We evaluated the degree of correlation between NAbs and anti-SARS-CoV-2 IgG/total Ig antibodies detected by chemiluminescent immunoassay in asymptomatic and previously symptomatic SARS-CoV-2 patients. METHODS A total of 1241 participants (previously symptomatic patients and asymptomatic individuals), who were screened for SARS-CoV-2 infection by RT-PCR or serology, were enrolled in our study. Sera were analyzed for the presence of anti-spike-1(S1)-SARS-CoV-2 IgG/total Ig antibodies, using Ortho Clinical Diagnostics, USA. A signal/cut-off value (S/CO) ≥ 1 was considered reactive. NAbs were measured in 103 random samples from groups using microneutralization assay, with titer ≥ 1:10 being considered positive. RESULTS Asymptomatic (n = 229) and 261 previously symptomatic individuals with positive serology and negative RT-PCR were finally included. Significant higher anti-S1-IgG titers were seen in asymptomatic individuals (P < 0.0001). Conversely, anti-S1-total Ig titers were significantly higher in previously symptomatic (P < 0.0001). NAbs were detected in both groups, however, higher titers were seen in previously symptomatic patients. There is a correlation between NAbs and both IgG/total anti-S1-SARS-CoV-2 antibodies (r = 0.47, P < 0.0001 and r = 0.49, P < 0.0001, respectively). IgG and total Ig could predict a neutralization titer of ≥ 1:160 at S/CO >4.44 and >65 with AUC 0.69 and 0.67, respectively. CONCLUSION Asymptomatic SARS-CoV-2 infection can produce comparable antibodies response to previously symptomatic individuals, however higher neutralization activity was seen in the previously symptomatic. Anti-S1-SARS-CoV-2 IgG/total Ig antibodies showed a correlation with neutralization activity and can be used to estimate the presence of protective immunity.
Collapse
Affiliation(s)
- Yasmine Gaber
- Endemic Medicine Department, Kasr Al-Aini Faculty of Medicine, Faculty of Medicine, Cairo University, Cairo, Egypt.
| | - Shereen Abdel Alem
- Endemic Medicine Department, Kasr Al-Aini Faculty of Medicine, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Sherief Musa
- Endemic Medicine Department, Kasr Al-Aini Faculty of Medicine, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Khaled Amer
- Egypt Center for Research and Regenerative Medicine (ECRRM), Cairo, Egypt
| | - Tarek Elnagdy
- Egypt Center for Research and Regenerative Medicine (ECRRM), Cairo, Egypt
| | - Wael A Hassan
- Egypt Center for Research and Regenerative Medicine (ECRRM), Cairo, Egypt
| | | | - Ahmed Gad
- Armed Forces Laboratories for Medical Research and Blood Bank, Egypt
| | - Mohamed A Ali
- Center of Scientific Excellence for Influenza Viruses, National Research Center, Giza, Egypt
| | - Hedy A Badary
- Endemic Medicine Department, Kasr Al-Aini Faculty of Medicine, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Shereen Shawky
- Clinical Pathology Department, Kasr Al-Aini Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Hala Talaat
- Department of Pediatrics, Kasr Al-Aini Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Abdel Meguid Kassem
- Endemic Medicine Department, Kasr Al-Aini Faculty of Medicine, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Rabab Fouad
- Endemic Medicine Department, Kasr Al-Aini Faculty of Medicine, Faculty of Medicine, Cairo University, Cairo, Egypt
| |
Collapse
|
4
|
Severe Acute Respiratory Syndrome Coronavirus 2 Convalescent Plasma Versus Standard Plasma in Coronavirus Disease 2019 Infected Hospitalized Patients in New York: A Double-Blind Randomized Trial. Crit Care Med 2021; 49:1015-1025. [PMID: 33870923 PMCID: PMC9658886 DOI: 10.1097/ccm.0000000000005066] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
