1
|
Iesari S, Nava FL, Zais IE, Coubeau L, Ferraresso M, Favi E, Lerut J. Advancing immunosuppression in liver transplantation: A narrative review. Hepatobiliary Pancreat Dis Int 2024; 23:441-448. [PMID: 38523030 DOI: 10.1016/j.hbpd.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 03/14/2024] [Indexed: 03/26/2024]
Abstract
Immunosuppression is essential to ensure recipient and graft survivals after liver transplantation (LT). However, our understanding and management of the immune system remain suboptimal. Current immunosuppressive therapy cannot selectively inhibit the graft-specific immune response and entails a significant risk of serious side effects, i.e., among others, de novo cancers, infections, cardiovascular events, renal failure, metabolic syndrome, and late graft fibrosis, with progressive loss of graft function. Pharmacological research, aimed to develop alternative immunosuppressive agents in LT, is behind other solid-organ transplantation subspecialties, and, therefore, the development of new compounds and strategies should get priority in LT. The research trajectories cover mechanisms to induce T-cell exhaustion, to inhibit co-stimulation, to mitigate non-antigen-specific inflammatory response, and, lastly, to minimize the development and action of donor-specific antibodies. Moreover, while cellular modulation techniques are complex, active research is underway to foster the action of T-regulatory cells, to induce tolerogenic dendritic cells, and to promote the function of B-regulatory cells. We herein discuss current lines of research in clinical immunosuppression, particularly focusing on possible applications in the LT setting.
Collapse
Affiliation(s)
- Samuele Iesari
- General Surgery and Kidney Transplantation, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 15 Via della Commenda, 20122 Milan, Italy
| | - Francesca Laura Nava
- General Surgery and Kidney Transplantation, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 15 Via della Commenda, 20122 Milan, Italy
| | - Ilaria Elena Zais
- General Surgery and Kidney Transplantation, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 15 Via della Commenda, 20122 Milan, Italy
| | - Laurent Coubeau
- Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, 10 Avenue Hippocrate, 1200 Brussels, Belgium; Service de Chirurgie et Transplantation Abdominale, Cliniques Universitaires Saint-Luc, 55 Avenue Hippocrate, 1200 Brussels, Belgium
| | - Mariano Ferraresso
- General Surgery and Kidney Transplantation, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 15 Via della Commenda, 20122 Milan, Italy; Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 19 Via della Commenda, 20122 Milan, Italy
| | - Evaldo Favi
- General Surgery and Kidney Transplantation, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 15 Via della Commenda, 20122 Milan, Italy; Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 19 Via della Commenda, 20122 Milan, Italy.
| | - Jan Lerut
- Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, 10 Avenue Hippocrate, 1200 Brussels, Belgium
| |
Collapse
|
2
|
Panicker AJ, Prokop LJ, Hacke K, Jaramillo A, Griffiths LG. Outcome-based Risk Assessment of Non-HLA Antibodies in Heart Transplantation: A Systematic Review. J Heart Lung Transplant 2024; 43:1450-1467. [PMID: 38796046 DOI: 10.1016/j.healun.2024.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 05/15/2024] [Accepted: 05/19/2024] [Indexed: 05/28/2024] Open
Abstract
BACKGROUND Current monitoring after heart transplantation (HT) employs repeated invasive endomyocardial biopsies (EMB). Although positive EMB confirms rejection, EMB fails to predict impending, subclinical, or EMB-negative rejection events. While non-human leukocyte antigen (non-HLA) antibodies have emerged as important risk factors for antibody-mediated rejection after HT, their use in clinical risk stratification has been limited. A systematic review of the role of non-HLA antibodies in rejection pathologies has the potential to guide efforts to overcome deficiencies of EMB in rejection monitoring. METHODS Databases were searched to include studies on non-HLA antibodies in HT recipients. Data collected included the number of patients, type of rejection, non-HLA antigen studied, association of non-HLA antibodies with rejection, and evidence for synergistic interaction between non-HLA antibodies and donor-specific anti-human leukocyte antigen antibody (HLA-DSA) responses. RESULTS A total of 56 studies met the inclusion criteria. Strength of evidence for each non-HLA antibody was evaluated based on the number of articles and patients in support versus against their role in mediating rejection. Importantly, despite previous intense focus on the role of anti-major histocompatibility complex class I chain-related gene A (MICA) and anti-angiotensin II type I receptor antibodies (AT1R) in HT rejection, evidence for their involvement was equivocal. Conversely, the strength of evidence for other non-HLA antibodies supports that differing rejection pathologies are driven by differing non-HLA antibodies. CONCLUSIONS This systematic review underscores the importance of identifying peri-HT non-HLA antibodies. Current evidence supports the role of non-HLA antibodies in all forms of HT rejection. Further investigations are required to define the mechanisms of action of non-HLA antibodies in HT rejection.
Collapse
Affiliation(s)
- Anjali J Panicker
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, Minnesota; Department of Immunology, Mayo Clinic, Rochester, Minnesota; Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota
| | - Larry J Prokop
- Mayo Clinic Libraries, Mayo Clinic, Rochester, Minnesota
| | - Katrin Hacke
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Phoenix, Arizona
| | - Andrés Jaramillo
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Phoenix, Arizona
| | - Leigh G Griffiths
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, Minnesota; Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota; Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, Minnesota.
| |
Collapse
|
3
|
Punjala SR, Ibrahim M, Phillips BL, Stojanovic J, Kessaris N, Shaw O, Dorling A, Mamode N. Characteristics of Early Antibody Mediated Rejection in Antibody Incompatible Living Donor Kidney Transplantation. Transpl Int 2024; 37:12942. [PMID: 39040870 PMCID: PMC11261346 DOI: 10.3389/ti.2024.12942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 06/25/2024] [Indexed: 07/24/2024]
Abstract
Antibody incompatible transplantation (AIT) may be an only option for highly sensitized patients. Severe form of early antibody mediated rejection (AMR) adversely affects graft survival after AIT. The aim of this study was to identify individuals at risk of AMR. We analyzed 213 living donor AITs performed at our center. Among 120 ABOi, 58 HLAi and 35 DSA + FCXM-negative cases, the rates of early AMR were 6%, 31%, and 9%, respectively (p < 0.001). On multivariate analysis for graft loss, early AMR had a HR of 3.28 (p < 0.001). The HLAi group had worse death-censored graft survival (p = 0.003). In the HLAi group, Patients with aggressive variant AMR (AAMR) had greater percentage of C3d complement fixing DSA, higher baseline class I and total DSA MFI levels and B-cell FCXM RMF. C1q and C3d complement fixing DSA and strong positivity of baseline B- or T-cell FXCM as predictors of AAMR had 100% sensitivity. Early AMR is of significant clinical concern in AIT as it results in poor graft survival and is not well described in literature. An aggressive variant is characterized by massive rise in DSA levels at rejection. Baseline DSA, C1q, and C3d and baseline FCXM values can be used to risk-stratify candidates for AIT.
Collapse
Affiliation(s)
- Sai Rithin Punjala
- Department of Transplantation, Guy’s and St Thomas’ NHS Foundation Trust, London, United Kingdom
| | - Maria Ibrahim
- Department of Transplantation, Guy’s and St Thomas’ NHS Foundation Trust, London, United Kingdom
| | - Benedict Lyle Phillips
- Department of Transplantation, Guy’s and St Thomas’ NHS Foundation Trust, London, United Kingdom
| | - Jelena Stojanovic
- Department of Pediatric Nephrology and Transplantation, Great Ormond Street Hospital, London, United Kingdom
| | - Nicos Kessaris
- Department of Transplantation, Guy’s and St Thomas’ NHS Foundation Trust, London, United Kingdom
- Department of Pediatric Nephrology and Transplantation, Great Ormond Street Hospital, London, United Kingdom
- Department of Pediatric Nephrology and Transplantation, Evelina Children’s Hospital, London, United Kingdom
| | - Olivia Shaw
- Clinical Transplantation Lab, Viapath, Guy’s and St Thomas’ NHS Foundation Trust, London, United Kingdom
| | - Anthony Dorling
- Department of Transplantation, Guy’s and St Thomas’ NHS Foundation Trust, London, United Kingdom
- Department of Inflammation Biology, King’s College London, London, United Kingdom
| | - Nizam Mamode
- Department of Transplantation, Guy’s and St Thomas’ NHS Foundation Trust, London, United Kingdom
- Department of Pediatric Nephrology and Transplantation, Evelina Children’s Hospital, London, United Kingdom
| |
Collapse
|
4
|
Gibson B, Connelly C, Moldakhmetova S, Sheerin NS. Complement activation and kidney transplantation; a complex relationship. Immunobiology 2023; 228:152396. [PMID: 37276614 DOI: 10.1016/j.imbio.2023.152396] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/14/2023] [Accepted: 05/15/2023] [Indexed: 06/07/2023]
Abstract
Although kidney transplantation is the best treatment for end stage kidney disease, the benefits are limited by factors such as the short fall in donor numbers, the burden of immunosuppression and graft failure. Although there have been improvements in one-year outcomes, the annual rate of graft loss beyond the first year has not significantly improved, despite better therapies to control the alloimmune response. There is therefore a need to develop alternative strategies to limit kidney injury at all stages along the transplant pathway and so improve graft survival. Complement is primarily part of the innate immune system, but is also known to enhance the adaptive immune response. There is increasing evidence that complement activation occurs at many stages during transplantation and can have deleterious effects on graft outcome. Complement activation begins in the donor and occurs again on reperfusion following a period of ischemia. Complement can contribute to the development of the alloimmune response and may directly contribute to graft injury during acute and chronic allograft rejection. The complexity of the relationship between complement activation and allograft outcome is further increased by the capacity of the allograft to synthesise complement proteins, the contribution complement makes to interstitial fibrosis and complement's role in the development of recurrent disease. The better we understand the role played by complement in kidney transplant pathology the better placed we will be to intervene. This is particularly relevant with the rapid development of complement therapeutics which can now target different the different pathways of the complement system. Combining our basic understanding of complement biology with preclinical and observational data will allow the development and delivery of clinical trials which have best chance to identify any benefit of complement inhibition.
Collapse
Affiliation(s)
- B Gibson
- Clinical and Translational Research Institute Faculty of Medical Sciences, Newcastle University Newcastle upon Tyne, NE2 4HH, UK
| | - C Connelly
- Clinical and Translational Research Institute Faculty of Medical Sciences, Newcastle University Newcastle upon Tyne, NE2 4HH, UK
| | - S Moldakhmetova
- Clinical and Translational Research Institute Faculty of Medical Sciences, Newcastle University Newcastle upon Tyne, NE2 4HH, UK
| | - N S Sheerin
- Clinical and Translational Research Institute Faculty of Medical Sciences, Newcastle University Newcastle upon Tyne, NE2 4HH, UK.
| |
Collapse
|
5
|
Santarsiero D, Aiello S. The Complement System in Kidney Transplantation. Cells 2023; 12:cells12050791. [PMID: 36899927 PMCID: PMC10001167 DOI: 10.3390/cells12050791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 02/24/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
Kidney transplantation is the therapy of choice for patients who suffer from end-stage renal diseases. Despite improvements in surgical techniques and immunosuppressive treatments, long-term graft survival remains a challenge. A large body of evidence documented that the complement cascade, a part of the innate immune system, plays a crucial role in the deleterious inflammatory reactions that occur during the transplantation process, such as brain or cardiac death of the donor and ischaemia/reperfusion injury. In addition, the complement system also modulates the responses of T cells and B cells to alloantigens, thus playing a crucial role in cellular as well as humoral responses to the allograft, which lead to damage to the transplanted kidney. Since several drugs that are capable of inhibiting complement activation at various stages of the complement cascade are emerging and being developed, we will discuss how these novel therapies could have potential applications in ameliorating outcomes in kidney transplantations by preventing the deleterious effects of ischaemia/reperfusion injury, modulating the adaptive immune response, and treating antibody-mediated rejection.
