1
|
LaCroix IS, Moore EE, Cralley A, Cendali FI, Dzieciatkowska M, Hom P, Mitra S, Cohen M, Silliman C, Hansen KC, D'Alessandro A. Multiomics Signatures of Coagulopathy in a Polytrauma Swine Model Contrasted with Severe Multisystem Injured Patients. J Proteome Res 2024; 23:1163-1173. [PMID: 38386921 DOI: 10.1021/acs.jproteome.3c00581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
Trauma-induced coagulopathy (TIC) is a leading contributor to preventable mortality in severely injured patients. Understanding the molecular drivers of TIC is an essential step in identifying novel therapeutics to reduce morbidity and mortality. This study investigated multiomics and viscoelastic responses to polytrauma using our novel swine model and compared these findings with severely injured patients. Molecular signatures of TIC were significantly associated with perturbed coagulation and inflammation systems as well as extensive hemolysis. These results were consistent with patterns observed in trauma patients who had multisystem injuries. Here, intervention using resuscitative endovascular balloon occlusion of the aorta following polytrauma in our swine model revealed distinct multiomics alterations as a function of placement location. Aortic balloon placement in zone-1 worsened ischemic damage and mitochondrial dysfunction, patterns that continued throughout the monitored time course. While placement in zone-III showed a beneficial effect on TIC, it showed an improvement in effective coagulation. Taken together, this study highlights the translational relevance of our polytrauma swine model for investigating therapeutic interventions to correct TIC in patients.
Collapse
Affiliation(s)
- Ian S LaCroix
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado 80045, United States
| | - Ernest E Moore
- Department of Surgery, University of Colorado, Anschutz Medical Campus, Aurora, Colorado 80045, United States
- Ernest E Moore Shock Trauma Center at Denver Health, Denver, Colorado 80204, United States
| | - Alexis Cralley
- Department of Surgery, University of Colorado, Anschutz Medical Campus, Aurora, Colorado 80045, United States
| | - Francesca I Cendali
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado 80045, United States
| | - Monika Dzieciatkowska
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado 80045, United States
| | - Patrick Hom
- Department of Surgery, University of Colorado, Anschutz Medical Campus, Aurora, Colorado 80045, United States
| | - Sanchayita Mitra
- Department of Surgery, University of Colorado, Anschutz Medical Campus, Aurora, Colorado 80045, United States
| | - Mitchell Cohen
- Department of Surgery, University of Colorado, Anschutz Medical Campus, Aurora, Colorado 80045, United States
| | - Christopher Silliman
- Vitalant Research Institute, Denver, Colorado 80230, United States
- Department of Pediatrics, University of Colorado, Anschutz Medical Campus, Aurora, Colorado 80045, United States
| | - Kirk C Hansen
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado 80045, United States
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado 80045, United States
| |
Collapse
|
2
|
LaCroix IS, Cralley A, Moore EE, Cendali FI, Dzieciatkowska M, Hom P, Mitra S, Cohen M, Silliman C, Sauaia A, Hansen KC, D’Alessandro A. Omics Signatures of Tissue Injury and Hemorrhagic Shock in Swine. Ann Surg 2023; 278:e1299-e1312. [PMID: 37334680 PMCID: PMC10728352 DOI: 10.1097/sla.0000000000005944] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
OBJECTIVE Advanced mass spectrometry methods were leveraged to analyze both proteomics and metabolomics signatures in plasma upon controlled tissue injury (TI) and hemorrhagic shock (HS)-isolated or combined-in a swine model, followed by correlation to viscoelastic measurements of coagulopathy via thrombelastography. BACKGROUND TI and HS cause distinct molecular changes in plasma in both animal models and trauma patients. However, the contribution to coagulopathy of trauma, the leading cause of preventable mortality in this patient population remains unclear. The recent development of a swine model for isolated or combined TI+HS facilitated the current study. METHODS Male swine (n=17) were randomized to either isolated or combined TI and HS. Coagulation status was analyzed by thrombelastography during the monitored time course. The plasma fractions of the blood draws (at baseline; end of shock; and at 30 minutes, 1, 2, and 4 hours after shock) were analyzed by mass spectrometry-based proteomics and metabolomics workflows. RESULTS HS-isolated or combined with TI-caused the most severe omic alterations during the monitored time course. While isolated TI delayed the activation of coagulation cascades. Correlation to thrombelastography parameters of clot strength (maximum amplitude) and breakdown (LY30) revealed signatures of coagulopathy which were supported by analysis of gene ontology-enriched biological pathways. CONCLUSION The current study provides a comprehensive characterization of proteomic and metabolomic alterations to combined or isolated TI and HS in a swine model and identifies early and late omics correlates to viscoelastic measurements in this system.
