1
|
Ventura-Enríquez Y, Casas-Guerrero A, Sánchez-Guzmán MDJ, Loyola-Cruz MÁ, Cruz-Cruz C, Nolasco-Rojas AE, Durán-Manuel EM, Blanco-Hernández DMR, Álvarez-Mora F, Ibáñez-Cervantes G, Cureño-Díaz MA, Bello-López JM, Fernández-Sánchez V. Plasma Photoinactivation of Bacterial Isolated from Blood Donors Skin: Potential of Security Barrier in Transfusional Therapy. Pathogens 2024; 13:577. [PMID: 39057804 PMCID: PMC11280016 DOI: 10.3390/pathogens13070577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/05/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
The presence of skin bacteria capable of forming biofilm, exhibiting antibiotic resistance, and displaying virulence represents a significant challenge in the field of transfusion medicine. This underscores the necessity of enhancing the microbiological safety of blood and blood components against pathogens with virulent characteristics. The aim of this work was to demonstrate bacterial inactivation in plasma by using a photoinactivation method against virulent bacteria and to evaluate coagulation factors before and after treatment. Logarithmic loads of biofilm-producing, antibiotic-resistant, and virulent bacteria isolated from skin (Enterobacter cloacae, Klebsiella ozaenae, and Staphylococcus epidermidis) were used in artificial contamination assays of fresh frozen plasma bags and subjected to photoreduction. FVIII and FI activity were evaluated before and after photoinactivation. The photoinactivation of plasma was demonstrated to be an effective method for the elimination of these bacteria. However, the efficiency of this method was found to be dependent on the bacterial load and the type of test microorganism. Conversely, decay of coagulation factors was observed with net residual activities of 61 and 69% for FVIII and FI, respectively. The photoinactivation system could have a bias in its effectiveness that is dependent on the test pathogen. These findings highlight the importance of employing technologies that increase the safety of the recipient of blood and/or blood components, especially against virulent bacteria, and show the relevance of the role of photoinactivation systems as an option in transfusion practice.
Collapse
Affiliation(s)
| | | | | | | | - Clemente Cruz-Cruz
- Hospital Juárez de México, Mexico City 07760, Mexico
- Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City 11340, Mexico
| | - Andres Emmanuel Nolasco-Rojas
- Hospital Juárez de México, Mexico City 07760, Mexico
- Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City 11340, Mexico
| | - Emilio Mariano Durán-Manuel
- Hospital Juárez de México, Mexico City 07760, Mexico
- Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City 11340, Mexico
| | | | | | - Gabriela Ibáñez-Cervantes
- Hospital Juárez de México, Mexico City 07760, Mexico
- Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City 11340, Mexico
| | | | | | - Verónica Fernández-Sánchez
- Banco de Sangre, Centro Médico Naval (CEMENAV), Mexico City 04470, Mexico
- Hospital Juárez de México, Mexico City 07760, Mexico
- Facultad de Estudios Superiores Iztacala (FES-Iztacala), Universidad Nacional Autónoma de México (UNAM), Mexico City 54090, Mexico
| |
Collapse
|
2
|
Alabdullatif M. Evaluating the effects of temperature and agitation on biofilm formation of bacterial pathogens isolated from raw cow milk. BMC Microbiol 2024; 24:251. [PMID: 38977975 PMCID: PMC11229293 DOI: 10.1186/s12866-024-03403-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 06/27/2024] [Indexed: 07/10/2024] Open
Abstract
OBJECTIVES To study the effect of agitation and temperature on biofilm formation (cell aggregates embedded within a self-produced matrix) by pathogenic bacteria isolated from Raw cow milk (RCM). METHODS A 40 RCM samples were gathered from eight dairy farms in Riyadh, Saudi Arabia. After bacterial culturing and isolation, gram staining was performed, and all pathogenic, identified using standard criteria established by Food Standards Australia New Zealand (FSANZ), and non-pathogenic bacteria were identified using VITEK-2 and biochemical assays. To evaluate the effects of temperature and agitation on biofilm formation, isolated pathogenic bacteria were incubated for 24 h under the following conditions: 4 °C with no agitation (0 rpm), 15 °C with no agitation, 30 °C with no agitation, 30 °C with 60 rpm agitation, and 30 °C with 120 rpm agitation. Then, biofilms were measured using a crystal violet assay. RESULTS Of the eight farm sites, three exhibited non-pathogenic bacterial contamination in their raw milk samples. Of the total of 40 raw milk samples, 15/40 (37.5%; from five farms) were contaminated with pathogenic bacteria. Overall, 346 bacteria were isolated from the 40 samples, with 329/346 (95.1%) considered as non-pathogenic and 17/346 (4.9%) as pathogenic. Most of the isolated pathogenic bacteria exhibited a significant (p < 0.01) increase in biofilm formation when grown at 30 °C compared to 4 °C and when grown with 120 rpm agitation compared to 0 rpm. CONCLUSION Herein, we highlight the practices of consumers in terms of transporting and storing (temperature and agitation) can significantly impact on the growth of pathogens and biofilm formation in RCM.