Collapse
|
6
|
Abstract
Access to kidney transplantation is limited by HLA-specific sensitization. Desensitization strategies enable crossmatch-positive kidney transplantation. In this review, we describe clinical experience gained over the last 20 y using desensitization strategies before kidney transplantation and describe the different tools used (both drugs and apheresis options), including IVIg, rituximab, apheresis techniques, interleukin-6 interference, proteasome inhibition, enzymatic degradation of HLA antibodies, complement inhibition, and B cytokine interference. Although access to transplantation for highly sensitized kidney transplantation candidates has been vastly improved by desensitization strategies, it remains, however, limited by the recurrence of HLA antibodies after transplantation and the occurrence of antibody-mediated rejection.
Collapse
|
7
|
Grimaldi V, Pagano M, Moccia G, Maiello C, De Rosa P, Napoli C. Novel insights in the clinical management of hyperimmune patients before and after transplantation. CURRENT RESEARCH IN IMMUNOLOGY 2023; 4:100056. [PMID: 36714552 PMCID: PMC9876744 DOI: 10.1016/j.crimmu.2023.100056] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 01/11/2023] [Accepted: 01/18/2023] [Indexed: 01/24/2023] Open
Abstract
Despite improvements in anti-Human Leucocyte Antigens antibody detection, identification, and characterization offer a better in peri-operative management techniques, antibodies remain a serious cause of morbidity and mortality for patients both before and after organ transplantation. Hyperimmune patients are disadvantaged by having to wait longer to receive an organ from a suitably matched donor. They could benefit from desensitization protocols in both pre- and post-transplantation period. Clinical studies are underway to highlight which best desensitization strategies could be assure the best outcome in both heart and kidney transplantation. Although most clinical evidence about desensitization strategies by using anti-CD20 monoclonal antibodies, proteasome inhibitors, anti-CD38 monoclonal antibodies, interleukin-6 blockade, cysteine protease and complement inhibitors, comes from kidney transplantation studies, many of the debated novel concepts can be easily applied to desensitization also in heart transplantation. Here, we discuss the candidates and recipients' management by using most common standard of care and novel therapeutics, desensitization endpoints, and strategies for future studies.
Collapse
Affiliation(s)
- Vincenzo Grimaldi
- U.O.C. Division of Clinical Immunology, Immunohematology, Transfusion Medicine and Transplant Immunology. Regional Reference Laboratory of Transplant Immunology (LIT) (EFI and ASHI Certifications). Department of Internal Medicine and Specialistics, University of Campania "L. Vanvitelli", Naples, Italy,Corresponding author.
| | - Martina Pagano
- U.O.C. Division of Clinical Immunology, Immunohematology, Transfusion Medicine and Transplant Immunology. Regional Reference Laboratory of Transplant Immunology (LIT) (EFI and ASHI Certifications). Department of Internal Medicine and Specialistics, University of Campania "L. Vanvitelli", Naples, Italy
| | - Giusi Moccia
- U.O.C. Division of Clinical Immunology, Immunohematology, Transfusion Medicine and Transplant Immunology. Regional Reference Laboratory of Transplant Immunology (LIT) (EFI and ASHI Certifications). Department of Internal Medicine and Specialistics, University of Campania "L. Vanvitelli", Naples, Italy
| | - Ciro Maiello
- Cardiac Transplantation Unit, Department of Cardiac Surgery and Transplantation, Ospedali dei Colli, Naples, Italy
| | - Paride De Rosa
- General Surgery and Transplantation Unit, "San Giovanni di Dio e Ruggi D'Aragona," University Hospital, Scuola Medica Salernitana, Salerno, Italy
| | - Claudio Napoli
- U.O.C. Division of Clinical Immunology, Immunohematology, Transfusion Medicine and Transplant Immunology. Regional Reference Laboratory of Transplant Immunology (LIT) (EFI and ASHI Certifications). Department of Internal Medicine and Specialistics, University of Campania "L. Vanvitelli", Naples, Italy,Department of Advanced Medical and Surgical Sciences (DAMSS), University of Campania "Luigi Vanvitelli", Naples, Italy
| |
Collapse
|
8
|
Heo S, Park Y, Lee N, Kim Y, Kim YN, Shin HS, Jung Y, Rim H, Rennke HG, Chandraker A. Lack of Efficacy and Safety of Eculizumab for Treatment of Antibody-Mediated Rejection Following Renal Transplantation. Transplant Proc 2022; 54:2117-2124. [PMID: 36192209 DOI: 10.1016/j.transproceed.2022.08.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 07/14/2022] [Accepted: 08/02/2022] [Indexed: 10/07/2022]
Abstract
BACKGROUND We evaluated the efficacy and safety of eculizumab in comparison with plasmapheresis and intravenous immunoglobulin therapy in renal transplant recipients diagnosed with antibody-mediated rejection (AMR). METHODS This was a multicenter, open-label, prospective, randomized analysis. The patients were randomized by therapy type (eg, eculizumab infusions or standard of care [SOC]: plasmapheresis/intravenous immunoglobulin). The patients (ie, eculizumab arm: 7 patients, SOC arm: 4 patients) were evaluated for the continued presence of donor-specific antibodies (DSAs) and C4d (staining on biopsy), as well as histologic evidence, using repeat renal biopsy after treatment. RESULTS The allograft biopsies revealed that eculizumab did not prevent the progression to transplant glomerulopathy. Only 2 patients in the SOC arm experienced rejection reversal, and no graft losses occurred in either group. After AMR treatment, the DSA titers generally decreased compared to titers taken at the time of AMR diagnosis. There were no serious adverse effects in the eculizumab arm. CONCLUSIONS Eculizumab alone cannot treat AMR effectively and does not prevent acute AMR from progressing to chronic AMR or transplant glomerulopathy. However, it should be considered as a potential alternative therapy because it may be associated with decreased DSA levels.
Collapse
Affiliation(s)
- Sujung Heo
- Renal Division, Department of Internal Medicine, Gospel Hospital, Kosin University College of Medicine, Busan, South Korea; Transplantation Research Institute, Kosin University College of Medicine, Busan, South Korea
| | - Youngchan Park
- Renal Division, Department of Internal Medicine, Gospel Hospital, Kosin University College of Medicine, Busan, South Korea; Transplantation Research Institute, Kosin University College of Medicine, Busan, South Korea
| | - Nagyeom Lee
- Renal Division, Department of Internal Medicine, Gospel Hospital, Kosin University College of Medicine, Busan, South Korea; Transplantation Research Institute, Kosin University College of Medicine, Busan, South Korea
| | - Yanghyeon Kim
- Renal Division, Department of Internal Medicine, Gospel Hospital, Kosin University College of Medicine, Busan, South Korea; Transplantation Research Institute, Kosin University College of Medicine, Busan, South Korea
| | - Ye Na Kim
- Renal Division, Department of Internal Medicine, Gospel Hospital, Kosin University College of Medicine, Busan, South Korea; Transplantation Research Institute, Kosin University College of Medicine, Busan, South Korea
| | - Ho Sik Shin
- Renal Division, Department of Internal Medicine, Gospel Hospital, Kosin University College of Medicine, Busan, South Korea; Transplantation Research Institute, Kosin University College of Medicine, Busan, South Korea.
| | - Yeonsoon Jung
- Renal Division, Department of Internal Medicine, Gospel Hospital, Kosin University College of Medicine, Busan, South Korea; Transplantation Research Institute, Kosin University College of Medicine, Busan, South Korea
| | - Hark Rim
- Renal Division, Department of Internal Medicine, Gospel Hospital, Kosin University College of Medicine, Busan, South Korea; Transplantation Research Institute, Kosin University College of Medicine, Busan, South Korea
| | - Helmut G Rennke
- Renal Pathology, Department of Pathology, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Anil Chandraker
- Transplantation Research Center, Renal Division, Brigham & Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
9
|
Yi SG, Gaber AO, Chen W. B-cell response in solid organ transplantation. Front Immunol 2022; 13:895157. [PMID: 36016958 PMCID: PMC9395675 DOI: 10.3389/fimmu.2022.895157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 07/11/2022] [Indexed: 11/21/2022] Open
Abstract
The transcriptional regulation of B-cell response to antigen stimulation is complex and involves an intricate network of dynamic signals from cytokines and transcription factors propagated from T-cell interaction. Long-term alloimmunity, in the setting of organ transplantation, is dependent on this B-cell response, which does not appear to be halted by current immunosuppressive regimens which are targeted at T cells. There is emerging evidence that shows that B cells have a diverse response to solid organ transplantation that extends beyond plasma cell antibody production. In this review, we discuss the mechanistic pathways of B-cell activation and differentiation as they relate to the transcriptional regulation of germinal center B cells, plasma cells, and memory B cells in the setting of solid organ transplantation.
Collapse
Affiliation(s)
- Stephanie G. Yi
- Division of Transplantation, Department of Surgery, Houston Methodist Hospital, Houston, TX, United States
- *Correspondence: Stephanie G. Yi,
| | - Ahmed Osama Gaber
- Division of Transplant Immunology, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX, United States
| | - Wenhao Chen
- Division of Transplantation, Department of Surgery, Houston Methodist Hospital, Houston, TX, United States
| |
Collapse
|
10
|
Novel treatment strategies for acetylcholine receptor antibody-positive myasthenia gravis and related disorders. Autoimmun Rev 2022; 21:103104. [PMID: 35452851 DOI: 10.1016/j.autrev.2022.103104] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 04/18/2022] [Indexed: 11/21/2022]
Abstract
The presence of autoantibodies directed against the muscle nicotinic acetylcholine receptor (AChR) is the most common cause of myasthenia gravis (MG). These antibodies damage the postsynaptic membrane of the neuromuscular junction and cause muscle weakness by depleting AChRs and thus impairing synaptic transmission. As one of the best-characterized antibody-mediated autoimmune diseases, AChR-MG has often served as a reference model for other autoimmune disorders. Classical pharmacological treatments, including broad-spectrum immunosuppressive drugs, are effective in many patients. However, complete remission cannot be achieved in all patients, and 10% of patients do not respond to currently used therapies. This may be attributed to production of autoantibodies by long-lived plasma cells which are resistant to conventional immunosuppressive drugs. Hence, novel therapies specifically targeting plasma cells might be a suitable therapeutic approach for selected patients. Additionally, in order to reduce side effects of broad-spectrum immunosuppression, targeted immunotherapies and symptomatic treatments will be required. This review presents established therapies as well as novel therapeutic approaches for MG and related conditions, with a focus on AChR-MG.
Collapse
|
11
|
Freiwald T, Afzali B. Renal diseases and the role of complement: Linking complement to immune effector pathways and therapeutics. Adv Immunol 2021; 152:1-81. [PMID: 34844708 PMCID: PMC8905641 DOI: 10.1016/bs.ai.2021.09.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The complement system is an ancient and phylogenetically conserved key danger sensing system that is critical for host defense against pathogens. Activation of the complement system is a vital component of innate immunity required for the detection and removal of pathogens. It is also a central orchestrator of adaptive immune responses and a constituent of normal tissue homeostasis. Once complement activation occurs, this system deposits indiscriminately on any cell surface in the vicinity and has the potential to cause unwanted and excessive tissue injury. Deposition of complement components is recognized as a hallmark of a variety of kidney diseases, where it is indeed associated with damage to the self. The provenance and the pathophysiological role(s) played by complement in each kidney disease is not fully understood. However, in recent years there has been a renaissance in the study of complement, with greater appreciation of its intracellular roles as a cell-intrinsic system and its interplay with immune effector pathways. This has been paired with a profusion of novel therapeutic agents antagonizing complement components, including approved inhibitors against complement components (C)1, C3, C5 and C5aR1. A number of clinical trials have investigated the use of these more targeted approaches for the management of kidney diseases. In this review we present and summarize the evidence for the roles of complement in kidney diseases and discuss the available clinical evidence for complement inhibition.