Collapse
Affiliation(s)
- Ian S. LaCroix
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver – Anschutz Medical Campus, Aurora, CO, USA
| | - Alexis Cralley
- Department of Surgery, University of Colorado - Anschutz Medical Campus, Aurora, CO, USA
| | - Ernest E. Moore
- Department of Surgery, University of Colorado - Anschutz Medical Campus, Aurora, CO, USA
- Ernest E Moore Shock Trauma Center at Denver Health, Denver, CO, USA
| | - Francesca I Cendali
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver – Anschutz Medical Campus, Aurora, CO, USA
| | - Monika Dzieciatkowska
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver – Anschutz Medical Campus, Aurora, CO, USA
| | - Patrick Hom
- Department of Surgery, University of Colorado - Anschutz Medical Campus, Aurora, CO, USA
| | - Sanchayita Mitra
- Department of Surgery, University of Colorado - Anschutz Medical Campus, Aurora, CO, USA
| | | | - Christopher Silliman
- Vitalant Research Institute, Denver, CO, USA
- Department of Pediatrics, University of Colorado - Anschutz Medical Campus, Aurora, CO, USA
| | - Angela Sauaia
- Ernest E Moore Shock Trauma Center at Denver Health, Denver, CO, USA
| | - Kirk C Hansen
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver – Anschutz Medical Campus, Aurora, CO, USA
| | - Angelo D’Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver – Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
3
|
Lorusso A, Croxon H, Faherty-O'Donnell S, Field S, Fitzpatrick Á, Farrelly A, Hervig T, Waters A. The impact of donor biological variation on the quality and function of cold-stored platelets. Vox Sang 2023; 118:730-737. [PMID: 37439150 DOI: 10.1111/vox.13495] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 06/09/2023] [Accepted: 06/18/2023] [Indexed: 07/14/2023]
Abstract
BACKGROUND AND OBJECTIVES Room temperature-stored platelets (RTPs) maximize platelet viability but limit shelf life. The aims of this study were to investigate the impact of donor variability on cold-stored platelets (CSPs) and RTP, to determine whether RTP quality markers are appropriate for CSP. MATERIALS AND METHODS Double platelet donations (n = 10) were collected from consented regular male donors stored in 100% plasma. A full blood count, donor age, weight, height and body mass index (BMI) were collected at the time of donation. Platelet donations were split equally into two bags, and assigned to non-agitated CSP or agitated RTP. The quality and function of platelets were assessed throughout the standard 7 days of storage and at expiry (day 8). Non-parametric statistical analyses were used to analyse results given the small sample size. RESULTS As expected, there were significant differences between CSP and RTP throughout storage including a reduction in CSP concentration as well as a loss of swirling. Furthermore, a significant increase in CSP exhibiting activation and apoptotic markers was observed. Platelet concentrations were further impacted by donor BMI, and donors with the highest BMI (>29) had the lowest platelet concentration and activation response at the end of CSP storage. CONCLUSION Platelet quality and functionality play a vital role in transfusion outcomes; however, blood components are inherently variable. This study demonstrated, for the first time, the specific impact of donor BMI on CSP quality and function and highlights the requirement for novel quality markers for assessing CSPs.