Collapse
Affiliation(s)
- Meshari Alabdullatif
- Department of Pathology, College of Medicine, Imam Mohammad Ibn Saud Islamic University (IMSIU), Uthman Ibn Affan Rd, Riyadh, 13317-4233, Saudi Arabia.
| |
Collapse
|
3
|
Rezvany MR, Moradi Hasan-Abad A, Sobhani-Nasab A, Esmaili MA. Evaluation of bacterial safety approaches of platelet blood concentrates: bacterial screening and pathogen reduction. Front Med (Lausanne) 2024; 11:1325602. [PMID: 38651065 PMCID: PMC11034438 DOI: 10.3389/fmed.2024.1325602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 03/04/2024] [Indexed: 04/25/2024] Open
Abstract
This mini-review analyzed two approaches to screening bacterial contamination and utilizing pathogen reduction technology (PRT) for Platelet concentrates (PCs). While the culture-based method is still considered the gold standard for detecting bacterial contamination in PCs, efforts in the past two decades to minimize transfusion-transmitted bacterial infections (TTBIs) have been insufficient to eliminate this infectious threat. PRTs have emerged as a crucial tool to enhance safety and mitigate these risks. The evidence suggests that the screening strategy for bacterial contamination is more successful in ensuring PC quality, decreasing the necessity for frequent transfusions, and improving resistance to platelet transfusion. Alternatively, the PRT approach is superior regarding PC safety. However, both methods are equally effective in managing bleeding. In conclusion, PRT can become a more prevalent means of safety for PCs compared to culture-based approaches and will soon comprehensively surpass culture-based bacterial contamination detection methods.
Collapse
Affiliation(s)
- Mohammad Reza Rezvany
- Department of Hematology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
- BioClinicum, Department of Oncology-Pathology, Karolinska Institute, Stockholm, Sweden
- Pediatrics Growth and Development Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences, Tehran, Iran
| | - Amin Moradi Hasan-Abad
- Autoimmune Diseases Research Center, Shahid Beheshti Hospital, Kashan University of Medical Sciences, Kashan, Iran
| | - Ali Sobhani-Nasab
- Physiology Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammad Ali Esmaili
- Department of Laboratory Sciences, Sirjan School of Medical Sciences, Sirjan, Iran
| |
Collapse
|
4
|
Chen X, Ge S, Xiao P, Liu Y, Yu Y, Liu Y, Sun L, Yang L, Wang D. UV-stimulated riboflavin exerts immunosuppressive effects in BALB/c mice and human PBMCs. Biomed Pharmacother 2024; 173:116278. [PMID: 38401513 DOI: 10.1016/j.biopha.2024.116278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/08/2024] [Accepted: 02/13/2024] [Indexed: 02/26/2024] Open
Abstract
Riboflavin (RF) as a photosensitizer has been used in corneal surgery and the inactivation of blood products. However, the effect of RF on immune cells after ultraviolet (UV) light stimulation has not been investigated. This study pioneered a novel application method of RF. Firstly, UV-stimulated RF was co-cultured with human peripheral blood mononuclear cells in vitro, and the apoptosis rate of lymphocyte subsets, cell proliferation inhibition rate and concentrations of IL-1β, IL-6, IL-10, TNF-α were assessed. UV-stimulated RF was then administered intravenously to mice via the tail vein for a consecutive period of 5 days. The levels of immunoglobulin (IgG, IgM, IgA), complement (C3, C4) and cytokines (IFN-γ, IL-4, IL17, TGF-β) were detected by ELISA. Flow cytometry was employed to analyze the populations of CD3+T, CD4+T, CD8+T and CD4+T/CD8+T cells in spleen lymphocytes of mice. The data showed that UV-stimulated RF can effectively induce apoptosis in lymphocytes, and different lymphocyte subtypes exhibited varying degrees of treatment tolerance. Additionally, the proliferative capacity of lymphocytes was suppressed, while their cytokine secretion capability was augmented. The animal experiments demonstrated that UV-stimulated RF led to a significant reduction observed in serum immunoglobulin and complement levels, accompanied by an elevation in IFN-γ, IL-17 and TGF-β levels, as well as a decline in IL-4 level. In summary, the results of both in vitro and in vivo experiments have demonstrated that UV-stimulated RF, exhibits the ability to partially inhibit immune function. This novel approach utilizing RF may offer innovative perspectives for diseases requiring immunosuppressive treatment.