Collapse
Affiliation(s)
- Tilo Freiwald
- Immunoregulation Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), Bethesda, MD, United States; Department of Nephrology, University Hospital Frankfurt, Goethe-University, Frankfurt am Main, Germany
| | - Behdad Afzali
- Department of Nephrology, University Hospital Frankfurt, Goethe-University, Frankfurt am Main, Germany.
| |
Collapse
|
12
|
Cornell LD. Histopathologic Features of Antibody Mediated Rejection: The Banff Classification and Beyond. Front Immunol 2021; 12:718122. [PMID: 34646262 PMCID: PMC8503253 DOI: 10.3389/fimmu.2021.718122] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 09/07/2021] [Indexed: 01/27/2023] Open
Abstract
Antibody mediated rejection (ABMR) in the kidney can show a wide range of clinical presentations and histopathologic patterns. The Banff 2019 classification currently recognizes four diagnostic categories: 1. Active ABMR, 2. Chronic active ABMR, 3. Chronic (inactive) ABMR, and 4. C4d staining without evidence of rejection. This categorization is limited in that it does not adequately represent the spectrum of antibody associated injury in allograft, it is based on biopsy findings without incorporating clinical features (e.g., time post-transplant, de novo versus preformed DSA, protocol versus indication biopsy, complement inhibitor drugs), the scoring is not adequately reproducible, and the terminology is confusing. These limitations are particularly relevant in patients undergoing desensitization or positive crossmatch kidney transplantation. In this article, I discuss Banff criteria for these ABMR categories, with a focus on patients with pre-transplant DSA, and offer a framework for considering the continuum of allograft injury associated with donor specific antibody in these patients.
Collapse
Affiliation(s)
- Lynn D Cornell
- Division of Anatomic Pathology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
13
|
C3 complement inhibition prevents antibody-mediated rejection and prolongs renal allograft survival in sensitized non-human primates. Nat Commun 2021; 12:5456. [PMID: 34526511 PMCID: PMC8443599 DOI: 10.1038/s41467-021-25745-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 08/24/2021] [Indexed: 12/20/2022] Open
Abstract
Sensitized kidney transplant recipients experience high rates of antibody-mediated rejection due to the presence of donor-specific antibodies and immunologic memory. Here we show that transient peri-transplant treatment with the central complement component C3 inhibitor Cp40 significantly prolongs median allograft survival in a sensitized nonhuman primate model. Despite donor-specific antibody levels remaining high, fifty percent of Cp40-treated primates maintain normal kidney function beyond the last day of treatment. Interestingly, presence of antibodies of the IgM class associates with reduced median graft survival (8 vs. 40 days; p = 0.02). Cp40 does not alter lymphocyte depletion by rhesus-specific anti-thymocyte globulin, but inhibits lymphocyte activation and proliferation, resulting in reduced antibody-mediated injury and complement deposition. In summary, Cp40 prevents acute antibody-mediated rejection and prolongs graft survival in primates, and inhibits T and B cell activation and proliferation, suggesting an immunomodulatory effect beyond its direct impact on antibody-mediated injury. Donor-specific antibodies in sensitized recipients may cause kidney transplant rejection. Here the authors show that complement component C3 inhibition prolongs graft survival by inhibiting T and B cell proliferation/activation and hence tissue injury, despite antibody levels remaining unaffected.
Collapse
|
14
|
Manook M, Flores WJ, Schmitz R, Fitch Z, Yoon J, Bae Y, Shaw B, Kirk A, Harnois M, Permar S, Farris AB, Magnani DM, Kwun J, Knechtle S. Measuring the Impact of Targeting FcRn-Mediated IgG Recycling on Donor-Specific Alloantibodies in a Sensitized NHP Model. Front Immunol 2021; 12:660900. [PMID: 34149698 PMCID: PMC8207189 DOI: 10.3389/fimmu.2021.660900] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 05/17/2021] [Indexed: 11/13/2022] Open
Abstract
Background In transplantation, plasmapheresis and IVIg provide the mainstay of treatment directed at reducing or removing circulating donor-specific antibody (DSA), yet both have limitations. We sought to test the efficacy of targeting the IgG recycling mechanism of the neonatal Fc receptor (FcRn) using anti-FcRn mAb therapy in a sensitized non-human primate (NHP) model, as a pharmacological means of lowering DSA. Methods Six (6) rhesus macaque monkeys, previously sensitized by skin transplantation, received a single dose of 30mg/kg anti-RhFcRn IV, and effects on total IgG, as well as DSA IgG, were measured, in addition to IgM and protective immunity. Subsequently, 60mg/kg IV was given in the setting of kidney transplantation from skin graft donors. Kidney transplant recipients received RhATG, and tacrolimus, MMF, and steroid for maintenance immunosuppression. Results Circulating total IgG was reduced from a baseline 100% on D0 to 32.0% (mean, SD ± 10.6) on d4 post infusion (p<0.05), while using a DSA assay. T-cell flow cross match (TFXM) was reduced to 40.6±12.5% of baseline, and B-cell FXCM to 52.2±19.3%. Circulating total IgM and DSA IgM were unaffected by treatment. Pathogen-specific antibodies (anti-gB and anti-tetanus toxin IgG) were significantly reduced for 14d post infusion. Post-transplant, circulating IgG responded to anti-FcRn mAb treatment, but DSA increased rapidly. Conclusion Targeting the FcRn-mediated recycling of IgG is an effective means of lowering circulating donor-specific IgG in the sensitized recipient, although in the setting of organ transplantation mechanisms of rapid antibody rise post-transplant remains unaffected.
Collapse
Affiliation(s)
- Miriam Manook
- Duke Transplant Center, Department of Surgery, Duke University Medical Center, Durham, NC, United States
| | - Walter J Flores
- Massbiologics of the University of Massachusetts Medical School, Boston, MA, United States
| | - Robin Schmitz
- Duke Transplant Center, Department of Surgery, Duke University Medical Center, Durham, NC, United States
| | - Zachary Fitch
- Duke Transplant Center, Department of Surgery, Duke University Medical Center, Durham, NC, United States
| | - Janghoon Yoon
- Duke Transplant Center, Department of Surgery, Duke University Medical Center, Durham, NC, United States
| | - Yeeun Bae
- Duke Transplant Center, Department of Surgery, Duke University Medical Center, Durham, NC, United States
| | - Brian Shaw
- Duke Transplant Center, Department of Surgery, Duke University Medical Center, Durham, NC, United States
| | - Allan Kirk
- Duke Transplant Center, Department of Surgery, Duke University Medical Center, Durham, NC, United States
| | - Melissa Harnois
- Human Vaccine Institute, Duke University Medical Center, Durham, NC, United States
| | - Sallie Permar
- Human Vaccine Institute, Duke University Medical Center, Durham, NC, United States
| | - Alton B Farris
- Department of Pathology, Emory School of Medicine, Atlanta, GA, United States
| | - Diogo M Magnani
- Massbiologics of the University of Massachusetts Medical School, Boston, MA, United States
| | - Jean Kwun
- Duke Transplant Center, Department of Surgery, Duke University Medical Center, Durham, NC, United States
| | - Stuart Knechtle
- Duke Transplant Center, Department of Surgery, Duke University Medical Center, Durham, NC, United States
| |
Collapse
|
15
|
Infectious Risks Associated with Biologics Targeting Janus Kinase-Signal Transducer and Activator of Transcription Signaling and Complement Pathway for Inflammatory Diseases. Infect Dis Clin North Am 2021; 34:271-310. [PMID: 32444011 DOI: 10.1016/j.idc.2020.02.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The recognition of the role of complement and Janus kinase (JAK)-dependent cytokines in the pathogenesis of inflammatory and immune-mediated disorders has revolutionized the treatment of a myriad of rheumatological and inflammatory diseases. C5 inhibitors and Janus kinase inhibitors have emerged as attractive therapeutic options. Because of the blockage of immune pathways, these targeted therapies carry an increased risk of infection. This article reviews the mechanism of action and the approved and off-label indications of the agents with most clinical experience within this drug classes. It discusses the associated risks of infection, proposing screening, prevention, and risk mitigation strategies.
Collapse
|
16
|
Matsuda Y, Hiramitsu T, Li XK, Watanabe T. Characteristics of Immunoglobulin M Type Antibodies of Different Origins from the Immunologic and Clinical Viewpoints and Their Application in Controlling Antibody-Mediated Allograft Rejection. Pathogens 2020; 10:pathogens10010004. [PMID: 33374617 PMCID: PMC7822424 DOI: 10.3390/pathogens10010004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 12/19/2020] [Accepted: 12/20/2020] [Indexed: 12/25/2022] Open
Abstract
Antibody-mediated allograft rejection (AMR) hinders patient prognosis after organ transplantation. Current studies concerning AMR have mainly focused on the diagnostic value of immunoglobulin G (IgG)-type donor-specific antihuman leukocyte antigen antibodies (DSAs), primarily because of their antigen specificity, whereas the clinical significance of immunoglobulin M (IgM)-type DSAs has not been thoroughly investigated in the context of organ transplantation because of their nonspecificity against antigens. Although consensus regarding the clinical significance and role of IgM antibodies is not clear, as discussed in this review, recent findings strongly suggest that they also have a huge potential in novel diagnostic as well as therapeutic application for the prevention of AMR. Most serum IgM antibodies are known to comprise natural antibodies with low affinity toward antigens, and this is derived from B-1 cells (innate B cells). However, some of the serum IgM-type antibodies reportedly also produced by B-2 cells (conventional B cells). The latter are known to have a high affinity for donor-specific antigens. In this review, we initially discuss how IgM-type antibodies of different origins participate in the pathology of various diseases, directly or through cell surface receptors, complement activation, or cytokine production. Then, we discuss the clinical applicability of B-1 and B-2 cell-derived IgM-type antibodies for controlling AMR with reference to the involvement of IgM antibodies in various pathological conditions.
Collapse
Affiliation(s)
- Yoshiko Matsuda
- Division of Transplant Immunology, National Research Institute for Child Health and Development, Tokyo 157-8535, Japan;
- Department of Advanced Technology for Transplantation, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
- Correspondence:
| | - Takahisa Hiramitsu
- Department of Transplant and Endocrine Surgery, Nagoya Daini Red Cross-Hospital, Aichi 466-8650, Japan;
| | - Xiao-kang Li
- Division of Transplant Immunology, National Research Institute for Child Health and Development, Tokyo 157-8535, Japan;
| | - Takeshi Watanabe
- Laboratory of Immunology, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan;
| |
Collapse
|
17
|
Parquin F, Cuquemelle E, Camps E, Devaquet J, Phillips Houllbracq M, Sage E, Brugière O, Le Guen M, Longchampt E, Malard S, Picard C, Taupin JL, Roux A. C1-esterase inhibitor treatment for antibody-mediated rejection after lung transplantation: two case reports. Eur Respir J 2020; 55:13993003.02027-2019. [PMID: 32079639 DOI: 10.1183/13993003.02027-2019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 12/23/2019] [Indexed: 12/19/2022]
Affiliation(s)
| | | | - Eve Camps
- Pharmacy Dept, Foch Hospital, Suresnes, France
| | | | | | - Edouard Sage
- Thoracic Surgery Dept, Foch Hospital, Suresnes, France.,Université Versailles-Saint-Quentin-en-Yvelines, Versailles, France
| | - Olivier Brugière
- Pneumology, Adult Cystic Fibrosis Center and Lung Transplantation Dept, Foch Hospital, Suresnes, France
| | - Morgan Le Guen
- Université Versailles-Saint-Quentin-en-Yvelines, Versailles, France.,Anesthesiology Dept, Foch Hospital, Suresnes, France
| | | | - Stéphanie Malard
- Laboratoire Régional d'Histocompatibilité, Saint-Louis Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | | | - Jean Luc Taupin
- Laboratoire Régional d'Histocompatibilité, Saint-Louis Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Antoine Roux
- Université Versailles-Saint-Quentin-en-Yvelines, Versailles, France.,Pneumology, Adult Cystic Fibrosis Center and Lung Transplantation Dept, Foch Hospital, Suresnes, France
| | | |
Collapse
|
18
|
Tan EK, Bentall AJ, Dean PG, Shaheen MF, Stegall MD, Schinstock CA. Use of Eculizumab for Active Antibody-mediated Rejection That Occurs Early Post-kidney Transplantation: A Consecutive Series of 15 Cases. Transplantation 2019; 103:2397-2404. [PMID: 30801549 PMCID: PMC6699919 DOI: 10.1097/tp.0000000000002639] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Active antibody-mediated rejection (AMR) that occurs during the amnestic response within the first month posttransplant is a rare but devastating cause of early allograft loss after kidney transplant. Prior reports of eculizumab treatment for AMR have been in heterogeneous patient groups needing salvage therapy or presenting at varied time points. We investigated the role of eculizumab as primary therapy for active AMR early posttransplant. METHODS We performed a retrospective observational study of a consecutive cohort of solitary kidney transplant recipients who were transplanted between January 1, 2014, and January 31, 2018, and had AMR within the first 30 days posttransplant and treated with eculizumab ± plasmapheresis. RESULTS Fifteen patients had early active AMR at a median (interquartile range [IQR]) of 10 (7-11) days posttransplant and were treated with eculizumab ± plasmapheresis. Thirteen cases were biopsy proven, and 2 cases were presumed on the basis of donor-specific antibody trends and allograft function. Within 1 week of treatment, the median estimated glomerular filtration rate increased from 21 to 34 mL/min (P = 0.001); and persistent active AMR was only found in 16.7% (2/12) of biopsied patients within 4-6 months. No graft losses occurred, and at last follow-up (median [IQR] of 13 [12-19] mo), the median IQR estimated glomerular filtration rate increased to 52 (46-60) mL/min. CONCLUSIONS Prompt eculizumab treatment as primary therapy is safe and effective for early active AMR after kidney transplant or abrupt increases in donor-specific antibodies when biopsy cannot be performed for diagnosis confirmation.