Collapse
Affiliation(s)
- Alice Lorusso
- Irish Blood Transfusion Service, National Blood Centre, Dublin, Ireland
| | - Harry Croxon
- Irish Blood Transfusion Service, National Blood Centre, Dublin, Ireland
| | | | - Stephen Field
- Irish Blood Transfusion Service, National Blood Centre, Dublin, Ireland
- School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Áine Fitzpatrick
- Irish Blood Transfusion Service, National Blood Centre, Dublin, Ireland
| | - Aileen Farrelly
- Irish Blood Transfusion Service, National Blood Centre, Dublin, Ireland
| | - Tor Hervig
- Irish Blood Transfusion Service, National Blood Centre, Dublin, Ireland
| | - Allison Waters
- Irish Blood Transfusion Service, National Blood Centre, Dublin, Ireland
- UCD School of Public Health, Population Science and Physiotherapy, University College Dublin, Dublin, Ireland
| |
Collapse
|
4
|
LaCroix IS, Cohen M, Moore EE, Dzieciatkowska M, Silliman CC, Hansen KC, D'Alessandro A. Omics markers of platelet transfusion in trauma patients. Transfusion 2023; 63:1447-1462. [PMID: 37466356 DOI: 10.1111/trf.17472] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/26/2023] [Accepted: 05/30/2023] [Indexed: 07/20/2023]
Abstract
BACKGROUND Even in the era of the COVID-19 pandemic, trauma remains the global leading cause of mortality under the age of 49. Trauma-induced coagulopathy is a leading driver of early mortality in critically ill patients, and transfusion of platelet products is a life-saving intervention to restore hemostasis in the bleeding patient. However, despite extensive functional studies based on viscoelastic assays, limited information is available about the impact of platelet transfusion on the circulating molecular signatures in trauma patients receiving platelet transfusion. MATERIALS AND METHODS To bridge this gap, we leveraged metabolomics and proteomics approaches to characterize longitudinal plasma samples (n = 118; up to 11 time points; total samples: 759) from trauma patients enrolled in the Control Of Major Bleeding After Trauma (COMBAT) study. Samples were collected in the field, in the emergency department (ED), and at intervals up to 168 h (7 days) post-hospitalization. Transfusion of platelet (PLT) products was performed (n = 30; total samples: 250) in the ED through 24 h post-hospitalization. Longitudinal plasma samples were subjected to mass spectrometry-based metabolomics and proteomics workflows. Multivariate analyses were performed to determine omics markers of transfusion of one, two, three, or more PLT transfusions. RESULTS Higher levels of tranexamic acid (TXA), inflammatory proteins, carnitines, and polyamines were detected in patients requiring PLT transfusion. Correlation of PLT units with omics data suggested sicker patients required more units and partially overlap with the population requiring transfusion of packed red blood cell products. Furthermore, platelet activation was likely increased in the most severely injured patients. Fatty acid levels were significantly lower in PLT transfusion recipients (at time of maximal transfusion: Hour 4) compared with non-recipients, while carnitine levels were significantly higher. Fatty acid levels restore later in the time course (e.g., post-PLT transfusion). DISCUSSION The present study provides the first multi-omics characterization of platelet transfusion efficacy in a clinically relevant cohort of trauma patients. Physiological alterations following transfusion were detected, highlighting the efficacy of mass spectrometry-based omics techniques to improve personalized transfusion medicine. More specialized clinical research studies focused on PLT transfusion, including organized pre and post transfusion sample collection and limitation to PLT products only, are required to fully understand subsequent metabolomic and proteomic alterations.
Collapse
Affiliation(s)
- Ian S LaCroix
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver - Anschutz Medical Campus, Aurora, Colorado, USA
| | - Mitchell Cohen
- Department of Surgery, University of Colorado - Anschutz Medical Campus, Aurora, Colorado, USA
| | - Ernest E Moore
- Department of Surgery, University of Colorado - Anschutz Medical Campus, Aurora, Colorado, USA
- "Ernest E Moore" Trauma Center at Denver Health, Denver, Colorado, USA
| | - Monika Dzieciatkowska
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver - Anschutz Medical Campus, Aurora, Colorado, USA
| | - Christopher C Silliman
- Vitalant Research Institute, Denver, Colorado, USA
- Department of Pediatrics, University of Colorado - Anschutz Medical Campus, Aurora, Colorado, USA
| | - Kirk C Hansen
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver - Anschutz Medical Campus, Aurora, Colorado, USA
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver - Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|