OBJECTIVES Four peer-reviewed publications have reported results from randomized controlled trials of convalescent plasma for coronavirus disease 2019 infection; none were conducted in the United States nor used standard plasma as a comparator. To determine if administration of convalescent plasma to patients with coronavirus disease 2019 increases antibodies to severe acute respiratory syndrome coronavirus 2 and improves outcome. DESIGN Double-blind randomized controlled trial. SETTING Hospital in New York. PATIENTS Patients with polymerase chain reaction documented coronavirus disease 2019 infection. INTERVENTIONS Patients were randomized (4:1) to receive 2 U of convalescent plasma versus standard plasma. Antibodies to severe acute respiratory syndrome coronavirus 2 were measured in plasma units and in trial recipients. MEASUREMENTS AND MAIN RESULTS Enrollment was terminated after emergency use authorization was granted for convalescent plasma. Seventy-four patients were randomized. At baseline, mean (sd) Acute Physiology and Chronic Health Evaluation II score (23.4 [5.6] and 22.5 [6.6]), percent of patients intubated (19% and 20%), and median (interquartile range) days from symptom onset to randomization of 9 (6-18) and 9 (6-15), were similar in the convalescent plasma versus standard plasma arms, respectively. Convalescent plasma had high neutralizing activity (median [interquartile range] titer 1:526 [1:359-1:786]) and its administration increased antibodies to severe acute respiratory syndrome coronavirus 2 by 14.4%, whereas standard plasma administration led to an 8.6% decrease (p = 0.005). No difference was observed for ventilator-free days through 28 days (primary study endpoint): median (interquartile range) of 28 (2-28) versus 28 (0-28; p = 0.86) for the convalescent plasma and standard plasma groups, respectively. A greater than or equal to 2 point improvement in the World Health Organization scale was achieved by 20% of subjects in both arms (p = 0.99). All-cause mortality through 90 days was numerically lower in the convalescent plasma versus standard plasma groups (27% vs 33%; p = 0.63) but did not achieve statistical significance. A key prespecified subgroup analysis of time to death in patients who were intubated at baseline was statistically significant; however, sample size numbers were small. CONCLUSIONS Administration of convalescent plasma to hospitalized patients with coronavirus disease 2019 infection increased antibodies to severe acute respiratory syndrome coronavirus disease 2 but was not associated with improved outcome.
Collapse
|
5
|
Cimolai N. Passive Immunity Should and Will Work for COVID-19 for Some Patients. Clin Hematol Int 2021; 3:47-68. [PMID: 34595467 PMCID: PMC8432400 DOI: 10.2991/chi.k.210328.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 03/02/2021] [Indexed: 12/12/2022] Open
Abstract
In the absence of effective antiviral chemotherapy and still in the context of emerging vaccines for severe acute respiratory syndrome-CoV-2 infections, passive immunotherapy remains a key treatment and possible prevention strategy. What might initially be conceived as a simplified donor-recipient process, the intricacies of donor plasma, IV immunoglobulins, and monoclonal antibody modality applications are becoming more apparent. Key targets of such treatment have largely focused on virus neutralization and the specific viral components of the attachment Spike protein and its constituents (e.g., receptor binding domain, N-terminal domain). The cumulative laboratory and clinical experience suggests that beneficial protective and treatment outcomes are possible. Both a dose- and a time-dependency emerge. Lesser understood are the concepts of bioavailability and distribution. Apart from direct antigen binding from protective immunoglobulins, antibody effector functions have potential roles in outcome. In attempting to mimic the natural but variable response to infection or vaccination, a strong functional polyclonal approach attracts the potential benefits of attacking antigen diversity, high antibody avidity, antibody persistence, and protection against escape viral mutation. The availability and ease of administration for any passive immunotherapy product must be considered in the current climate of need. There is never a perfect product, but yet there is considerable room for improving patient outcomes. Given the variability of human genetics, immunity, and disease, and given the nuances of the virus and its potential for change, passive immunotherapy can be developed that will be effective for some but not all patients. An understanding of such patient variability and limitations is just as important as the understanding of the direct interactions between immunotherapy and virus.