Collapse
Affiliation(s)
- Ek Khoon Tan
- Division of Transplantation Surgery, Mayo Clinic, Rochester, Minnesota
| | - Andrew J. Bentall
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota
- Mayo Clinic William J. von Liebig Center for Transplantation and Clinical Regeneration, Mayo Clinic, Rochester, Minnesota
| | - Patrick G. Dean
- Division of Transplantation Surgery, Mayo Clinic, Rochester, Minnesota
- Mayo Clinic William J. von Liebig Center for Transplantation and Clinical Regeneration, Mayo Clinic, Rochester, Minnesota
| | | | - Mark D. Stegall
- Division of Transplantation Surgery, Mayo Clinic, Rochester, Minnesota
- Mayo Clinic William J. von Liebig Center for Transplantation and Clinical Regeneration, Mayo Clinic, Rochester, Minnesota
| | - Carrie A. Schinstock
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota
- Mayo Clinic William J. von Liebig Center for Transplantation and Clinical Regeneration, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
19
|
Abstract
Increasing evidence indicates an integral role for the complement system in the deleterious inflammatory reactions that occur during critical phases of the transplantation process, such as brain or cardiac death of the donor, surgical trauma, organ preservation and ischaemia-reperfusion injury, as well as in humoral and cellular immune responses to the allograft. Ischaemia is the most common cause of complement activation in kidney transplantation and in combination with reperfusion is a major cause of inflammation and graft damage. Complement also has a prominent role in antibody-mediated rejection (ABMR) owing to ABO and HLA incompatibility, which leads to devastating damage to the transplanted kidney. Emerging drugs and treatment modalities that inhibit complement activation at various stages in the complement cascade are being developed to ameliorate the damage caused by complement activation in transplantation. These promising new therapies have various potential applications at different stages in the process of transplantation, including inhibiting the destructive effects of ischaemia and/or reperfusion injury, treating ABMR, inducing accommodation and modulating the adaptive immune response.
Collapse
|
20
|
Abstract
The complement system may contribute in many ways to transplant injury, being a promising target for specific therapeutic interventions. There is evidence that the monoclonal anti-C5 antibody eculizumab is effective in the prevention and treatment of early antibody-mediated rejection, but terminal complement blockade might be of limited efficiency in chronic rejection. Given the diversity of immunological events triggered by activation steps upstream to C5, in particular, opsonin and anaphylatoxin formation through C3 cleavage, one may argue that, in the specific context of antibody-mediated rejection, inhibition of antibody-triggered classical pathway (CP) activation might be beneficial. Strategies to interfere with key CP component C1 are currently under clinical evaluation and include the therapeutic use of purified C1-inhibitor, which, besides targeting the integrity and function of the C1 complex, also affects components of the LP, the contact system, the coagulation cascade or surface molecules mediating leukocyte-endothelial interactions. In addition, a monoclonal anti-C1s antibody (BIVV009) has now entered clinical evaluation and was shown to effectively block antibody-triggered CP activation in rejecting kidney allografts. Moreover, modified apheresis techniques for preferential removal of macromolecules, including C1q, may allow for efficient complement depletion, in addition to antibody removal. The availability of effective strategies to interfere with the CP, as well as innovative approaches targeting other pathways, some of them already being tested in clinical trials, will help us figure out how complement contributes to acute and chronic graft injury, and hopefully provide us with new ways to more efficiently counteract rejection.
Collapse
|
21
|
Abstract
It is increasingly recognized that calcineurin inhibitors (CNI) such as cyclosporine and tacrolimus are not ideal immunosuppressive agents. Side effects, including increased rates of infection, hypertension, and malignancy, can be severe. Thus, in the past decade, there has been much focus on the development of novel therapeutic agents and strategies designed to replace or minimize CNI exposure in transplant patients. This article reviews potential novel targets in T cells, alloantibody-producing B cells, plasma cells, and complement in transplantation.
Collapse
Affiliation(s)
- Ho Sik Shin
- Renal Division, Department of Internal Medicine, Gospel Hospital, Kosin University College of Medicine, 262 Gamcheon-ro, Seo-gu, Busan 49267, Republic of Korea
| | - Ivica Grgic
- Department of Internal Medicine and Nephrology, University Hospital, Giessen and Marburg, Philipps-University Marburg, Baldinger Strasse 1, Marburg 35033, Germany
| | - Anil Chandraker
- Transplantation Research Center, Renal Division, Brigham and Women's Hospital, Harvard Medical School, 221 Longwood Avenue, Boston, MA 02215, USA.
| |
Collapse
|
22
|
Velidedeoglu E, Cavaillé-Coll MW, Bala S, Belen OA, Wang Y, Albrecht R. Summary of 2017 FDA Public Workshop: Antibody-mediated Rejection in Kidney Transplantation. Transplantation 2019; 102:e257-e264. [PMID: 29470345 DOI: 10.1097/tp.0000000000002141] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Despite major advances in understanding the pathophysiology of antibody-mediated rejection (AMR); prevention, diagnosis and treatment remain unmet medical needs. It appears that early T cell-mediated rejection, de novo donor-specific antibody (dnDSA) formation and AMR result from patient or physician initiated suboptimal immunosuppression, and represent landmarks in an ongoing process rather than separate events. On April 12 and 13, 2017, the Food and Drug Administration sponsored a public workshop on AMR in kidney transplantation to discuss new advances, importance of immunosuppressive medication nonadherence in dnDSA formation, associations between AMR, cellular rejection, changes in glomerular filtration rate, and challenges of clinical trial design for the prevention and treatment of AMR. Key messages from the workshop are included in this summary. Distinction between type 1 (due to preexisting DSA) and type 2 (due to dnDSA) phenotypes of AMR needs to be considered in patient management and clinical trial design. Standardization and more widespread adoption of routine posttransplant DSA monitoring may permit timely diagnosis and understanding of the natural course of type 2 and chronic AMR. Clinical trial design, especially as related to type 2 and chronic AMR, has specific challenges, including the high prevalence of nonadherence in the population at risk, indolent nature of the process until the appearance of graft dysfunction, and the absence of accepted surrogate endpoints. Other challenges include sample size and study duration, which could be mitigated by enrichment strategies.
Collapse
Affiliation(s)
- Ergun Velidedeoglu
- Division of Transplant and Ophthalmology Products, Office of Antimicrobial Products, Center for Drug Evaluation and Research, FDA, Silver Spring, MD
| | - Marc W Cavaillé-Coll
- Division of Transplant and Ophthalmology Products, Office of Antimicrobial Products, Center for Drug Evaluation and Research, FDA, Silver Spring, MD
| | - Shukal Bala
- Division of Transplant and Ophthalmology Products, Office of Antimicrobial Products, Center for Drug Evaluation and Research, FDA, Silver Spring, MD
| | - Ozlem A Belen
- Division of Transplant and Ophthalmology Products, Office of Antimicrobial Products, Center for Drug Evaluation and Research, FDA, Silver Spring, MD
| | - Yan Wang
- Division of Biometrics IV, Office of Biostatistics, Center for Drug Evaluation and Research, FDA, Silver Spring, MD
| | - Renata Albrecht
- Division of Transplant and Ophthalmology Products, Office of Antimicrobial Products, Center for Drug Evaluation and Research, FDA, Silver Spring, MD
| |
Collapse
|
23
|
Román E, Mendizábal S, Jarque I, de la Rubia J, Sempere A, Morales E, Praga M, Ávila A, Górriz JL. Secondary thrombotic microangiopathy and eculizumab: A reasonable therapeutic option. Nefrologia 2018; 37:478-491. [PMID: 28946961 DOI: 10.1016/j.nefro.2017.01.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 01/03/2017] [Accepted: 01/14/2017] [Indexed: 12/16/2022] Open
Abstract
Understanding the role of the complement system in the pathogenesis of atypical haemolytic uraemic syndrome and other thrombotic microangiopathies (TMA) has led to the use of anti-complement therapy with eculizumab in these diseases, in addition to its original use in patients with paroxysmal nocturnal haemoglobinuria andatypical haemolytic uraemic syndrome. Scientific evidence shows that both primary and secondary TMAs with underlying complement activation are closely related. For this reasons, control over the complement system is a therapeutic target. There are 2scenarios in which eculizumab is used in patients with TMA: primary or secondary TMA that is difficult to differentiate (including incomplete clinical presentations) and complement-mediated damage in various processes in which eculizumab proves to be efficacious. This review summarises the evidence on the role of the complement activation in the pathophysiology of secondary TMAs and the efficacy of anti-complement therapy in TMAs secondary to pregnancy, drugs, transplant, humoral rejection, systemic diseases and glomerulonephritis. Although experience is scarce, a good response to eculizumab has been reported in patients with severe secondary TMAs refractory to conventional treatment. Thus, the role of the anti-complement therapy as a new treatment option in these patients should be investigated.
Collapse
Affiliation(s)
- Elena Román
- Servicio de Nefrología Pediátrica, Hospital Universitario y Politécnico La Fe, Valencia, España.
| | - Santiago Mendizábal
- Servicio de Nefrología Pediátrica, Hospital Universitario y Politécnico La Fe, Valencia, España
| | - Isidro Jarque
- Servicio de Hematología, Hospital Universitario y Politécnico La Fe, Valencia, España
| | - Javier de la Rubia
- Servicio de Hematología, Hospital Universitario Dr. Peset, Valencia, España
| | - Amparo Sempere
- Servicio de Hematología, Hospital Universitario y Politécnico La Fe, Valencia, España
| | - Enrique Morales
- Servicio de Nefrología, Hospital Universitario 12 de Octubre, Madrid, España
| | - Manuel Praga
- Servicio de Nefrología, Hospital Universitario 12 de Octubre, Madrid, España
| | - Ana Ávila
- Servicio de Nefrología, Hospital Universitario Dr. Peset, Valencia, España
| | - José Luis Górriz
- Servicio de Nefrología, Hospital Universitario Dr. Peset, Valencia, España
| |
Collapse
|
24
|
Okada D, Okumi M, Kakuta Y, Unagami K, Iizuka J, Takagi T, Ishida H, Tanabe K. Outcome of the risk-stratified desensitization protocol in donor-specific antibody-positive living kidney transplant recipients: a retrospective study. Transpl Int 2018; 31:1008-1017. [PMID: 29676803 DOI: 10.1111/tri.13269] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 01/04/2018] [Accepted: 04/13/2018] [Indexed: 02/28/2024]
Abstract
Acceptable outcomes of donor-specific antibody (DSA)-positive living kidney transplantation (LKT) have recently been reported. However, LKT in crossmatch (XM)-positive patients remains at high-risk and requires an optimal desensitization protocol. We report our intermediate-term outcomes of XM-positive LKT vs. XM-negative LKT in patients who underwent LKT between January 2012 and June 2015 in our institution. The rate of acute antibody-mediated rejection (ABMR) within 90 days postoperation, graft function, and patient, and graft survival rates at 4 years were investigated. Patients were divided into three groups: XM-DSA- (n = 229), XM-DSA+ (n = 36), and XM + DSA+ (n = 15). The XM + DSA+ group patients underwent desensitization with high-dose intravenous immunoglobulin, plasmapheresis, and rituximab. The rates of ABMR within 90 days in the XM-DSA-, XM-DSA+, and XM + DSA+ groups were 1.3%, 9.4%, and 60.0%, respectively (P < 0.001). There were no significant differences in the graft function throughout the observational period, the 4-year patient or graft survival rates among three groups. This study showed that intermediate-term outcomes of XM-positive LKT were comparable to XM-negative LKT. However, our current desensitization protocol cannot avert ABMR within 90 days, and XM positivity is still a significant risk factor for ABMR. Further refinement of the current desensitization regimen is required.