Collapse
Affiliation(s)
- Xinghui Chen
- Department of Blood Transfusion Medicine, The First Medical Center, Chinese PLA General Hospital, Beijing, China; Department of Blood Transfusion, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Shuang Ge
- Department of Blood Transfusion Medicine, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Pan Xiao
- Department of Blood Transfusion Medicine, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Yulin Liu
- Department of Blood Transfusion, Guang'an People's Hospital, Guang 'an, China
| | - Yang Yu
- Department of Blood Transfusion Medicine, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Yi Liu
- Department of Blood Transfusion Medicine, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Liping Sun
- Department of Blood Transfusion Medicine, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Lu Yang
- Department of Blood Transfusion Medicine, The First Medical Center, Chinese PLA General Hospital, Beijing, China.
| | - Deqing Wang
- Department of Blood Transfusion Medicine, The First Medical Center, Chinese PLA General Hospital, Beijing, China; Department of Blood Transfusion, Affiliated Hospital of Southwest Medical University, Luzhou, China.
| |
Collapse
|
5
|
Gravemann U, Handke W, Schulze TJ, Seltsam A. Growth and Distribution of Bacteria in Contaminated Whole Blood and Derived Blood Components. Transfus Med Hemother 2024; 51:76-83. [PMID: 38584696 PMCID: PMC10996057 DOI: 10.1159/000536242] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 01/10/2024] [Indexed: 04/09/2024] Open
Abstract
Introduction Bacterial contamination of blood products presumably occurs mainly during blood collection, starting from low initial concentrations of 10-100 colony-forming units (CFUs) per bag. As little is known about bacterial growth behavior and distribution in stored whole blood (WB) and WB-derived blood products, this study aims to provide data on this subject. Methods WB units were inoculated with transfusion-relevant bacterial species (Acinetobacter baumannii, Bacillus cereus, Escherichia coli, Klebsiella pneumoniae, Listeria monocytogenes, Pseudomonas fluorescens, Serratia marcescens, Staphylococcus aureus, Staphylococcus epidermidis, Streptococcus dysgalactiae, Streptococcus pyogenes, Yersinia enterocolitica; n = 12 for each species), stored for 22-24 h at room temperature, and then centrifuged for separation into plasma, red blood cells (RBCs), and buffy coats (BCs). The latter were pooled with 3 random donor BCs and one unit of PAS-E each to yield plasma-reduced platelet concentrates (PCs). Samples for bacterial colony counting were collected after WB storage and immediately after blood component production. Sterility testing in PCs (n = 12 for each species) was performed by bacterial culture after 7 days of storage. Results Bacterial growth in WB varied remarkably between donations and species. Streptococcus species produced the highest titers in WB, whereas Staphylococcus aureus, Staphylococcus epidermidis, Escherichia coli, and Pseudomonas fluorescens did not multiply. Centrifugation resulted in preferential accumulation of bacteria in BCs, with titers of up to 3.5 × 103 CFU/mL in BCs and up to ≤0.9 × 103 CFU/mL in BC-derived PCs. Overall, 72/144 PCs (50%) tested positive for bacteria after storage. Sterility test results were species-dependent, ranging from 12 of 12 PCs tested positive for Streptococcus pyogenes to 1 of 12 PCs positive for Escherichia coli. Bacterial contamination of RBC and plasma units was much less common and was associated with higher initial bacterial counts in the parent WB units. Conclusions Bacterial growth in WB is species-dependent and varies greatly between donations. Preferential accumulation of bacteria in BCs during manufacturing is a critical determinant of the contamination risk of BC-derived pooled PCs.
Collapse
Affiliation(s)
- Ute Gravemann
- German Red Cross Blood Service NSTOB, Institute Springe, Springe, Germany
| | - Wiebke Handke
- Bavarian Red Cross Blood Service, Institute Nuremberg, Nuremberg, Germany
| | - Torsten J. Schulze
- German Red Cross Blood Service NSTOB, Institute Springe, Springe, Germany
| | - Axel Seltsam
- Bavarian Red Cross Blood Service, Institute Nuremberg, Nuremberg, Germany
| |
Collapse
|
6
|
Alabdullatif M, Alzahrani A. Expression of biofilm-associated genes in Staphylococcus aureus during storage of platelet concentrates. Transfus Apher Sci 2022; 61:103456. [DOI: 10.1016/j.transci.2022.103456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 05/04/2022] [Accepted: 05/09/2022] [Indexed: 10/18/2022]
|