Collapse
Affiliation(s)
- Nevio Cimolai
- Faculty of Medicine, The University of British Columbia, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, Children’s and Women’s Health Centre of British Columbia, 4480 Oak Street, Vancouver, BC, Canada V6H 3V4
| |
Collapse
|
6
|
Ng KW, Faulkner N, Wrobel AG, Gamblin SJ, Kassiotis G. Heterologous humoral immunity to human and zoonotic coronaviruses: Aiming for the achilles heel. Semin Immunol 2021; 55:101507. [PMID: 34716096 PMCID: PMC8542444 DOI: 10.1016/j.smim.2021.101507] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 10/15/2021] [Accepted: 10/16/2021] [Indexed: 02/04/2023]
Abstract
Coronaviruses are evolutionarily successful RNA viruses, common to multiple avian, amphibian and mammalian hosts. Despite their ubiquity and potential impact, knowledge of host immunity to coronaviruses remains incomplete, partly owing to the lack of overt pathogenicity of endemic human coronaviruses (HCoVs), which typically cause common colds. However, the need for deeper understanding became pressing with the zoonotic introduction of three novel coronaviruses in the past two decades, causing severe acute respiratory syndromes in humans, and the unfolding pandemic of coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). This renewed interest not only triggered the discovery of two of the four HCoVs, but also uncovered substantial cellular and humoral cross-reactivity with shared or related coronaviral antigens. Here, we review the evidence for cross-reactive B cell memory elicited by HCoVs and its potential impact on the puzzlingly variable outcome of SARS-CoV-2 infection. The available data indicate targeting of highly conserved regions primarily in the S2 subunits of the spike glycoproteins of HCoVs and SARS-CoV-2 by cross-reactive B cells and antibodies. Rare monoclonal antibodies reactive with conserved S2 epitopes and with potent virus neutralising activity have been cloned, underscoring the potential functional relevance of cross-reactivity. We discuss B cell and antibody cross-reactivity in the broader context of heterologous humoral immunity to coronaviruses, as well as the limits of protective immune memory against homologous re-infection. Given the bidirectional nature of cross-reactivity, the unprecedented current vaccination campaign against SARS-CoV-2 is expected to impact HCoVs, as well as future zoonotic coronaviruses attempting to cross the species barrier. However, emerging SARS-CoV-2 variants with resistance to neutralisation by vaccine-induced antibodies highlight a need for targeting more constrained, less mutable parts of the spike. The delineation of such cross-reactive areas, which humoral immunity can be trained to attack, may offer the key to permanently shifting the balance of our interaction with current and future coronaviruses in our favour.
Collapse
Affiliation(s)
- Kevin W Ng
- Retroviral Immunology Laboratory, London, NW1 1AT, UK
| | - Nikhil Faulkner
- Retroviral Immunology Laboratory, London, NW1 1AT, UK; National Heart and Lung Institute, Imperial College London, London, SW3 6LY, UK
| | - Antoni G Wrobel
- Structural Biology of Disease Processes Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Steve J Gamblin
- Structural Biology of Disease Processes Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - George Kassiotis
- Retroviral Immunology Laboratory, London, NW1 1AT, UK; Department of Infectious Disease, St Mary's Hospital, Imperial College London, London W2 1PG, UK.
| |
Collapse
|
7
|
Carter JA, Freedenberg AT, Romeiser JL, Talbot LR, Browne NJ, Cosgrove ME, Shevik ME, Generale LM, Rago MG, Caravella GA, Ahmed T, Mamone LJ, Bennett‐Guerrero E. Impact of serological and PCR testing requirements on the selection of COVID-19 convalescent plasma donors. Transfusion 2021; 61:1461-1470. [PMID: 33559248 PMCID: PMC8013201 DOI: 10.1111/trf.16293] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/07/2021] [Accepted: 01/07/2021] [Indexed: 01/08/2023]
Abstract
BACKGROUND Convalescent plasma is undergoing randomized trials as a potential therapeutic option for COVID-19 infection. Little empirical evidence exists regarding the determination of donor eligibility and experiences with donor selection. STUDY DESIGN AND METHODS This prospective study was conducted at a tertiary care hospital in New York to select plasma donors for a randomized, double-blind, controlled convalescent plasma trial. Clearance for donation required successful completion of an online questionnaire and an in-person screening visit, which included (a) completion of a Donor Health Questionnaire (DHQ), (b) Immunoglobulin G (IgG) antibody testing using an immunochromatographic anti- severe acute respiratory coronavirus 2 (SARS-CoV-2) test, (c) Polymerase chain reaction (PCR) testing if <28 days from symptom resolution, and (d) routine blood bank testing. RESULTS After receiving 3093 online questionnaires, 521 individuals presented for in-person screening visits, with 40.1% (n = 209) fully qualifying. Subjects (n = 312) failed to progress due to the following reasons: disqualifying answer from DHQ (n = 30, 9.6%), insufficient antibodies (n = 198, 63.5%), persistent positive PCR tests (n = 14, 4.5%), and blood donation testing labs (n = 70, 22.4%). Importantly, 24.6% and 11.1% of potential donors who reported having PCR-diagnosed infection had low or undetectable SARS-CoV-2 antibody levels, respectively. Surprisingly, 62.9% (56/89) of subjects had positive PCR tests 14-27 days after symptom resolution, with 13 individuals continuing to be PCR positive after 27 days. CONCLUSION It is feasible for a single site to fully qualify a large number of convalescent plasma donors in a short period of time. Among otherwise qualified convalescent plasma donors, we found high rates of low or undetectable antibody levels and many individuals with persistently positive PCR tests.