Collapse
Affiliation(s)
- Daigo Okada
- Department of Urology, Tokyo Women's Medical University, Tokyo, Japan
| | - Masayoshi Okumi
- Department of Urology, Tokyo Women's Medical University, Tokyo, Japan
| | - Yoichi Kakuta
- Department of Urology, Tokyo Women's Medical University, Tokyo, Japan
| | - Kohei Unagami
- Department of Nephrology, Tokyo Women's Medical University, Tokyo, Japan
| | - Junpei Iizuka
- Department of Urology, Tokyo Women's Medical University, Tokyo, Japan
| | - Toshio Takagi
- Department of Urology, Tokyo Women's Medical University, Tokyo, Japan
| | - Hideki Ishida
- Department of Urology, Tokyo Women's Medical University, Tokyo, Japan
| | - Kazunari Tanabe
- Department of Urology, Tokyo Women's Medical University, Tokyo, Japan
| |
Collapse
|
25
|
Winthrop KL, Mariette X, Silva JT, Benamu E, Calabrese LH, Dumusc A, Smolen JS, Aguado JM, Fernández-Ruiz M. ESCMID Study Group for Infections in Compromised Hosts (ESGICH) Consensus Document on the safety of targeted and biological therapies: an infectious diseases perspective (Soluble immune effector molecules [II]: agents targeting interleukins, immunoglobulins and complement factors). Clin Microbiol Infect 2018; 24 Suppl 2:S21-S40. [PMID: 29447987 DOI: 10.1016/j.cmi.2018.02.002] [Citation(s) in RCA: 152] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 01/31/2018] [Accepted: 02/03/2018] [Indexed: 12/29/2022]
Abstract
BACKGROUND The present review is part of the ESCMID Study Group for Infections in Compromised Hosts (ESGICH) Consensus Document on the safety of targeted and biological therapies. AIMS To review, from an Infectious Diseases perspective, the safety profile of agents targeting interleukins, immunoglobulins and complement factors and to suggest preventive recommendations. SOURCES Computer-based MEDLINE searches with MeSH terms pertaining to each agent or therapeutic family. CONTENT Patients receiving interleukin-1 (IL-1) -targeted (anakinra, canakinumab or rilonacept) or IL-5-targeted (mepolizumab) agents have a moderate risk of infection and no specific prevention strategies are recommended. The use of IL-6/IL-6 receptor-targeted agents (tocilizumab and siltuximab) is associated with a risk increase similar to that observed with anti-tumour necrosis factor-α agents. IL-12/23-targeted agents (ustekinumab) do not seem to pose a meaningful risk of infection, although screening for latent tuberculosis infection may be considered and antiviral prophylaxis should be given to hepatitis B surface antigen-positive patients. Therapy with IL-17-targeted agents (secukinumab, brodalumab and ixekizumab) may result in the development of mild-to-moderate mucocutaneous candidiasis. Pre-treatment screening for Strongyloides stercoralis and other geohelminths should be considered in patients who come from areas where these are endemic who are receiving IgE-targeted agents (omalizumab). C5-targeted agents (eculizumab) are associated with a markedly increased risk of infection due to encapsulated bacteria, particularly Neisseria spp. Meningococcal vaccination and chemoprophylaxis must be administered 2-4 weeks before initiating eculizumab. Patients with high-risk behaviours and their partners should also be screened for gonococcal infection. IMPLICATIONS Preventive strategies are particularly encouraged to minimize the occurrence of neisserial infection associated with eculizumab.
Collapse
Affiliation(s)
- K L Winthrop
- Division of Infectious Diseases, Oregon Health and Science University, Portland, OR, USA.
| | - X Mariette
- Department of Rheumatology, Hôpitaux Universitaire Paris-Sud, Université Paris-Sud, INSERM U1184, Paris, France
| | - J T Silva
- Department of Infectious Diseases, University Hospital of Badajoz, Fundación para La Formación e Investigación de Los Profesionales de La Salud (FundeSalud), Badajoz, Spain
| | - E Benamu
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - L H Calabrese
- Department of Rheumatic and Immunological Diseases, Cleveland Clinic Foundation, Cleveland Clinic, Cleveland Clinic Lerner College of Medicine, Case Western University, Cleveland, OH, USA
| | - A Dumusc
- Department of Rheumatology, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | - J S Smolen
- Division of Rheumatology, Department of Medicine 3, Medical University of Vienna, Vienna, Austria
| | - J M Aguado
- Unit of Infectious Diseases, Hospital Universitario "12 de Octubre", Instituto de Investigación Hospital "12 de Octubre" (i+12), School of Medicine, Universidad Complutense, Madrid, Spain; Spanish Network for Research in Infectious Diseases (REIPI RD16/0016), Instituto de Salud Carlos III, Madrid, Spain
| | - M Fernández-Ruiz
- Unit of Infectious Diseases, Hospital Universitario "12 de Octubre", Instituto de Investigación Hospital "12 de Octubre" (i+12), School of Medicine, Universidad Complutense, Madrid, Spain; Spanish Network for Research in Infectious Diseases (REIPI RD16/0016), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
26
|
Infections associated with the use of eculizumab: recommendations for prevention and prophylaxis. Curr Opin Infect Dis 2018; 29:319-29. [PMID: 27257797 DOI: 10.1097/qco.0000000000000279] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW Eculizumab inhibits complement effector functions and has significantly impacted the treatment of paroxysmal nocturnal hemoglobinuria and atypical hemolytic uremic syndrome. However, the risks of potentially life-threatening infections, notably with Neisseria spp. in addition to its cost, are major challenges in clinical practice. In this review, we characterize and summarize the infectious complications reported with the use of eculizumab in the context of its typical and expanding indications. RECENT FINDINGS Use of eculizumab is rapidly extending to the fields of transplantation and neurology. Eculizumab has been primarily associated with an increased risk of meningococcal infections. Immunization against its commonest serotypes (ABCWY) is now possible with the advent of the meningococcal B vaccine. A combined ABCWY vaccine is underway. Preventive strategies against breakthrough Neisseria infections should also include chemoprophylaxis. Less is known about the association of eculizumab with other infections as recently reported. Surrogate markers of complement blockade, notably CH50, and eculizumab efficacy may help in the risk assessment of infection. SUMMARY Eculizumab has opened new horizons in the treatment of complement-mediated disorders. Prophylactic and immunization strategies against the risk of Nesseria spp. infections are sound and feasible. The use of eculizumab is expanding beyond complement-mediated diseases to transplantation and neurological disorders. Further research is needed to better define and stratify the risk of infection and prevention strategies in patients with the latter indications.
Collapse
|
27
|
Eculizumab for Thrombotic Microangiopathy Associated with Antibody-Mediated Rejection after ABO-Incompatible Kidney Transplantation. Case Rep Transplant 2017; 2017:3197042. [PMID: 29445563 PMCID: PMC5763091 DOI: 10.1155/2017/3197042] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 11/16/2017] [Indexed: 12/27/2022] Open
Abstract
Thrombotic microangiopathy is a form of antibody-mediated rejection (ABMR): it is the main complication of ABO-incompatible (ABOi) kidney transplantation (KT). Herein, we report on two cases of ABMR with biological and histological features of thrombotic microangiopathy (TMA) that were treated by eculizumab after ABOi KT. The first patient presented with features of TMA at postoperative day (POD) 13. Because of worsening biological parameters and no recovery of kidney function, despite seven sessions of immunoadsorption, a salvage therapy of eculizumab was started on POD 23. Kidney function slightly improved during the first 4 months after transplantation. Eculizumab was stopped at month 4. However, kidney function worsened progressively, leading to dialysis at month 13 after transplantation. The second patient presented with features of TMA at POD 1. In addition to immunoadsorption therapy, eculizumab was started on POD 6. Kidney function improved. Eculizumab was stopped on POD 64 and immunoadsorption sessions were stopped on POD 102. At the last follow-up (after 9 months), eGFR was at 43 mL/min/1.73 m2. Our case reports show the beneficial effect of eculizumab to treat ABMR after ABOi KT. However, it should be given early after diagnosing TMA associated with ABMR.
Collapse
|
28
|
Brocklebank V, Kavanagh D. Complement C5-inhibiting therapy for the thrombotic microangiopathies: accumulating evidence, but not a panacea. Clin Kidney J 2017; 10:600-624. [PMID: 28980670 PMCID: PMC5622895 DOI: 10.1093/ckj/sfx081] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 06/21/2017] [Indexed: 02/07/2023] Open
Abstract
Thrombotic microangiopathy (TMA), characterized by organ injury occurring consequent to severe endothelial damage, can manifest in a diverse range of diseases. In complement-mediated atypical haemolytic uraemic syndrome (aHUS) a primary defect in complement, such as a mutation or autoantibody leading to over activation of the alternative pathway, predisposes to the development of disease, usually following exposure to an environmental trigger. The elucidation of the pathogenesis of aHUS resulted in the successful introduction of the complement inhibitor eculizumab into clinical practice. In other TMAs, although complement activation may be seen, its role in the pathogenesis remains to be confirmed by an interventional trial. Although many case reports in TMAs other than complement-mediated aHUS hint at efficacy, publication bias, concurrent therapies and in some cases the self-limiting nature of disease make broader interpretation difficult. In this article, we will review the evidence for the role of complement inhibition in complement-mediated aHUS and other TMAs.
Collapse
Affiliation(s)
- Vicky Brocklebank
- The National Renal Complement Therapeutics Centre (NRCTC), Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - David Kavanagh
- The National Renal Complement Therapeutics Centre (NRCTC), Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| |
Collapse
|
29
|
Complement-Mediated Enhancement of Monocyte Adhesion to Endothelial Cells by HLA Antibodies, and Blockade by a Specific Inhibitor of the Classical Complement Cascade, TNT003. Transplantation 2017. [PMID: 28640789 PMCID: PMC5482566 DOI: 10.1097/tp.0000000000001486] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Background Antibody-mediated rejection (AMR) of most solid organs is characterized by evidence of complement activation and/or intragraft macrophages (C4d + and CD68+ biopsies). We previously demonstrated that crosslinking of HLA I by antibodies triggered endothelial activation and monocyte adhesion. We hypothesized that activation of the classical complement pathway at the endothelial cell surface by HLA antibodies would enhance monocyte adhesion through soluble split product generation, in parallel with direct endothelial activation downstream of HLA signaling. Methods Primary human aortic endothelial cells (HAEC) were stimulated with HLA class I antibodies in the presence of intact human serum complement. C3a and C5a generation, endothelial P-selectin expression, and adhesion of human primary and immortalized monocytes (Mono Mac 6) were measured. Alternatively, HAEC or monocytes were directly stimulated with purified C3a or C5a. Classical complement activation was inhibited by pretreatment of complement with an anti-C1s antibody (TNT003). Results Treatment of HAEC with HLA antibody and human complement increased the formation of C3a and C5a. Monocyte recruitment by human HLA antibodies was enhanced in the presence of intact human serum complement or purified C3a or C5a. Specific inhibition of the classical complement pathway using TNT003 or C1q-depleted serum significantly reduced adhesion of monocytes in the presence of human complement. Conclusions Despite persistent endothelial viability in the presence of HLA antibodies and complement, upstream complement anaphylatoxin production exacerbates endothelial exocytosis and leukocyte recruitment. Upstream inhibition of classical complement may be therapeutic to dampen mononuclear cell recruitment and endothelial activation characteristic of microvascular inflammation during AMR. Valenzuela et al show that HLA antibody binding to human endothelial cells in vitro, triggered complement C3a and C5a deposition that mediated monocyte recruitment, and the salutary effects of inhibiting the classical complement pathway with an anti-C1s antibody. Supplemental digital content is available in the text.
Collapse
|
30
|
Wahrmann M, Mühlbacher J, Marinova L, Regele H, Huttary N, Eskandary F, Cohen G, Fischer GF, Parry GC, Gilbert JC, Panicker S, Böhmig GA. Effect of the Anti-C1s Humanized Antibody TNT009 and Its Parental Mouse Variant TNT003 on HLA Antibody-Induced Complement Activation-A Preclinical In Vitro Study. Am J Transplant 2017; 17:2300-2311. [PMID: 28251805 PMCID: PMC5600102 DOI: 10.1111/ajt.14256] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 01/31/2017] [Accepted: 02/17/2017] [Indexed: 01/25/2023]
Abstract
The classic pathway (CP) of complement is believed to significantly contribute to alloantibody-mediated transplant injury, and targeted complement inhibition is currently considered to be a promising approach for preventing rejection. Here, we investigated the mode of action and efficacy of the humanized anti-C1s monoclonal antibody TNT009 and its parental mouse variant, TNT003, in preclinical in vitro models of HLA antibody-triggered CP activation. In flow cytometric assays, we measured the attachment of C1 subcomponents and C4/C3 split products (C4b/d, C3b/d) to HLA antigen-coated flow beads or HLA-mismatched aortic endothelial cells and splenic lymphocytes. Anti-C1s antibodies profoundly inhibited C3 activation at concentrations >20 μg/mL, in both solid phase and cellular assays. While C4 activation was also prevented, this was not the case for C1 subcomponent attachment. Analysis of serum samples obtained from 68 sensitized transplant candidates revealed that the potency of inhibition was related to the extent of baseline CP activation. This study demonstrates that anti-C1s antibodies TNT009 and TNT003 are highly effective in blocking HLA antibody-triggered complement activation downstream of C1. Our results provide the foundation for clinical studies designed to investigate the potential of TNT009 in the treatment or prevention of complement-mediated tissue injury in sensitized transplant recipients.
Collapse
Affiliation(s)
- M. Wahrmann
- Division of Nephrology and DialysisDepartment of Medicine IIIMedical University ViennaViennaAustria
| | - J. Mühlbacher
- Department of SurgeryMedical University ViennaViennaAustria
| | - L. Marinova
- Division of Nephrology and DialysisDepartment of Medicine IIIMedical University ViennaViennaAustria
| | - H. Regele
- Clinical Institute of PathologyMedical University ViennaViennaAustria
| | - N. Huttary
- Clinical Institute of PathologyMedical University ViennaViennaAustria
| | - F. Eskandary
- Division of Nephrology and DialysisDepartment of Medicine IIIMedical University ViennaViennaAustria
| | - G. Cohen
- Division of Nephrology and DialysisDepartment of Medicine IIIMedical University ViennaViennaAustria
| | - G. F. Fischer
- Department of Blood Group Serology and Transfusion MedicineMedical University ViennaViennaAustria
| | - G. C. Parry
- True North Therapeutics, Inc.South San FranciscoCA
| | | | - S. Panicker
- True North Therapeutics, Inc.South San FranciscoCA
| | - G. A. Böhmig
- Division of Nephrology and DialysisDepartment of Medicine IIIMedical University ViennaViennaAustria
| |
Collapse
|
31
|
Valenzuela NM, Reed EF. Antibody-mediated rejection across solid organ transplants: manifestations, mechanisms, and therapies. J Clin Invest 2017; 127:2492-2504. [PMID: 28604384 DOI: 10.1172/jci90597] [Citation(s) in RCA: 152] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Solid organ transplantation is a curative therapy for hundreds of thousands of patients with end-stage organ failure. However, long-term outcomes have not improved, and nearly half of transplant recipients will lose their allografts by 10 years after transplant. One of the major challenges facing clinical transplantation is antibody-mediated rejection (AMR) caused by anti-donor HLA antibodies. AMR is highly associated with graft loss, but unfortunately there are few efficacious therapies to prevent and reverse AMR. This Review describes the clinical and histological manifestations of AMR, and discusses the immunopathological mechanisms contributing to antibody-mediated allograft injury as well as current and emerging therapies.
Collapse
|
32
|
Cernoch M, Viklicky O. Complement in Kidney Transplantation. Front Med (Lausanne) 2017; 4:66. [PMID: 28611987 PMCID: PMC5447724 DOI: 10.3389/fmed.2017.00066] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 05/09/2017] [Indexed: 12/12/2022] Open
Abstract
The complement system is considered to be an important part of innate immune system with a significant role in inflammation processes. The activation can occur through classical, alternative, or lectin pathway, resulting in the creation of anaphylatoxins C3a and C5a, possessing a vast spectrum of immune functions, and the assembly of terminal complement cascade, capable of direct cell lysis. The activation processes are tightly regulated; inappropriate activation of the complement cascade plays a significant role in many renal diseases including organ transplantation. Moreover, complement cascade is activated during ischemia/reperfusion injury processes and influences delayed graft function of kidney allografts. Interestingly, complement system has been found to play a role in both acute cellular and antibody-mediated rejections and thrombotic microangiopathy. Therefore, complement system may represent an interesting therapeutical target in kidney transplant pathologies.
Collapse
Affiliation(s)
- Marek Cernoch
- Transplant Laboratory, Transplant Center, Institute for Clinical and Experimental Medicine, Prague, Czechia
| | - Ondrej Viklicky
- Transplant Laboratory, Transplant Center, Institute for Clinical and Experimental Medicine, Prague, Czechia.,Department of Nephrology, Transplant Center, Institute for Clinical and Experimental Medicine, Prague, Czechia
| |
Collapse
|
33
|
Evidence for CD16a-Mediated NK Cell Stimulation in Antibody-Mediated Kidney Transplant Rejection. Transplantation 2017; 101:e102-e111. [PMID: 27906829 DOI: 10.1097/tp.0000000000001586] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
BACKGROUND Natural killer (NK) cells localize in the microcirculation in antibody-mediated rejection (AMR) and have been postulated to be activated by donor-specific anti-HLA antibodies triggering their CD16a Fc receptors. However, direct evidence for NK cell CD16a triggering in AMR is lacking. We hypothesized that CD16a-inducible NK cell-selective transcripts would be expressed in human AMR biopsies and would offer evidence for CD16a triggering. METHODS We stimulated human NK cells through CD16a in vitro, characterized CD16a-inducible transcripts, and studied their expression in human kidney transplant biopsies with AMR and in an extended human cell panel to determine their selectivity. RESULTS In NK cells, CD16a stimulation induced increased expression of 276 transcripts (FC > 2x, false discovery rate < 0.05), including IFNG, TNF, CSF2, chemokines, such as CCL3, CCL4, and XCL1, and modulators of NK cell effector functions (TNFRSF9, CRTAM, CD160). Examination in an extended human cell panel revealed that CD160 and XCL1 were likely to be selective for NK cells in AMR. In biopsies, 8 of the top 30 CD16a-inducible transcripts were highly associated with AMR (P < 5 × 10): CCL4, CD160, CCL3, XCL1, CRTAM, FCRL3, STARD4, TNFRSF9. Other NK cell transcripts (eg, GNLY) were increased in AMR but not CD16a-inducible, their presence in AMR probably reflecting NK cell localization. CONCLUSIONS The association of CD16a-inducible NK cell-selective transcripts CD160 and XCL1 with biopsies with AMR provides evidence for NK cell CD16a activation in AMR. This raises the possibility of other CD16a-triggered effects that are not necessarily transcriptional, including NK localization and cytotoxicity.
Collapse
|
34
|
Desensitization: Overcoming the Immunologic Barriers to Transplantation. J Immunol Res 2017; 2017:6804678. [PMID: 28127571 PMCID: PMC5239985 DOI: 10.1155/2017/6804678] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 12/14/2016] [Indexed: 12/17/2022] Open
Abstract
HLA (Human Leucocyte Antigen) sensitization is a significant barrier to successful kidney transplantation. It often translates into difficult crossmatch before transplant and increased risk of acute and chronic antibody mediated rejection after transplant. Over the last decade, several immunomodulatory therapies have emerged allowing for increased access to kidney transplantation for the immunologically disadvantaged group of HLA sensitized end stage kidney disease patients. These include IgG inactivating agents, anti-cytokine antibodies, costimulatory molecule blockers, complement inhibitors, and agents targeting plasma cells. In this review, we discuss currently available agents for desensitization and provide a brief analysis of data on novel biologics, which will likely improve desensitization outcomes, and have potential implications in treatment of antibody mediated rejection.
Collapse
|
35
|
The Humoral Theory of Transplantation: Epitope Analysis and the Pathogenicity of HLA Antibodies. J Immunol Res 2016; 2016:5197396. [PMID: 28070526 PMCID: PMC5192322 DOI: 10.1155/2016/5197396] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2016] [Accepted: 10/17/2016] [Indexed: 01/30/2023] Open
Abstract
Central to the humoral theory of transplantation is production of antibodies by the recipient against mismatched HLA antigens in the donor organ. Not all mismatches result in antibody production, however, and not all antibodies are pathogenic. Serologic HLA matching has been the standard for solid organ allocation algorithms in current use. Antibodies do not recognize whole HLA molecules but rather polymorphic residues on the surface, called epitopes, which may be shared by multiple serologic HLA antigens. Data are accumulating that epitope analysis may be a better way to determine organ compatibility as well as the potential immunogenicity of given HLA mismatches. Determination of the pathogenicity of alloantibodies is evolving. Potential features include antibody strength (as assessed by antibody titer or, more commonly and inappropriately, mean fluorescence intensity) and ability to fix complement (in vitro by C1q or C3d assay or by IgG subclass analysis). Technical issues with the use of solid phase assays are also of prime importance, such as denaturation of HLA antigens and manufacturing and laboratory variability. Questions and controversies remain, and here we review new relevant data.
Collapse
|
36
|
Wehling C, Amon O, Bommer M, Hoppe B, Kentouche K, Schalk G, Weimer R, Wiesener M, Hohenstein B, Tönshoff B, Büscher R, Fehrenbach H, Gök ÖN, Kirschfink M. Monitoring of complement activation biomarkers and eculizumab in complement-mediated renal disorders. Clin Exp Immunol 2016; 187:304-315. [PMID: 27784126 DOI: 10.1111/cei.12890] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/07/2016] [Indexed: 12/18/2022] Open
Abstract
Various complement-mediated renal disorders are treated currently with the complement inhibitor eculizumab. By blocking the cleavage of C5, this monoclonal antibody prevents cell damage caused by complement-mediated inflammation. We included 23 patients with atypical haemolytic uraemic syndrome (aHUS, n = 12), C3 glomerulopathies (C3G, n = 9) and acute antibody-mediated renal graft rejection (AMR, n = 2), treated with eculizumab in 12 hospitals in Germany. We explored the course of complement activation biomarkers and the benefit of therapeutic drug monitoring of eculizumab. Complement activation was assessed by analysing the haemolytic complement function of the classical (CH50) and the alternative pathway (APH50), C3 and the activation products C3d, C5a and sC5b-9 prior to, 3 and 6 months after eculizumab treatment. Eculizumab concentrations were determined by a newly established specific enzyme-linked immunosorbent assay (ELISA). Serum eculizumab concentrations up to 1082 μg/ml point to drug accumulation, especially in paediatric patients. Loss of the therapeutic antibody via urine with concentrations up to 56 μg/ml correlated with proteinuria. In aHUS patients, effective complement inhibition was demonstrated by significant reductions of CH50, APH50, C3d and sC5b-9 levels, whereas C5a levels were only reduced significantly after 6 months' treatment. C3G patients presented increased C3d and consistently low C3 levels, reflecting ongoing complement activation and consumption at the C3 level, despite eculizumab treatment. A comprehensive complement analysis together with drug monitoring is required to distinguish mode of complement activation and efficacy of eculizumab treatment in distinct renal disorders. Accumulation of the anti-C5 antibody points to the need for a patient-orientated tailored therapy.