Collapse
Affiliation(s)
- Jason A. Carter
- MSTPRenaissance School of Medicine at Stony Brook UniversityStony BrookNew YorkUSA
| | - Alex T. Freedenberg
- Renaissance School of Medicine at Stony Brook UniversityStony BrookNew YorkUSA
| | - Jamie L. Romeiser
- Biostatistics, Department of AnesthesiologyRenaissance School of Medicine at Stony Brook UniversityStony BrookNew YorkUSA
| | - Lillian R. Talbot
- MSTPRenaissance School of Medicine at Stony Brook UniversityStony BrookNew YorkUSA
| | - Nicholas J. Browne
- Renaissance School of Medicine at Stony Brook UniversityStony BrookNew YorkUSA
| | - Megan E. Cosgrove
- Renaissance School of Medicine at Stony Brook UniversityStony BrookNew YorkUSA
| | - Margaret E. Shevik
- MSTPRenaissance School of Medicine at Stony Brook UniversityStony BrookNew YorkUSA
| | - Laura M. Generale
- Renaissance School of Medicine at Stony Brook UniversityStony BrookNew YorkUSA
| | - Molly G. Rago
- Cancer Center Clinical TrialsRenaissance School of Medicine at Stony Brook UniversityStony BrookNew YorkUSA
| | - Giuseppina A. Caravella
- Cancer Center Clinical TrialsRenaissance School of Medicine at Stony Brook UniversityStony BrookNew YorkUSA
| | - Tahmeena Ahmed
- Department of Pathology/Blood BankRenaissance School of Medicine at Stony Brook UniversityStony BrookNew YorkUSA
| | - Linda J. Mamone
- Department of Pathology/Blood BankRenaissance School of Medicine at Stony Brook UniversityStony BrookNew YorkUSA
| | | | | |
Collapse
|
8
|
Five Commercial Immunoassays for SARS-CoV-2 Antibody Determination and Their Comparison and Correlation with the Virus Neutralization Test. Diagnostics (Basel) 2021; 11:diagnostics11040593. [PMID: 33806216 PMCID: PMC8065578 DOI: 10.3390/diagnostics11040593] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 03/19/2021] [Accepted: 03/21/2021] [Indexed: 12/29/2022] Open
Abstract
There is an ongoing debate as to whether SARS-CoV-2 antibodies can be found in patients who have recovered from COVID-19 disease. Currently, there is no consensus on whether the antibodies, if present, are protective. Our regular measurements of SARS-CoV-2 antibodies, starting in July 2020, have provided us with the opportunity of becoming acquainted with the five different immunoassays. A total of 149 patients were enrolled in our study. We measured the samples using each immunoassay, then performing a virus neutralization test and comparing the results of SARS-CoV-2 antibodies with this test. We observed that the production of neutralizing antibodies is age-dependent. Elderly patients have a higher proportion of high neutralizing titers than young patients. Based on our results, and in combination with the literature findings, we can conclude that the serological SARS-CoV-2 antibody measurement is a helpful tool in the fight against COVID-19. The assays can provide information about the patient's previous contact with the virus. Anti-spike protein assays correlate well with the virus neutralization test and can be used in the screening of potential convalescent plasma donors.
Collapse
|