Collapse
Affiliation(s)
- C Wehling
- Institute of Immunology, University of Heidelberg, Heidelberg, Germany
| | - O Amon
- Department of Pediatric Nephrology, University Hospital Tübingen, Germany
| | - M Bommer
- Department of Hematology and Oncology, ALB FILS Hospital Göppingen, Germany
| | - B Hoppe
- Department of Pediatric Nephrology, University Hospital Bonn, Germany
| | - K Kentouche
- Department of Pediatric Immunology, University Hospital Jena, Germany
| | - G Schalk
- Department of Pediatric Nephrology, University Children's Hospital Zurich, Switzerland
| | - R Weimer
- Department of Internal Medicine, University of Giessen, Germany
| | - M Wiesener
- Department of Nephrology and Hypertension, University Hospital Erlangen, Germany
| | - B Hohenstein
- Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus, Dresden, Germany
| | - B Tönshoff
- Department of Pediatrics I, University Children's Hospital Heidelberg, Germany
| | - R Büscher
- Department of Pediatric Nephrology, University Hospital Essen, Germany
| | - H Fehrenbach
- Department of Pediatric Nephrology, Hospital Memmingen, Germany
| | - Ö-N Gök
- Department of Internal Medicine IV, University Hospital Freiburg, Germany
| | - M Kirschfink
- Institute of Immunology, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
37
|
Smith B, Kumar V, Mompoint-Williams D, Reed R, MacLennan P, Stegner K, Locke J. Dosing Eculizumab for Antibody-Mediated Rejection in Kidney Transplantation: A Case Report. Transplant Proc 2016; 48:3099-3105. [DOI: 10.1016/j.transproceed.2016.03.028] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 03/30/2016] [Indexed: 01/27/2023]
|
38
|
Lee CY, Lin WC, Wu MS, Yang CY, Yeh CC, Tsai MK. Repeated cycles of high-dose intravenous immunoglobulin and plasmapheresis for treatment of late antibody-mediated rejection of renal transplants. J Formos Med Assoc 2016; 115:845-852. [PMID: 27542515 DOI: 10.1016/j.jfma.2016.07.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 07/05/2016] [Accepted: 07/05/2016] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND/PURPOSE Intravenous immunoglobulin (IVIG) plays a central role in the treatment of antibody-mediated rejection (AMR) of renal allografts, but the treatment outcomes for late AMR (>6 months after transplantation) are poor. METHODS We performed a retrospective study to assess the response patterns of IVIG-based (2 g/kg) desensitization for late AMR. Patients who received desensitization after the pathological diagnosis of late AMR positive for complement component C4d were grouped as the Desensitized Group and compared to a historical Control Group with complement component C4d positivity in retrospective stainings. RESULTS The 10-year graft survival of the Desensitized Group (73.9%, n = 35) was significantly better than that of the historical Control Group (35.0%, n = 40) without desensitization. In the Desensitized Group, a subgroup of patients (D2 Subgroup, n = 11), who responded to desensitization initially but deteriorated later, was identified to benefit from repeated cycles of desensitization at 31.1 ± 20.9 months. Patients receiving only one cycle of desensitization were further grouped into D1-good (n = 10) and D1-poor (n = 14) based on their long-term renal function. The D2 Subgroup patients did not exhibit significant improvements in renal function compared to the D1-poor patients, until 30 months after IVIG-based desensitization, suggesting desensitization therapy has a working window of approximately 24 months. CONCLUSION Repeated cycles of IVIG-based desensitization help stabilize long-term renal function in patients with persistent AMR.
Collapse
Affiliation(s)
- Chih-Yuan Lee
- Department of Surgery, National Taiwan University Hospital and National Taiwan University, College of Medicine, Taipei, Taiwan
| | - Wei-Chou Lin
- Department of Pathology, National Taiwan University Hospital and National Taiwan University, College of Medicine, Taipei, Taiwan
| | - Ming-Shiou Wu
- Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University, College of Medicine, Taipei, Taiwan
| | - Ching-Yao Yang
- Department of Surgery, National Taiwan University Hospital and National Taiwan University, College of Medicine, Taipei, Taiwan
| | - Chi-Chuan Yeh
- Department of Surgery, National Taiwan University Hospital and National Taiwan University, College of Medicine, Taipei, Taiwan
| | - Meng-Kun Tsai
- Department of Surgery, National Taiwan University Hospital and National Taiwan University, College of Medicine, Taipei, Taiwan.
| |
Collapse
|
39
|
Stites E, Le Quintrec M, Thurman JM. The Complement System and Antibody-Mediated Transplant Rejection. THE JOURNAL OF IMMUNOLOGY 2016; 195:5525-31. [PMID: 26637661 DOI: 10.4049/jimmunol.1501686] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Complement activation is an important cause of tissue injury in patients with Ab-mediated rejection (AMR) of transplanted organs. Complement activation triggers a strong inflammatory response, and it also generates tissue-bound and soluble fragments that are clinically useful markers of inflammation. The detection of complement proteins deposited within transplanted tissues has become an indispensible biomarker of AMR, and several assays have recently been developed to measure complement activation by Abs reactive to specific donor HLA expressed within the transplant. Complement inhibitors have entered clinical use and have shown efficacy for the treatment of AMR. New methods of detecting complement activation within transplanted organs will improve our ability to diagnose and monitor AMR, and they will also help guide the use of complement inhibitory drugs.
Collapse
Affiliation(s)
- Erik Stites
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO 80045; and
| | - Moglie Le Quintrec
- Department of Nephrology and Renal Transplantation, Lapeyronie Hospital, 34295 Montpellier Cedex 5, France
| | - Joshua M Thurman
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO 80045; and
| |
Collapse
|
40
|
From orphan drugs to adopted therapies: Advancing C3-targeted intervention to the clinical stage. Immunobiology 2016; 221:1046-57. [PMID: 27353192 DOI: 10.1016/j.imbio.2016.06.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 06/10/2016] [Accepted: 06/13/2016] [Indexed: 01/23/2023]
Abstract
Complement dysregulation is increasingly recognized as an important pathogenic driver in a number of clinical disorders. Complement-triggered pathways intertwine with key inflammatory and tissue destructive processes that can either increase the risk of disease or exacerbate pathology in acute or chronic conditions. The launch of the first complement-targeted drugs in the clinic has undeniably stirred the field of complement therapeutic design, providing new insights into complement's contribution to disease pathogenesis and also helping to leverage a more personalized, comprehensive approach to patient management. In this regard, a rapidly expanding toolbox of complement therapeutics is being developed to address unmet clinical needs in several immune-mediated and inflammatory diseases. Elegant approaches employing both surface-directed and fluid-phase inhibitors have exploited diverse components of the complement cascade as putative points of therapeutic intervention. Targeting C3, the central hub of the system, has proven to be a promising strategy for developing biologics as well as small-molecule inhibitors with clinical potential. Complement modulation at the level of C3 has recently shown promise in preclinical primate models, opening up new avenues for therapeutic intervention in both acute and chronic indications fueled by uncontrolled C3 turnover. This review highlights recent developments in the field of complement therapeutics, focusing on C3-directed inhibitors and alternative pathway (AP) regulator-based approaches. Translational perspectives and considerations are discussed, particularly with regard to the structure-guided drug optimization and clinical advancement of a new generation of C3-targeted peptidic inhibitors.
Collapse
|
41
|
Jadlowiec CC, Taner T. Liver transplantation: Current status and challenges. World J Gastroenterol 2016; 22:4438-4445. [PMID: 27182155 PMCID: PMC4858627 DOI: 10.3748/wjg.v22.i18.4438] [Citation(s) in RCA: 202] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 03/25/2016] [Accepted: 04/07/2016] [Indexed: 02/06/2023] Open
Abstract
Great progress has been made in the field of liver transplantation over the past two decades. This progress, however, also brings up the next set of challenges: First, organ shortage remains a major limitation, and accounts for a large proportion of wait list mortality. While living donation has successfully increased the total number of liver transplants done in Asian countries, the total number of such transplants has been stagnant in the western hemisphere. As such, there has been a significant effort over the past decade to increase the existing deceased donor pool. This effort has resulted in a greater use of liver allografts following donation after cardiac death (DCD) along with marginal and extended criteria donors. Improved understanding of the pathophysiology of liver allografts procured after circulatory arrest has not only resulted in better selection and management of DCD donors, but has also helped in the development of mechanical perfusion strategies. Early outcomes demonstrating the clinical applicability of both hypothermic and normothermic perfusion and its potential to impact patient survival and allograft function have generated much interest. Second, long-term outcomes of liver transplant recipients have not improved significantly, as recipients continue to succumb to complications of long-term immunosuppression, such as infection, malignancy and renal failure. Furthermore, recent evidence suggests that chronic immune-mediated injury to the liver may also impact graft function.
Collapse
|
42
|
Abstract
PURPOSE OF REVIEW Eculizumab suppresses the effector functions of the complement system and represents a therapeutic breakthrough for patients with paroxysmal nocturnal hemoglobinuria or atypical hemolytic uremic syndrome (aHUS). Safety monitoring is ongoing; so far, most notable is the expected increase in infection risk with encapsulated organisms. Despite potential applicability in multiple complement-mediated disorders, the off-label use of eculizumab has been limited, mainly by its prohibitive cost. The purpose of this review is to summarize the current data relevant to the use of eculizumab in kidney transplantation. RECENT FINDINGS In aHUS, prone to high rates of recurrence and allograft loss, eculizumab has made the most notable therapeutic impact. Further clarification of complement defects may help predict therapeutic responses and hopefully guide treatment duration. In C3 glomerulopathies, the clinical response to eculizumab appears more heterogeneous and less effective in processes mediated by upstream to C5 complement deregulation. A large clinical trial of eculizumab for prevention of delayed graft function is ongoing. In antibody-mediated rejection, the role of eculizumab is unclear as its use has been limited to very complex, mostly presensitized, patients in mixed combinations of therapeutic modalities. SUMMARY Overall, eculizumab has raised awareness of complement-mediated disorders as an exciting, new therapeutic option with multiple potential applications in kidney transplantation. Further research is needed to develop a better understanding of eculizumab applicability, efficacy, and treatment monitoring and beyond, to future therapeutic tools targeting the complement.
Collapse
|
43
|
Eskandary F, Wahrmann M, Mühlbacher J, Böhmig GA. Complement inhibition as potential new therapy for antibody-mediated rejection. Transpl Int 2015; 29:392-402. [DOI: 10.1111/tri.12706] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 09/07/2015] [Accepted: 10/13/2015] [Indexed: 01/18/2023]
Affiliation(s)
- Farsad Eskandary
- Division of Nephrology and Dialysis; Department of Medicine III; Medical University Vienna; Vienna Austria
| | - Markus Wahrmann
- Division of Nephrology and Dialysis; Department of Medicine III; Medical University Vienna; Vienna Austria
| | - Jakob Mühlbacher
- Department of Surgery; Medical University Vienna; Vienna Austria
| | - Georg A. Böhmig
- Division of Nephrology and Dialysis; Department of Medicine III; Medical University Vienna; Vienna Austria
| |
Collapse
|
44
|
Thomas KA, Valenzuela NM, Gjertson D, Mulder A, Fishbein MC, Parry GC, Panicker S, Reed EF. An Anti-C1s Monoclonal, TNT003, Inhibits Complement Activation Induced by Antibodies Against HLA. Am J Transplant 2015; 15:2037-49. [PMID: 25904443 PMCID: PMC4654252 DOI: 10.1111/ajt.13273] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Revised: 02/10/2015] [Accepted: 02/17/2015] [Indexed: 01/25/2023]
Abstract
Antibody-mediated rejection (AMR) of solid organ transplants (SOT) is characterized by damage triggered by donor-specific antibodies (DSA) binding donor Class I and II HLA (HLA-I and HLA-II) expressed on endothelial cells. While F(ab')2 portions of DSA cause cellular activation and proliferation, Fc regions activate the classical complement cascade, resulting in complement deposition and leukocyte recruitment, both hallmark features of AMR. We characterized the ability of an anti-C1s monoclonal antibody, TNT003, to inhibit HLA antibody (HLA-Ab)-induced complement activation. Complement deposition induced by HLA-Ab was evaluated using novel cell- and bead-based assays. Human aortic endothelial cells (HAEC) were cultured with HLA-Ab and human complement; production of activated complement proteins was measured by flow cytometry. Additionally, C3d deposition was measured on single antigen beads (SAB) mixed with HLA-Ab and human complement. TNT003 inhibited HLA-Ab mediated complement deposition on HAEC in a concentration-dependent manner; C3a, C4a and C5a anaphylatoxin production was also diminished by TNT003. Finally, TNT003 blocked C3d deposition induced by Class I (HLAI-Ab)- and Class II (HLAII-Ab)-specific antibodies on SAB. These data suggest TNT003 may be useful for modulating the effects of DSA, as TNT003 inhibits complement deposition and split product formation generated by HLA-I/II-Ab in vitro.
Collapse
Affiliation(s)
- K A Thomas
- Department of Pathology and Laboratory Medicine, University of CaliforniaLos Angeles, CA
| | - N M Valenzuela
- Department of Pathology and Laboratory Medicine, University of CaliforniaLos Angeles, CA
| | - D Gjertson
- Department of Pathology and Laboratory Medicine, University of CaliforniaLos Angeles, CA
| | - A Mulder
- Department of Immunohematology and Blood Transfusion, Leiden University Medical CenterLeiden, the Netherlands
| | - M C Fishbein
- Department of Pathology and Laboratory Medicine, University of CaliforniaLos Angeles, CA
| | - G C Parry
- True North Therapeutics, Inc.South San Francisco, CA
| | - S Panicker
- True North Therapeutics, Inc.South San Francisco, CA
| | - E F Reed
- Department of Pathology and Laboratory Medicine, University of CaliforniaLos Angeles, CA,*Corresponding author: Elaine F. Reed,
| |
Collapse
|
45
|
Böhmig GA, Eskandary F. Rejection despite C5 blockade: a distinct role of IgM? Transpl Int 2015; 27:1233-4. [PMID: 25073812 DOI: 10.1111/tri.12407] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2014] [Accepted: 07/20/2014] [Indexed: 01/01/2023]
Affiliation(s)
- Georg A Böhmig
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University Vienna, Vienna, Austria
| | | |
Collapse
|
46
|
Valenzuela NM, Trinh KR, Mulder A, Morrison SL, Reed EF. Monocyte recruitment by HLA IgG-activated endothelium: the relationship between IgG subclass and FcγRIIa polymorphisms. Am J Transplant 2015; 15:1502-18. [PMID: 25648976 PMCID: PMC4439339 DOI: 10.1111/ajt.13174] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2014] [Revised: 12/01/2014] [Accepted: 12/15/2014] [Indexed: 01/25/2023]
Abstract
It is currently unclear which donor specific HLA antibodies confer the highest risk of antibody-mediated rejection (AMR) and allograft loss. In this study, we hypothesized that two distinct features (HLA IgG subclass and Fcγ receptor [FcγR] polymorphisms) which vary from patient to patient, influence the process of monocyte trafficking to and macrophage accumulation in the allograft during AMR in an interrelated fashion. Here, we investigated the contribution of human IgG subclass and FcγR polymorphisms in monocyte recruitment in vitro by primary human aortic endothelium activated with chimeric anti-HLA I human IgG1 and IgG2. Both subclasses triggered monocyte adhesion to endothelial cells, via a two-step process. First, HLA I crosslinking by antibodies stimulated upregulation of P-selectin on endothelium irrespective of IgG subclass. P-selectin-induced monocyte adhesion was enhanced by secondary interactions of IgG with FcγRs, which was highly dependent upon subclass. IgG1 was more potent than IgG2 through differential engagement of FcγRs. Monocytes homozygous for FcγRIIa-H131 adhered more readily to HLA antibody-activated endothelium compared with FcγRIIa-R131 homozygous. Finally, direct modification of HLA I antibodies with immunomodulatory enzymes EndoS and IdeS dampened recruitment by eliminating antibody-FcγR binding, an approach that may have clinical utility in reducing AMR and other forms of antibody-induced inflammation.
Collapse
Affiliation(s)
- Nicole M. Valenzuela
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA
| | - K. Ryan Trinh
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA
| | - Arend Mulder
- Department of Immunohaematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | - Sherie L. Morrison
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA
| | - Elaine F. Reed
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA
| |
Collapse
|
47
|
Mastellos DC, Yancopoulou D, Kokkinos P, Huber-Lang M, Hajishengallis G, Biglarnia AR, Lupu F, Nilsson B, Risitano AM, Ricklin D, Lambris JD. Compstatin: a C3-targeted complement inhibitor reaching its prime for bedside intervention. Eur J Clin Invest 2015; 45:423-40. [PMID: 25678219 PMCID: PMC4380746 DOI: 10.1111/eci.12419] [Citation(s) in RCA: 171] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 02/06/2015] [Indexed: 12/12/2022]
Abstract
There is a growing awareness that complement plays an integral role in human physiology and disease, transcending its traditional perception as an accessory system for pathogen clearance and opsonic cell killing. As the list of pathologies linked to dysregulated complement activation grows longer, it has become clear that targeted modulation of this innate immune system opens new windows of therapeutic opportunity for anti-inflammatory drug design. Indeed, the introduction of the first complement-targeting drugs has reignited a vibrant interest in the clinical translation of complement-based inhibitors. Compstatin was discovered as a cyclic peptide that inhibits complement activation by binding C3 and interfering with convertase formation and C3 cleavage. As the convergence point of all activation pathways and a molecular hub for crosstalk with multiple pathogenic pathways, C3 represents an attractive target for therapeutic modulation of the complement cascade. A multidisciplinary drug optimization effort encompassing rational 'wet' and in silico synthetic approaches and an array of biophysical, structural and analytical tools has culminated in an impressive structure-function refinement of compstatin, yielding a series of analogues that show promise for a wide spectrum of clinical applications. These new derivatives have improved inhibitory potency and pharmacokinetic profiles and show efficacy in clinically relevant primate models of disease. This review provides an up-to-date survey of the drug design effort placed on the compstatin family of C3 inhibitors, highlighting the most promising drug candidates. It also discusses translational challenges in complement drug discovery and peptide drug development and reviews concerns related to systemic C3 interception.
Collapse
Affiliation(s)
- Dimitrios C Mastellos
- Division of Biodiagnostic Sciences and Technologies, INRASTES, National Center for Scientific Research 'Demokritos', Aghia Paraskevi Attikis, Greece
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Duhamel P, Suberbielle C, Grimbert P, Leclerc T, Jacquelinet C, Audry B, Bargues L, Charron D, Bey E, Lantieri L, Hivelin M. Anti-HLA sensitization in extensively burned patients: extent, associated factors, and reduction in potential access to vascularized composite allotransplantation. Transpl Int 2015; 28:582-93. [PMID: 25683513 DOI: 10.1111/tri.12540] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 12/03/2014] [Accepted: 02/06/2015] [Indexed: 12/21/2022]
Abstract
Extensively burned patients receive iterative blood transfusions and skin allografts that often lead to HLA sensitization, and potentially impede access to vascularized composite allotransplantation (VCA). In this retrospective, single-center study, anti-HLA sensitization was measured by single-antigen-flow bead analysis in patients with deep, second- and third-degree burns over ≥40% total body surface area (TBSA). Association of HLA sensitization with blood transfusions, skin allografts, and pregnancies was analyzed by bivariate analysis. The eligibility for transplantation was assessed using calculated panel reactive antibodies (cPRA). Twenty-nine patients aged 32 ± 14 years, including 11 women, presented with a mean burned TBSA of 54 ± 11%. Fifteen patients received skin allografts, comprising those who received cryopreserved (n = 3) or glycerol-preserved (n = 7) allografts, or both (n = 5). An average 36 ± 13 packed red blood cell (PRBC) units were transfused per patient. In sera samples collected 38 ± 13 months after the burns, all patients except one presented with anti-HLA antibodies, of which 13 patients (45%) had complement-fixing antibodies. Eighteen patients (62%) were considered highly sensitized (cPRA≥85%). Cryopreserved, but not glycerol-preserved skin allografts, history of pregnancy, and number of PRBC units were associated with HLA sensitization. Extensively burned patients may become highly HLA sensitized during acute care and hence not qualify for VCA. Alternatives to skin allografts might help preserve their later access to VCA.
Collapse
Affiliation(s)
- Patrick Duhamel
- Service de Chirurgie Plastique, Centre de Traitement des Brûlés, Hôpital d'Instruction des Armées Percy, Clamart Cedex, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Béland S, Désy O, Vallin P, Basoni C, De Serres SA. Innate immunity in solid organ transplantation: an update and therapeutic opportunities. Expert Rev Clin Immunol 2015; 11:377-89. [PMID: 25644774 DOI: 10.1586/1744666x.2015.1008453] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Innate immunity is increasingly recognized as a major player in transplantation. In addition to its role in inflammation in the early post-transplant period, innate immunity shapes the differentiation of cells of adaptive immunity, with a capacity to promote either rejection or tolerance. Emerging data indicate that innate allorecognition, a characteristic previously limited to lymphocytes, is involved in allograft rejection. This review briefly summarizes the physiology of each component of the innate immune system in the context of transplantation and presents the current or promising therapeutic applications, such as cellular, anticomplement and anticytokine therapies.
Collapse
Affiliation(s)
- Stéphanie Béland
- Transplantation Unit, Renal Division, Department of Medicine, CHU de Québec Research Center, Faculty of Medicine, Laval University, 11 Côte du Palais, Québec, QC, Canada
| | | | | | | | | |
Collapse
|
50
|
Biglarnia AR, Ekdahl KN, Nilsson B. Complement Interception Across Humoral Incompatibility in Solid Organ Transplantation: A Clinical Perspective. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 865:211-33. [PMID: 26306452 DOI: 10.1007/978-3-319-18603-0_13] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The humoral barrier in transplant biology is the result of preformed donor-specific antibodies (DSAs), directed either against human leukocyte antigens (HLA) or non-HLA antigens such as blood group (ABO) molecules. The term "sensitization" applies to patients carrying these antibodies. Transplantation is widely accepted as a life-saving opportunity for patients with terminal end-organ disease. However, in sensitized patients, transplant outcome is hampered by antibody-mediated rejection (AMR) as a consequence of DSA exposure. Furthermore, sensitized patients have limited access to "matched" organs from the both living and deceased donor pool.Considering the crucial role of the complement system in the pathophysiology of AMR and the availability of complement intervention therapeutics, there is a growing interest in complement-targeting strategies. This review highlights the emerging importance of monitoring and modulation of the complement system in the context of enabling transplantation across humoral incompatibility in sensitized recipients with preformed anti-HLA or natural anti-ABO antibodies. It also discusses the significance of the complement system in the induction of accommodation and further emphasizes current and future perspectives of novel complement therapeutics.
Collapse
Affiliation(s)
- Ali-Reza Biglarnia
- Surgical Science, Department of Transplantation, Uppsala University Hospital, Uppsala University, Uppsala, Sweden,
| | | | | |
Collapse
|